SUPPORTING INFORMATION

Metal-Free Decarboxylative C(sp³)-C(sp³) Bond Formation for the

Synthesis of Unnatural Amino Acids and Peptides via Convergent

Paired Electrolysis Enabled Radical-Radical Cross-Coupling

Zenghui Ye,¹ Na Chen,² Hong Zhang,² Yanqi Wu,¹ and Fengzhi Zhang^{*1,2}

Affiliations:

¹School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China. e-mail: zhangfengzhi@hmc.edu.cn

²School of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.

Table of contents

1. General Information.	
2. Condition Optimization.	
3. General Procedure of Metal-Free Decarboxylative C(sp ³)-C(sp ³) Bond Formation	
4. Deprotection Procedure for the Synthesis of Unnatural Amino Acid	
5. Characterization of Products.	
6. Mechanism Investigation	
6.1 Control Experiments	
6.2 Cvclic Voltammetry Studies	
6.3 Voltage Monitoring Experiments	
7. References.	
8. NMR spectra of all compounds	

1. General Information.

All reagents were obtained from commercial suppliers and used without further purification. Yields for all compounds were determined by the column chromatography which was generally performed on silica gel (200-300 mesh) using petroleum ether (PE)/EtOAc as eluent, and reactions were monitored by thin layer chromatography (TLC) on a glass pate coated with silica gel with fluorescent indicator (GF254) using UV light and iodine chromogenic method. The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Advance 400 or 500 MHz NMR spectrometers using CDCl₃ as solvent with TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl₃ with 7.27 for ¹H and 77.16 for ¹³C, and to DMSO-*d*₆ with 2.50 for ¹H and 39.52 for ¹³C. Signals are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and coupling constants are expressed in Hz. Melting points were measured on a SGW_® X-4B apparatus and uncorrected. HRMS were recorded on Agilent 6210TOF LC/MSD iQ (1260-G6160) instrument.

Electrolysis experiments were performed using DJS-292B or HSPY-600(30 V/100 mA) as DC power supply. Two-electrode undivided cell was used for the synthetic part, only the three-electrode system was used for the cyclic voltammetry (CV) experiments. Normal operational voltage range for this reaction is around 2–3V. Cyclic voltammograms were obtained on a CHI 600E potentiostat.

Glycine esters and redox-active esters were prepared according to the previous reports.^{1, 2}

2. Condition Optimization.

Interelectrode distance: 3 mm

Table S1. Screening of the reaction conditions.^a

	$Me \xrightarrow{H} CO_2Et + \underbrace{GF(+)}_{O} \xrightarrow{GF(+)} Ni(-) \\ + \underbrace{GF(+)}_{DABCO(2.2 eq.)} \xrightarrow{LiCIO_4, DMSO, rt, N_2}_{I = 4 mA, t = 3.5 h} Me \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H}$	CO ₂ Et
Entry	Variation from standard conditions	Yield[%] ^[b]
1	None	86
2	Interelectrode distance: 6 mm	65
3	Interelectrode distance: 10 mm	39
4	1.2 eq 2a	67
5	1.1 eq DABCO	53
6	I = 2 mA	20
7	I = 8 mA	51
8	Without current	NR
9	Without LiClO ₄	55
10	ⁿ Bu ₄ NClO ₄ instead of LiClO ₄	60
11	ⁿ Bu ₄ NBF ₄ instead of LiClO ₄	64
12	DMF instead of DMSO	69
13	MeCN instead of DMSO	29
14	Interelectrode distance: 10 mm, Cp ₂ Fe (20 mol%), NiCl ₂ ·6H ₂ O (10 mol%), dtbbpy (11 mol%)	70

^{*a*}Standard reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv), DABCO (2.2 equiv), LiClO₄ (0.2 mmol), and DMSO (3.0 mL) in an undivided cell equiped with GF (graphite felt) anode (1 cm × 1 cm × 1 cm) and Ni foam cathode (1 cm × 1 cm) (interelectrode distance: 3 mm) at 23 °C under nitrogen atmosphere, I = 4 mA, E_{cell} = 2-3 V, t = 3.5 h, Q = 2.6 F·mol⁻¹. ^{*b*} Isolated yields. NR, no reaction.

Interelectrode distance: 10 mm.

Table S2. Cathodic mediator screening for the reaction of 1a and 2a.^a

Me	D ₂ Et + 0 - N	GF (+) Ni (-) <i>I</i> = 8 mA <i>Cathodic mediator (10 mol%)</i> DABCO (2.2 eq.)	
1a	2a	LiClO ₄ (0.17 M), DMF (6 mL) N ₂ , rt	3a
Entry	Cathodic	e mediator	Yield $(\%)^b$
	Lewis acids (10	Ligand (11	
	mol%)	mol%)	
1	-	-	14
2	NiCl ₂ ·6H ₂ O	-	48
3	NiCl ₂ ·6H ₂ O	bpy	50
4	NiCl ₂ ·6H ₂ O	dmbpy	52
5	NiCl ₂ ·6H ₂ O	dtbbpy	55
6	$Ni(acac)_2$	dtbbpy	42
7	Ni(bpy)Cl ₂	dtbbpy	39
8	NiBr ₂	dtbbpy	36
9	CuI	-	38
10	CuBr	-	41
11	CuCl	-	25
12	$Cu(OAc)_2$	-	40
13	$ZnCl_2$	-	24
14	FeCl ₃	-	26

[a] 0.3 mmol scale. $Q = 2.5 \text{ F} \cdot \text{mol}^{-1}$. [b] Isolated yields.

Interelectrode distance: 10 mm.

Table S3. Bases screening for the reaction of 1a and 2a.^a

Me N CO ₂ Et +	$\begin{array}{c} GF(+) \blacksquare I \\ I = 8 mA \\ NiCl_2 \cdot 6H_2O(10) \\ dtbbpy (11 mc) \\ Base (2.2 ec) \\ LiClO_4 (0.17 M), DMF \end{array}$	Ni (-) $\overrightarrow{mol\%}$) \overrightarrow{H} \overrightarrow{H} \overrightarrow{H} \overrightarrow{H} $\overrightarrow{CO_2Et}$ $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} $\overrightarrow{O_2Et}$ \overrightarrow{H} H
Entry	Bases	Yield (%) ^{b}
1	Na ₂ CO ₃	26
2	K ₂ HPO ₄	30
3	<i>t</i> BuOK	28
4	DIPEA	20
5	DMEDA	NR
6	DIPA	Trace
7	Pyridine	42
8	DABCO	55
9	Et ₃ N	45
10	DBU	34
11	2,6-lutidine	31

[a] 0.3 mmol scale. $Q = 2.5 \text{ F} \cdot \text{mol}^{-1}$. [b] Isolated yields.

Interelectrode distance: 10 mm.

Table S4. DABCO loading screening for the reaction of 1a and 2a.^a

Me ^H N ^{CO₂Et} + [GF (+)	H H H H CO ₂ Et H CO ₂ Et Me J CO (11 mol%) CO (x eq.)), DMF (6 mL) N ₂ , rt
Entry	X (equivalent)	Yield $(\%)^b$
1	0	20
2	1.5	35
3	2	49
4	2.2	55
5	3	42

[a] 0.3 mmol scale. $Q = 2.5 \text{ F} \cdot \text{mol}^{-1}$. [b] Isolated yields.

Interelectrode distance: 10 mm.

Table S5. Electrodes screening for the reaction of 1a and 2a.^a

Me ^H , CO ₂ Et + (2a	(100) Me (100) Me (100) $(1$
Entry	Electrodes	Yield (%) ^{b}
1	C / Pt	34
2	C / Ni foam	46
3	RVC / Ni foam	33
4	Pt / Ni foam	41
5	C felt / Ni foam	55
6	C / C	25
7	Ni foam / Ni foam	37

[a] 0.3 mmol scale. $Q = 2.5 \text{ F} \cdot \text{mol}^{-1}$. [b] Isolated yields.

Interelectrode distance: 10 mm.

Table S6. Electrolytes screening for the reaction of 1a and 2a.^a

Me H CO ₂ Et +		F (+) $I = 8 \text{ mA}$ I = 8 mA $I_2 \cdot 6H_2O (10 \text{ mol}\%)$ (tbbpy (11 mol%) DABCO (2.2 eq.) ectrolyte (0.17 M) MF (6 mL), N ₂ , rt	Me 3a CO ₂ Et	
Entry	Electrolyte	s	Yield $(\%)^b$	
1	ⁿ Bu ₄ NBF	4	50	
2	^{<i>n</i>} Bu ₄ NI		36	
3	ⁿ Bu ₄ NBr		34	

4	LiClO ₄	55
5	Et ₄ NClO ₄	47
6	ⁿ Bu ₄ NPF ₆	44
7	LiBr	40
8	NH_4I	27

[a] 0.3 mmol scale. $Q = 2.5 \text{ F} \cdot \text{mol}^{-1}$. [b] Isolated yields.

Interelectrode distance: 10 mm.

Table S7. Anodic mediator screening for the reaction of 1a and 2a.^a

Me H CO ₂ Et +	2a Licic	GF (+)	
Entry	Anodic me	ediator	Yield (%) ^{b}
1	DDQ		NR
2	TBHP		34
3	(4-BrPh	1)3N	52
4	(4-MePh) ₂ N-N	$(4-MePh)_2$	58
5	TEMPO		59
6	Cp ₂ Fe		63
7	NaB	r	32

[a] 0.3 mmol scale. $Q = 2.5 \text{ F} \cdot \text{mol}^{-1}$. [b] Isolated yields.

Interelectrode distance: 10 mm.

Table S8. Solvents screening for the reaction of 1a and 2a.^a

Entry	Solvents	Yield (%) ^{b}
1	MeCN	29
2	MeOH	Trace
3	EtOH	Trace
4	THF	NR
5	DMF	63
6	DMF:THF = 5:1	NR
7	DMSO	65
8	NMP	47
9	DMAc	60
10	DMSO: $H_2O = 6:0.5$	46
11	DMSO: $HFIP = 6:0.5$	45

12	DMSO: $EA = 5:1$	58
13	DMSO: $MeCN = 5:1$	62

[a] 0.3 mmol scale. $Q = 2.5 \text{ F} \cdot \text{mol}^{-1}$. [b] Isolated yields.

Interelectrode distance: 10 mm.

Table S9. Electricity screening for the reaction of 1a and 2a.^a

Me ⁺ 1a	2a	GF (+)	
Entry	Elect	ricity (F·mol ⁻¹)	Yield $(\%)^b$
1		2	54
2		2.5	65
3		3	58
4		2.6	70
5		2.7	66

[a] 0.3 mmol scale. [b] Isolated yields.

Interelectrode distance: 10 mm.

Table S10. Electric current screening for the reaction of 1a and 2a.^a

Me H CO ₂ Et +	GF (+) GF (+) Cp ₂ Fe (20 mc NiCl ₂ • 6H ₂ O (10 dtbbpy (11 mc DABCO (2.2 eq.), LiCl DMSO (6 mL),	Ni (-) mol%) Ne O ₄ (0.17 M) N ₂ , rt Ne 3a H CO ₂ Et 3a
Entry	I (mA)	Yield $(\%)^b$
1	4	60
2	6	66
3	8	70
4	10	63

.

[a] 0.3 mmol scale. [b] Isolated yields.

3. General Procedure of Metal-Free Decarboxylative C(sp³)-C(sp³)

Bond Formation.

General procedure: A 10 mL Schlenk tube with a stir bar was charged with glycine derivatives (0.2 mmol), NHPI esters (0.3 mmol), DABCO (0.44 mmol), LiClO₄ (0.2

mmol) and DMSO (3 mL). The tube was sealed with rubber septum which equipped with a graphite felt anode (1 cm × 1 cm × 1 cm) and a nickel foam cathode (1 cm × 1 cm × 1.5 mm) (interelectrode distance: 3 mm) and stirred for 5-10 min at room temperature. It was then evacuated, and backfilled with nitrogen for three cycles. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA under room temperature for 3.5 h ($2.6 \text{ F} \cdot \text{mol}^{-1}$). When the reaction was finished, the electrodes were taken out and rinsed with EtOAc and the mixture was washed with water and extracted with EtOAc (3 x 20 mL). The combined organic solution was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The given residue was purified by column chromatography through silica gel to provide the desired product.

General procedure for gram scale synthesis: A 250-mL beaker-type cell was equipped with a graphite felt anode (3 cm \times 3 cm \times 1 cm), a nickel foam (3 cm \times 3 cm \times 1.5 mm) cathode (interelectrode distance: 3-5 mm) and a stirring bar. The flask was charged with glycine derivatives (1a, 9 mmol), NHPI esters (2a, 13.5 mmol), DABCO (2.2 equiv.), LiClO₄ (9 mmol). Seal the device tightly and introduce nitrogen into the flask (three times). Then, DMSO (135 mL) was added via a syringe under nitrogen atmosphere. The reaction mixture was stirred and electrolyzed at a constant current of 72 mA under room temperature for 8.7 h (2.6 F·mol⁻¹). When the reaction was finished, the mixture was washed with water and extracted with EtOAc (3 x 150 mL). The combined organic solution was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The given residue was purified by column chromatography through silica gel to provide the desired product.

Figure S1. Reaction set-up.

4. Deprotection Procedure for the Synthesis of Unnatural Amino Acid.

According to reported literature³. A mixture of **3g** (0.3 mmol, 87.4 mg) and CAN (cerium ammonium, 1.8 mmol, 986.8 mg) in 5:2 solution of H₂O/MeCN (3.0 mL) was stirred at 0 °C for 2 h. The mixture was modulated to alkalescence with saturated aqueous sodium carbonate. Then the mixture was extracted by DCM for three times, washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was dissolved in 2:1 solution of MeOH/H₂O (1 mL), followed by the addition of NaOH (0.33 mmol, 13.2 mg). The mixture was stirred under room temperature for 2h. After completion of the reaction monitored by TLC, the mixture was concentrated under reduced pressure. The mixture was modulated to pH 5-6 with 1 N HCl. The precipitate was filtered to afford the corresponding unnatural amino acid 2-cyclohexylglycine in 80 % yield, 38 mg. **LC-MS** m/z (ESI) calcd for C₈H₁₆NO₂ [M+H]⁺: 158.1, found: 158.1.

5. Characterization of Products.

Ethyl 2-cyclohexyl-2-(*p*-tolylamino)acetate (3a): Yield: 86%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, J = 8.2 Hz, 2H), 6.61 – 6.56 (m, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.85 (d, J = 6.1 Hz, 1H), 2.25 (s, 3H), 1.93 – 1.85 (m, 1H), 1.85 – 1.75 (m, 3H), 1.75 – 1.67 (m, 2H), 1.27 (t, J = 7.1 Hz, 6H), 1.21 – 1.15 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 145.2, 129.8, 127.4, 113.8, 62.5, 60.8, 41.3, 29.7, 29.2, 26.2, 20.4, 14.3; The spectra data matched with values reported in the literature.³

Ethyl 2-cyclohexyl-2-(*m*-tolylamino)acetate (3b): Yield: 81%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.07 (t, J = 7.7 Hz, 1H), 6.59 – 6.55 (m, 1H), 6.50 – 6.44 (m, 2H), 4.20 (dd, J = 7.1, 2.0 Hz, 2H), 3.89 (d, J = 6.2 Hz, 1H), 2.29 (s, 3H), 1.88 (dpd, J = 10.2, 3.3, 2.0, 1.4 Hz, 1H), 1.83 – 1.76 (m, 3H), 1.71 (dddd, J = 12.8, 9.5, 5.5, 2.5 Hz, 2H), 1.32 – 1.25 (m, 6H), 1.20 (dddd, J = 12.7, 9.5, 3.1, 1.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 147.5, 139.0, 129.1, 119.0, 114.4, 110.6, 62.0, 60.7, 41.3, 29.6, 29.2, 26.2, 26.10, 26.06, 21.6, 14.3; HRMS m/z (ESI) calcd for C₁₇H₂₆NO₂ [M+H]⁺: 276.1958, found: 276.1953.

Ethyl 2-cyclohexyl-2-(phenylamino)acetate (3c): Yield: 89%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.21 – 7.15 (m, 2H), 6.74 (tt, J = 7.4, 1.1 Hz, 1H), 6.68 – 6.62 (m, 2H), 4.19 (q, J = 7.1 Hz, 3H), 3.89 (d, J = 6.1 Hz, 1H), 1.92 – 1.85 (m, 1H), 1.83 – 1.75 (m, 3H), 1.71 (dddd, J = 14.4, 11.3, 4.5, 2.5 Hz, 2H), 1.30 – 1.21 (m, 6H), 1.21 – 1.16 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.6, 147.5, 129.2, 118.1, 113.5, 62.0, 60.8, 41.3, 29.6, 29.2, 26.2, 26.10, 26.06, 14.3; The spectra data matched with values reported in the literature.³

Ethyl 2-cyclohexyl-2-((4-ethylphenyl)amino)acetate (3d): Yield: 88%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.08 – 6.99 (m, 2H), 6.66 – 6.58 (m, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.87 (d, J = 6.1 Hz, 1H), 2.56 (q, J = 7.6 Hz, 2H), 1.96 – 1.86 (m, 1H), 1.85 – 1.75 (m, 3H), 1.72 (dt, J = 3.5, 1.7 Hz, 2H), 1.34 – 1.25 (m, 6H), 1.24 – 1.16 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 173.8, 145.3, 133.9, 128.5, 113.7, 62.4, 60.7, 41.3, 29.6, 29.2, 27.9, 26.2, 26.1, 26.0, 15.8, 14.3; HRMS m/z (ESI) calcd for C₁₈H₂₈NO₂ [M+H]⁺: 290.2115, found: 290.2113.

Ethyl 2-cyclohexyl-2-((4-isopropylphenyl)amino)acetate (3e): Yield: 87%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.02 (m, 2H), 6.66 – 6.57 (m, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.86 (d, J = 6.1 Hz, 1H), 2.83 (hept, J = 6.9 Hz, 1H), 1.88 (d, J = 12.1 Hz, 1H), 1.80 (dq, J = 11.8, 3.1 Hz, 3H), 1.71 (dd, J = 14.3, 10.3 Hz, 2H), 1.28 (t, J = 7.1 Hz, 5H), 1.23 (dd, J = 7.0, 0.7 Hz, 7H), 1.21 – 1.14 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.8, 145.4, 138.6, 127.1, 113.6, 62.4, 60.7, 41.4, 33.1, 29.6, 29.2, 26.2, 26.10, 26.06, 24.17, 24.16, 14.3; HRMS m/z (ESI) calcd for C₁₉H₃₀NO₂ [M+H]⁺: 304.2271, found: 304.2266.

Ethyl 2-((4-(*tert*-butyl)phenyl)amino)-2-cyclohexylacetate (3f): Yield: 84%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.18 (m, 2H), 6.65 – 6.59 (m, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.87 (d, J = 6.1 Hz, 1H), 1.95 – 1.85 (m, 1H), 1.84 – 1.76 (m, 3H), 1.75 – 1.66 (m, 2H), 1.30 (s, 9H), 1.30 – 1.17 (m, 8H); ¹³C NMR (126 MHz, CDCl₃) δ 173.8, 145.0, 126.0, 113.2, 62.3, 60.7, 41.3, 33.8, 31.5, 29.6, 29.1, 26.2, 26.1, 26.0, 14.3; The spectra data matched with values reported in the literature.⁴

Ethyl 2-cyclohexyl-2-((4-methoxyphenyl)amino)acetate (3g): Yield: 80%, $R_f = 0.3$ (PE: EA = 30:1). Light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 6.81 – 6.74 (m, 2H), 6.67 – 6.60 (m, 2H), 4.16 (qd, J = 7.1, 1.2 Hz, 2H), 3.77 (d, J = 6.2 Hz, 1H), 3.75 (s, 3H), 1.88 (ddt, J = 11.3, 3.7, 1.9 Hz, 1H), 1.83 – 1.72 (m, 3H), 1.72 – 1.65 (m, 2H), 1.31 – 1.22 (m, 6H), 1.21 – 1.11 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 152.7, 141.5, 115.3, 114.8, 63.5, 60.7, 55.7, 41.3, 29.7, 29.2, 26.2, 26.10, 26.07, 14.3; The spectra data matched with values reported in the literature.³

Ethyl 2-cyclohexyl-2-((4-fluorophenyl)amino)acetate (3h): Yield: 83%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 6.91 – 6.84 (m, 2H), 6.61 – 6.55 (m, 2H), 4.17 (qd, J = 7.1, 1.3 Hz, 2H), 3.78 (d, J = 6.2 Hz, 1H), 1.87 (dt, J = 12.6, 1.8 Hz, 1H), 1.83 – 1.73 (m, 3H), 1.73 – 1.66 (m, 2H), 1.25 (q, J = 7.1, 6.4 Hz, 6H), 1.21 – 1.14 (m, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 173.6, 156.2 (d, $J_{C-F} = 234.5$ Hz), 143.8, 115.7 (d, $J_{C-F} = 22.8$ Hz), 114.7 (d, $J_{C-F} = 7.5$ Hz), 63.1, 60.8, 41.3, 29.7, 29.2, 26.2, 26.09, 26.06, 14.3; The spectra data matched with values reported in the literature.³

Ethyl 2-((4-chlorophenyl)amino)-2-cyclohexylacetate (3i): Yield: 82%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.15 – 7.08 (m, 2H), 6.58 – 6.53 (m, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.82 (d, J = 6.1 Hz, 1H), 1.85 (ddt, J = 12.6, 3.4, 1.8 Hz, 1H), 1.82 – 1.74 (m, 3H), 1.72 – 1.66 (m, 2H), 1.31 – 1.23 (m, 6H), 1.20 – 1.15 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 146.1, 129.1, 122.7, 114.7, 62.2, 60.9, 41.2, 29.6, 29.2, 26.2, 26.1, 26.0, 14.3; The spectra data matched with values reported in the literature.⁴

Ethyl 2-((4-bromophenyl)amino)-2-cyclohexylacetate (3j): Yield: 80%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.22 (m, 2H), 6.54 – 6.49 (m, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.81 (d, J = 6.1 Hz, 1H), 1.89 – 1.82 (m, 1H), 1.81 – 1.73 (m, 3H), 1.69 (ddd, J = 14.4, 3.6, 1.8 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H), 1.19 – 1.13 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.3, 146.4, 132.0, 115.1, 109.8, 62.1, 60.9, 41.2, 29.6, 29.2, 26.14, 26.05, 26.0, 14.3; HRMS m/z (ESI) calcd for C₁₆H₂₂BrNNaO₂ [M+Na]⁺: 362.0726, found: 362.0716.

Methyl 5-((1-cyclohexyl-2-ethoxy-2-oxoethyl)amino)-2-methylbenzoate (3k): Yield: 66%, $R_f = 0.3$ (PE: EA = 10:1). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 2.7 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H), 6.69 (dd, J = 8.3, 2.7 Hz, 1H), 4.17 (ddq, J = 10.8, 7.1, 3.6 Hz, 2H), 4.11 (d, J = 4.9 Hz, 1H), 3.86 (s, 3H), 2.45 (s, 3H), 1.87 – 1.81 (m, 1H), 1.79 – 1.65 (m, 5H), 1.25 (t, J = 7.1 Hz, 5H), 1.17 (ddt, J = 21.9, 12.2, 2.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 168.2, 145.3, 132.5, 129.9, 129.5, 117.4, 115.4, 62.2, 60.9, 51.8, 41.3, 29.6, 29.1, 26.2, 26.1, 26.1, 20.8, 14.3. LC-MS m/z (ESI) calcd for C₁₉H₂₈NO₄ [M+H]⁺: 334.2, found: 334.2.

Ethyl 2-((3-cyano-4-methylphenyl)amino)-2-cyclohexylacetate (3l): Yield: 60%, $R_f = 0.3$ (PE: EA = 20:1). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.4 Hz, 1H), 6.78 (d, J = 2.6 Hz, 1H), 6.74 (dd, J = 8.3, 2.7 Hz, 1H), 4.23 (d, J = 10.0 Hz, 1H), 4.21 – 4.15 (m, 2H), 3.80 (dd, J = 9.4, 5.9 Hz, 1H), 2.39 (s, 3H), 1.85 – 1.75 (m, 4H), 1.67 (s, 2H), 1.28 – 1.23 (m, 6H), 1.20 – 1.13 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 145.6, 131.1, 131.0, 118.6, 118.6, 115.8, 113.0, 61.9, 61.1, 41.2, 29.6, 29.1, 26.1, 26.0, 26.0, 19.3, 14.3. LC-MS m/z (ESI) calcd for C₁₈H₂₅N₂O₂ [M+H]⁺: 301.2, found: 301.2.

Ethyl 2-cyclohexyl-2-((3-iodo-4-methylphenyl)amino)acetate (3m): Yield: 78%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.13 (d, J = 2.5 Hz, 1H), 7.00 (dd, J = 8.2, 0.7 Hz, 1H), 6.54 (dd, J = 8.2, 2.5 Hz, 1H), 4.19 (p, J = 7.2 Hz, 2H), 3.79 (d, J = 6.2 Hz, 1H), 2.31 (s, 3H), 1.87 – 1.82 (m, 1H), 1.82 – 1.74 (m, 3H), 1.72 – 1.65 (m, 2H), 1.28 (t, J = 7.1 Hz, 6H), 1.19 – 1.12 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 146.3, 130.5, 129.7, 123.7, 113.8, 101.6, 62.1, 60.9, 41.2, 29.6, 29.1, 26.7, 26.2, 26.05, 26.02, 14.3; HRMS m/z (ESI) calcd for C₁₇H₂₅INO₂ [M+H]⁺:

Ethyl 2-cyclohexyl-2-((3,4,5-trimethoxyphenyl)amino)acetate (3n): Yield: 68%, R_f = 0.3 (PE: EA = 6:1). White solid. M.p. = 123 - 124 °C. ¹H NMR (500 MHz, CDCl₃) δ 5.91 (s, 2H), 4.19 (qd, J = 7.1, 0.8 Hz, 2H), 3.82 (s, 6H), 3.80 (d, J = 6.4 Hz, 1H), 3.76 (s, 3H), 1.92 - 1.86 (m, 1H), 1.82 - 1.75 (m, 3H), 1.72 - 1.66 (m, 2H), 1.27 (t, J= 7.1 Hz, 6H), 1.22 - 1.16 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 153.9, 143.8, 130.8, 100.0, 91.5, 62.8, 61.0, 60.9, 55.9, 41.3, 29.7, 29.3, 26.2, 26.1, 26.0, 14.4; HRMS m/z (ESI) calcd for C₁₉H₃₀NO₅ [M+H]⁺: 352.2118, found: 352.2112.

Ethyl 2-cyclohexyl-2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)acetate (30): yield: $R_f = 0.2$ (PE: EA = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 6.73 – 6.63 (m, 1H), 6.21 – 6.11 (m, 2H), 4.25 – 4.10 (m, 6H), 3.88 (s, 1H), 3.73 (d, J = 6.0 Hz, 1H), 1.86 – 1.64 (m, 6H), 1.29 – 1.08 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 144.0, 142.4, 136.1, 117.7, 107.5, 102.5, 64.7, 64.2, 62.9, 60.8, 41.3, 29.6, 29.2, 26.2, 26.1, 26.1, 14.4. LC-MS: m/z (ESI) calcd for C₁₈H₂₆N₂O₄ [M+H]⁺: 320.2, found: 320.2.

Ethyl 2-cyclohexyl-2-(naphthalen-2-ylamino)acetate (3p): Yield: 80%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.60 (m, 3H), 7.38 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.29 – 7.20 (m, 1H), 6.96 (dd, J = 8.8, 2.4 Hz, 1H), 6.85 (d, J = 2.4 Hz, 1H), 4.50 – 4.29 (m, 1H), 4.22 (qd, J = 7.1, 5.0 Hz, 2H), 4.05 (d, J = 6.2 Hz, 1H), 1.99 – 1.91 (m, 1H), 1.90 – 1.80 (m, 3H), 1.81 – 1.69 (m, 2H), 1.29 (t, J = 7.1 Hz, 6H), 1.27 – 1.21 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 173.6, 145.0, 135.0, 129.0, 127.9, 127.6, 126.3, 126.0, 122.3, 118.3, 105.6, 62.1, 60.9, 41.3, 29.6, 29.3, 26.2, 26.12, 26.07, 14.3; **HRMS** m/z (ESI) calcd for C₂₀H₂₆NO₂ [M+H]⁺: 312.1958, found:

Tert-butyl 2-cyclohexyl-2-(*p*-tolylamino)acetate (3q): Yield: 83%, $R_f = 0.3$ (PE: EA = 30:1). Light yellow solid. M.p. = 61 - 62 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.98 (d, J = 8.2 Hz, 2H), 6.59 (d, J = 8.3 Hz, 2H), 3.73 (d, J = 5.7 Hz, 1H), 2.24 (s, 3H), 1.87 – 1.82 (m, 1H), 1.77 (dddd, J = 16.4, 13.6, 7.4, 4.2 Hz, 4H), 1.71 – 1.65 (m, 1H), 1.44 (s, 9H), 1.30 – 1.17 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 145.3, 129.7, 127.2, 113.9, 81.4, 63.0, 41.4, 29.6, 29.2, 28.1, 26.3, 26.22, 26.16, 20.4; The spectra data matched with values reported in the literature.⁴

Benzyl 2-cyclohexyl-2-(*p*-tolylamino)acetate (3r): Yield: 80%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.34 – 7.26 (m, 2H), 7.00 (d, J = 8.1 Hz, 2H), 6.68 – 6.53 (m, 2H), 5.17 (d, J = 2.6 Hz, 2H), 4.13 – 3.98 (m, 1H), 3.94 (d, J = 6.2 Hz, 1H), 2.27 (s, 3H), 1.93 – 1.84 (m, 1H), 1.83 – 1.72 (m, 3H), 1.70 (dt, J = 14.3, 3.2 Hz, 2H), 1.33 – 1.14 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 145.1, 135.6, 129.7, 128.5, 128.25, 128.21, 127.4, 113.8, 66.5, 62.6, 41.3, 29.6, 29.2, 26.2, 26.04, 26.01, 20.4; The spectra data matched with values reported in the literature.⁴

2-cyclohexyl-1-phenyl-2-(*p*-tolylamino)ethenone (3s): Yield: 76%, $R_f = 0.3$ (PE: EA = 30:1). Yellow solid. M.p. = 77 - 78 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.05 - 7.93 (m, 2H), 7.69 - 7.55 (m, 1H), 7.53 - 7.48 (m, 2H), 7.03 - 6.92 (m, 2H), 6.71 - 6.59 (m, 2H), 4.86 (d, *J* = 4.5 Hz, 1H), 2.22 (s, 3H), 1.85 (dd, *J* = 7.6, 3.9 Hz, 1H), 1.81 - 1.70 (m, 3H), 1.65 - 1.61 (m, 2H), 1.42 - 1.29 (m, 2H), 1.14 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 201.5, 146.0, 136.3, 133.4, 129.8, 128.8, 128.3, 127.2, 114.2, 63.6, 42.0, 30.9, 27.8, 26.4, 26.2, 26.1, 20.3; The spectra data matched with values reported in the literature.⁴

2-cyclohexyl-1-(*p*-tolyl)-2-(p-tolylamino)ethanone (3t): Yield: 80%, $R_f = 0.3$ (PE: EA = 30:1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.84 (m, 2H), 7.36 – 7.28 (m, 2H), 7.06 – 6.92 (m, 2H), 6.73 – 6.57 (m, 2H), 4.85 (d, J = 4.5 Hz, 1H), 2.44 (s, 3H), 2.23 (s, 3H), 1.86 (tdd, J = 8.2, 5.8, 2.4 Hz, 1H), 1.81 – 1.69 (m, 3H), 1.64 (tdd, J = 10.7, 5.6, 2.8 Hz, 2H), 1.37 (qd, J = 13.5, 13.1, 3.9 Hz, 2H), 1.14 (ddt, J = 9.7, 7.8, 3.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 201.0, 146.0, 144.3, 133.7, 129.7, 129.5, 128.4, 127.1, 114.2, 63.4, 42.1, 30.8, 27.9, 26.4, 26.2, 26.1, 21.7, 20.3; HRMS m/z (ESI) calcd for C₂₂H₂₈NO [M+H]⁺: 322.2165, found: 322.2157.

2-cyclohexyl-2-(*p*-tolylamino)acetonitrile (3u): Yield: 75%, $R_f = 0.3$ (PE: EA = 20:1). White solid. M. p. = 90 - 91 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.11 – 7.03 (m, 2H), 6.69 – 6.61 (m, 2H), 4.04 (d, *J* = 6.4 Hz, 1H), 2.28 (s, 3H), 2.06 – 1.93 (m, 2H), 1.91 – 1.79 (m, 3H), 1.75 (ddt, *J* = 12.8, 3.6, 1.8 Hz, 1H), 1.35 – 1.21 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 142.9, 130.0, 129.3, 119.0, 114.4, 52.3, 40.8, 29.7, 28.9, 26.0, 25.7, 25.6, 20.5; HRMS m/z (ESI) calcd for C₁₅H₂₁N₂ [M+H]⁺: 229.1699, found: 229.1701.

2-cyclohexyl-*N*,*N***-dimethyl-2-**(*p***-tolylamino**)**acetamide** (**3v**): yield: 72%, $R_f = 0.2$ (PE: EA = 4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 6.95 (d, *J* = 8.3 Hz, 2H), 6.61 – 6.51 (m, 2H), 4.52 (s, 1H), 4.10 (d, *J* = 6.0 Hz, 1H), 3.09 (s, 3H), 2.95 (s, 3H), 2.21 (s, 3H), 1.89 (d, *J* = 12.2 Hz, 1H), 1.80 – 1.72 (m, 2H), 1.67 (q, *J* = 10.6, 8.7 Hz, 3H), 1.28 – 1.09 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 146.0, 129.8, 127.2, 114.2, 59.1, 42.0, 37.4, 35.7, 30.2, 28.8, 26.3, 26.3, 26.2, 20.4. LC-MS: m/z (ESI) calcd for C₁₇H₂₇N₂O [M+H]⁺: 275.2, found: 275.2.

2-cyclohexyl-1-(pyrrolidin-1-yl)-2-(*p***-tolylamino)ethan-1-one (3w):** yield: 62%, $R_f = 0.2$ (PE: EA = 4:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 6.94 (d, J = 8.2 Hz, 2H), 6.66 – 6.47 (m, 2H), 4.46 (s, 1H), 3.91 (d, J = 6.5 Hz, 1H), 3.54 (t, J = 6.7 Hz, 2H), 3.50 – 3.38 (m, 2H), 2.21 (s, 3H), 1.94 (ddd, J = 12.8, 8.6, 5.5 Hz, 3H), 1.85 (qd, J = 6.7, 2.7 Hz, 2H), 1.28 – 1.09 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 146.0, 129.8, 126.9, 114.0, 61.2, 46.7, 45.8, 42.0, 30.2, 29.7, 29.0, 26.3, 26.2, 26.1, 24.1, 20.4. LC-MS: m/z (ESI) calcd for C₁₉H₂₉N₂O [M+H]⁺: 301.2, found: 301.2.

2-cyclohexyl-1-morpholino-2-(phenylamino)ethan-1-one (3x): yield: 70%, $R_f = 0.2$ (PE: EA = 3:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (dd, J = 8.5, 7.3 Hz, 2H), 6.70 (t, J = 7.3 Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 4.11 (d, J = 6.1 Hz, 1H), 3.73 – 3.54 (m, 8H), 1.93 – 1.85 (m, 1H), 1.80 – 1.73 (m, 2H), 1.72 – 1.62 (m, 3H), 1.25 (d, J = 6.1 Hz, 3H), 1.17 – 1.07 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 148.1, 129.3, 118.1, 113.9, 67.0, 66.7, 58.3, 46.3, 42.5, 42.0, 30.3, 28.8, 26.3, 26.2, 26.1. HRMS: m/z (ESI) calcd. for C₁₈H₂₇N₂O₂ [M+H]⁺: 303.2067, found: 303.2066

2-cyclohexyl-1-(4-phenylpiperazin-1-yl)-2-(p-tolylamino)ethan-1-one (3y): yield: 71%, $R_f = 0.2$ (PE: EA = 2:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 6.98 – 6.88 (m, 5H), 6.59 – 6.54 (m, 2H), 4.37 (s, 1H), 4.12 (d, J = 6.0 Hz, 1H), 3.75 (dt, J = 22.8, 5.1 Hz, 4H), 3.22 – 3.03 (m, 4H), 2.21 (s, 3H), 1.94 – 1.86 (m, 1H), 1.74 (t, J = 4.9 Hz, 2H), 1.71 – 1.60 (m, 3H), 1.26 – 1.22 (m, 3H), 1.18 – 1.11 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 150.8, 145.9, 129.8, 129.3, 127.4, 120.7, 116.7, 114.3, 59.0, 49.9, 49.6, 45.7, 42.0, 30.4, 28.8, 26.3, 26.2, 26.2, 20.4. LC-MS: m/z (ESI) calcd. for C₂₅H₃₄N₃O [M+H]⁺: 392.3, found: 392.2.

Ethyl 2-(*p*-tolylamino)pentanoate (4a): Yield: 75%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 6.87 (m, 2H), 6.69 – 6.47 (m, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.04 (dd, *J* = 7.0, 6.2 Hz, 1H), 2.25 (s, 3H), 1.90 – 1.69 (m, 2H), 1.55 – 1.43 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.3, 144.5, 129.8, 127.6, 113.8, 60.9, 57.0, 35.2, 20.4, 18.9, 14.2, 13.8; HRMS m/z (ESI) calcd for C₁₄H₂₂NO₂ [M+H]⁺: 236.1645, found: 236.1638.

Ethyl 5-methyl-2-(*p*-tolylamino)hexanoate (4b): Yield: 76%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.04 – 6.96 (m, 2H), 6.63 – 6.52 (m, 2H), 4.19 (q, J = 7.1 Hz, 2H), 4.01 (t, J = 6.5 Hz, 1H), 2.25 (s, 3H), 1.91 – 1.71 (m, 2H), 1.58 (dq, J = 13.3, 6.7 Hz, 1H), 1.36 – 1.30 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.92 (dd, J = 6.6, 3.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 144.7, 129.8, 127.5, 113.7, 60.9, 57.3, 34.6, 31.0, 27.9, 22.5, 22.4, 20.4, 14.3; HRMS m/z (ESI) calcd for C₁₆H₂₆NO₂ [M+H]⁺: 264.1958, found: 264.1954.

Ethyl 4-phenyl-2-(*p*-tolylamino)butanoate (4c): Yield: 73%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, J = 7.5 Hz, 2H), 7.29 – 7.13 (m, 3H), 7.01 (d, J = 8.1 Hz, 2H), 6.56 (d, J = 8.4 Hz, 2H), 4.20 (q, J = 7.1 Hz, 2H), 4.07 (dd, J = 7.2, 5.7 Hz, 1H), 2.81 (t, J = 7.9 Hz, 2H), 2.27 (s, 3H), 2.23 – 2.13 (m, 1H), 2.13 – 2.01 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.1, 144.6, 141.0, 129.8, 128.51, 128.46, 127.6, 126.1, 113.8, 61.0, 56.5, 34.7, 31.8, 20.4, 14.3; The spectra data matched with values reported in the literature.⁵

Ethyl 7-(1,3-dioxoisoindolin-2-yl)-2-(*p*-tolylamino)heptanoate (4d): Yield: 76%, $R_f = 0.3$ (PE: EA = 6:1). Yellow oil. ¹H NMR (500 MHz,CDCl₃) δ 7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 5.5, 3.0 Hz, 2H), 7.05 – 6.88 (m, 2H), 6.59 – 6.49 (m, 2H), 4.17 (q, J = 7.1 Hz, 2H), 4.00 (dd, J = 6.9, 6.0 Hz, 1H), 3.71 – 3.66 (m, 2H), 2.22 (s, 3H), 1.84 – 1.66 (m, 4H), 1.48 (tdd, J = 13.0, 6.8, 3.2 Hz, 2H), 1.44 – 1.34 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 174.2, 168.39, 168.36, 144.5, 133.82, 133.76, 132.2, 132.1, 129.7, 127.5, 123.12, 123.08, 113.7, 60.9, 57.0, 37.8, 32.9, 28.3, 26.5, 25.1, 20.3, 14.2; HRMS m/z (ESI) calcd for C₂₄H₂₉N₂O₄ [M+H]⁺: 409.2121, found: 409.2113.

Ethyl 5-(1*H*-indol-3-yl)-2-(*p*-tolylamino)pentanoate (4e): Yield: 72%, $R_f = 0.3$ (PE: EA = 6:1). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.25 (tt, J = 8.1, 1.3 Hz, 1H), 7.21 – 7.13 (m, 1H), 7.07 – 7.01 (m, 2H), 6.96 (d, J = 2.2 Hz, 1H), 6.65 – 6.55 (m, 2H), 4.27 – 4.16 (m, 2H), 4.16 – 4.10 (m, 1H), 2.87 (td, J = 6.9, 3.0 Hz, 2H), 2.30 (s, 3H), 2.00 – 1.83 (m, 4H), 1.26 (td, J = 7.1, 1.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.6, 144.7, 136.4, 129.9, 127.7, 127.5, 121.9, 121.5, 119.2, 118.9, 115.9, 113.9, 111.2, 61.1, 57.2, 32.9, 26.1, 24.9, 20.5, 14.3; HRMS m/z (ESI) calcd for C₂₂H₂₇N₂O₂ [M+H]⁺: 351.2067, found: 351.2062.

Ethyl 2-cyclobutyl-2-(*p*-tolylamino)acetate (4f): Yield: 80%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.04 – 6.97 (m, 2H), 6.62 – 6.52 (m, 2H), 4.17 (qq, J = 6.9, 3.7 Hz, 2H), 3.96 (d, J = 8.1 Hz, 1H), 2.69 (qd, J = 8.1, 1.6 Hz, 1H), 2.25 (s, 3H), 2.11 – 2.01 (m, 3H), 1.97 – 1.84 (m, 3H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 145.1, 129.7, 127.5, 113.7, 61.5, 60.8, 38.4, 25.4, 24.8, 20.4, 18.1, 14.3; HRMS m/z (ESI) calcd for C₁₅H₂₂NO₂ [M+H]⁺: 248.1645;

found: 248.1637.

Ethyl 2-cyclopentyl-2-(*p*-tolylamino)acetate (4g): Yield: 81%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz,CDCl₃) δ 7.05 – 6.94 (m, 2H), 6.62 – 6.54 (m, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.85 (d, *J* = 7.9 Hz, 1H), 2.24 (s, 3H), 1.90 – 1.80 (m, 1H), 1.77 – 1.63 (m, 3H), 1.62 – 1.53 (m, 2H), 1.52 – 1.40 (m, 2H), 1.26 (q, *J* = 7.7, 7.1 Hz, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 174.3, 145.1, 129.7, 127.4, 113.7, 61.3, 60.7, 43.2, 29.4, 29.1, 25.4, 25.1, 20.4, 14.3; HRMS m/z (ESI) calcd for C₁₆H₂₄NO₂ [M+H]⁺: 262.1802, found: 262.1794.

Ethyl 2-(tetrahydrofuran-2-yl)-2-(*p*-tolylamino)acetate (4h): Yield: 77%, 1:1 d.r., $R_f = 0.3$ (PE: EA = 6:1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.01 (d, J = 8.2 Hz, 2H), 6.68 – 6.63 (m, 1H), 6.62 – 6.57 (m, 1H), 4.37 – 4.25 (m, 1H), 4.22 (qd, J = 7.1, 4.9 Hz, 2H), 4.08 (dd, J = 20.0, 4.4 Hz, 1H), 3.94 (ddt, J = 34.4, 8.3, 6.6 Hz, 1H), 3.82 (dddd, J = 10.9, 8.2, 7.2, 6.0 Hz, 1H), 2.26 (s, 3H), 2.09 – 1.88 (m, 4H), 1.27 (td, J = 7.1, 1.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.7, 172.3, 145.2, 144.6, 129.8, 129.7, 127.8, 127.6, 114.1, 113.9, 79.9, 79.4, 69.2, 68.7, 61.24, 61.15, 60.2, 28.4, 28.1, 26.1, 25.6, 20.42, 20.41, 14.3, 14.2; The spectra data matched with values reported in the literature.⁶

Benzyl 4-(2-ethoxy-2-oxo-1-(*p*-tolylamino)ethyl)piperidine-1-carboxylate (4i): Yield: 74%, $R_f = 0.3$ (PE: EA = 6:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 4.0 Hz, 4H), 7.35 – 7.31 (m, 1H), 7.08 – 6.94 (m, 2H), 6.64 – 6.52 (m, 2H), 5.15 (s, 2H), 4.40 – 4.21 (m, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.90 (d, *J* = 6.3 Hz, 1H), 2.79 (s, 2H), 2.26 (s, 3H), 1.94 (dt, *J* = 17.2, 8.6 Hz, 1H), 1.86 (dt, *J* = 13.2, 2.7 Hz, 1H), 1.68 (d, *J* = 11.2 Hz, 1H), 1.49 – 1.35 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.1, 155.1, 144.6, 136.8, 129.8, 128.4, 127.9, 127.8, 113.9, 67.0, 61.6, 61.0, 43.9, 43.8, 39.6, 20.3, 14.2; **HRMS** m/z (ESI) calcd for C₂₄H₃₁N₂O₄ [M+H]⁺: 411.2278, found: 411.2270.

Tert-butyl 4-(2-ethoxy-2-oxo-1-(*p*-tolylamino)ethyl)piperidine-1-carboxylate (4j): Yield: 73%, $R_f = 0.3$ (PE: EA = 6:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.03 - 6.95 (m, 2H), 6.61 - 6.52 (m, 2H), 4.18 (q, *J* = 7.1 Hz, 4H), 3.88 (d, *J* = 6.3 Hz, 1H), 2.69 (s, 2H), 2.24 (s, 3H), 1.97 - 1.85 (m, 1H), 1.82 (dt, *J* = 13.3, 2.8 Hz, 1H), 1.64 (tt, *J* = 13.1, 2.6 Hz, 1H), 1.46 (s, 9H), 1.42 - 1.33 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 154.6, 144.7, 129.8, 127.8, 113.9, 79.4, 61.7, 61.0, 39.7, 28.4, 20.3, 14.2; **HRMS** m/z (ESI) calcd for C₂₁H₃₂N₂NaO₄ [M+Na]⁺: 399.2254, found: 399.2256.

Ethyl 3,3-dimethyl-2-(*p*-tolylamino)butanoate (4k): Yield: 81%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.02 – 6.97 (m, 2H), 6.63 – 6.59 (m, 2H), 4.18 – 4.13 (m, 2H), 3.76 (s, 1H), 2.25 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.09 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 145.4, 129.7, 127.6, 114.1, 66.0, 60.5, 34.4, 26.8, 20.4, 14.3; HRMS m/z (ESI) calcd for C₁₅H₂₄NO₂ [M+H]⁺: 250.1802, found: 250.1795.

Ethyl 3,3-dimethyl-2-(*p*-tolylamino)pentanoate (4l): Yield: 85%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.06 – 6.93 (m, 2H), 6.66 – 6.56 (m, 2H), 4.16 (qd, J = 7.1, 3.1 Hz, 2H), 3.85 (s, 1H), 2.25 (s, 3H), 1.47 (qd, J = 13.8, 7.5 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H), 1.03 (d, J = 11.1 Hz, 6H), 0.93 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.6, 145.4, 129.7, 127.6, 114.1, 64.3, 60.4, 37.0, 32.1, 23.4, 23.1, 20.3, 14.3, 8.2; HRMS m/z (ESI) calcd for C₁₆H₂₆NO₂ [M+H]⁺: 264.1958,

found: 264.1956.

Ethyl 4-(benzyloxy)-3,3-dimethyl-2-(*p*-tolylamino)butanoate (4m): Yield: 71%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.34 (m, 4H), 7.35 – 7.28 (m, 1H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.65 – 6.56 (m, 2H), 4.61 – 4.48 (m, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 4.11 (s, 1H), 3.57 (d, *J* = 8.9 Hz, 1H), 3.23 (d, *J* = 8.9 Hz, 1H), 2.26 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.17 (s, 3H), 1.04 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 145.4, 138.5, 129.7, 128.3, 127.53, 127.49, 127.3, 113.9, 73.3, 63.2, 60.5, 38.3, 23.1, 21.5, 20.4, 14.3; HRMS m/z (ESI) calcd for C₂₂H₃₀NO₃ [M+H]⁺: 356.2220, found: 356.2207.

Ethyl 3-methyl-3-phenyl-2-(p-tolylamino)butanoate (4n): Yield: 65%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.35 (dd, J = 8.5, 7.0 Hz, 2H), 7.27 – 7.22 (m, 1H), 6.96 (d, J = 8.2 Hz, 2H), 6.57 – 6.49 (m, 2H), 4.13 (s, 1H), 3.95 (qt, J = 7.2, 3.6 Hz, 2H), 2.23 (s, 3H), 1.53 (d, J = 15.0 Hz, 6H), 1.02 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 145.5, 145.2, 129.7, 128.1, 127.7, 126.54, 126.48, 114.2, 66.7, 60.5, 41.5, 25.7, 25.1, 20.4, 13.9. HRMS m/z (ESI) calcd for C₂₀H₂₆NO₂ [M+H]⁺: 312.1958, found: 312.1954.

Ethyl 2-(1-phenylcyclopropyl)-2-(p-tolylamino)acetate (40): Yield: 62%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz,CDC₁₃) δ 7.45 – 7.38 (m, 2H), 7.38 – 7.32 (m, 2H), 7.32 – 7.28 (m, 1H), 7.01 (d, J = 8.2 Hz, 2H), 6.63 – 6.52 (m, 2H), 4.16 (qd, J = 7.1, 4.8 Hz, 2H), 3.91 (s, 1H), 2.27 (s, 3H), 1.29 (ddd, J = 10.0, 5.7, 4.2 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H), 1.04 (ddd, J = 9.0, 6.0, 4.6 Hz, 1H), 0.98 (ddd, J = 10.2, 5.7, 4.6 Hz, 1H), 0.93 (ddd, J = 9.1, 5.9, 4.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 144.6, 141.3, 130.4, 129.7, 128.1, 127.5, 127.2, 113.9, 63.7, 60.8, 28.7, 20.3,

14.1, 11.6, 11.0; **HRMS** m/z (ESI) calcd for $C_{20}H_{24}NO_2$ [M+H]⁺: 310.1802, found: 310.1797.

Ethyl 2-(1-phenylcyclopentyl)-2-(p-tolylamino)acetate (4p): Yield: 64%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹**H NMR** (500 MHz, CDC₁₃) δ 7.35 (d, J = 4.6 Hz, 4H), 7.30 – 7.25 (m, 1H), 7.00 – 6.93 (m, 2H), 6.58 – 6.50 (m, 2H), 4.14 (s, 1H), 4.05 – 3.93 (m, 2H), 2.45 – 2.26 (m, 2H), 2.23 (s, 3H), 2.07 (dtd, J = 12.8, 7.6, 1.9 Hz, 2H), 1.97 – 1.85 (m, 1H), 1.84 – 1.75 (m, 1H), 1.73 – 1.63 (m, 2H), 1.08 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 172.7, 145.2, 143.4, 129.7, 127.9, 127.8, 127.6, 126.6, 114.1, 63.4, 60.5, 54.8, 35.4, 35.3, 22.9, 22.7, 20.3, 14.0; **HRMS** m/z (ESI) calcd for C₂₂H₂₈NO₂ [M+H]⁺: 338.2114, found: 338.2108.

Ethyl 2-(1-methylcyclohexyl)-2-(p-tolylamino)acetate (4q): Yield: 73%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.01 – 6.97 (m, 2H), 6.63 – 6.60 (m, 2H), 4.15 (qd, J = 7.1, 2.2 Hz, 2H), 3.92 (s, 1H), 2.25 (s, 3H), 1.51 (ddd, J = 16.1, 5.7, 3.5 Hz, 8H), 1.35 – 1.31 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H), 1.06 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 173.5, 145.5, 129.8, 127.5, 114.1, 65.0, 60.4, 37.1, 35.0, 26.1, 21.8, 21.7, 20.4, 14.3; **HRMS** m/z (ESI) calcd for C₁₈H₂₈NO₂ [M+H]⁺: 290.2115, found: 290.2108.

Ethyl 2-(*p***-tolylamino)-2-(2,2,5-trimethyl-1,3-dioxan-5-yl)acetate (4r):** Yield: 61%, R_f = 0.3 (PE: EA = 6:1). Colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.06 – 6.96 (m, 2H), 6.81 – 6.59 (m, 2H), 4.37 (s, 1H), 4.27 – 4.13 (m, 2H), 3.99 (dd, J = 11.8, 1.8 Hz, 1H), 3.92 (dd, J = 12.0, 1.8 Hz, 1H), 3.61 (dd, J = 24.2, 11.9 Hz, 2H), 2.25 (s, 3H), 1.63 – 1.48 (m, 3H), 1.47 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 0.93 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 173.0, 145.6, 129.8, 128.1, 114.8, 98.3, 66.9, 66.7, 61.1, 60.1, 37.1, 25.8, 21.8, 20.4, 16.0, 14.3; **HRMS** m/z (ESI) calcd for C₁₈H₂₈NO₄ [M+H]⁺: 322.2012, found: 322.2011.

Ethyl 2-((3R,5R,7R)-adamantan-1-yl)-2-(*p*-tolylamino)acetate (4s): Yield: 90%, R_f = 0.3 (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.03 – 6.96 (m, 2H), 6.64 – 6.58 (m, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.65 (s, 1H), 2.26 (s, 3H), 1.84 (dt, *J* = 12.3, 2.6 Hz, 3H), 1.76 (dt, *J* = 12.3, 2.8 Hz, 3H), 1.72 – 1.66 (m, 3H), 1.65 – 1.60 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 145.6, 129.7, 127.3, 114.0, 66.9, 60.4, 39.0, 36.9, 36.3, 28.4, 20.3, 14.3; HRMS m/z (ESI) calcd for C₂₁H₃₀NO₂ [M+H]⁺: 328.2271, found: 328.2268.

Methyl 4-(2-ethoxy-2-oxo-1-(*p*-tolylamino)ethyl)bicyclo[2.2.2]octane-1carboxylate (4t): Yield: 89%, $R_f = 0.3$ (PE: EA = 20:1). Yellow solid. M. p. = 111 - 112 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.02 – 6.95 (m, 2H), 6.62 – 6.54 (m, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 1H), 3.66 (s, 3H), 2.24 (s, 3H), 1.87 – 1.73 (m, 9H), 1.57 – 1.49 (m, 3H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 178.0, 172.9, 145.0, 129.8, 127.9, 114.2, 64.8, 60.7, 51.7, 38.7, 35.0, 28.1, 27.3, 20.4, 14.3; HRMS m/z (ESI) calcd for C₂₁H₃₀NO₄ [M+H]⁺: 360.2169, found: 360.2163.

Ethyl 4-(4,5-diphenyloxazol-2-yl)-2-(*p*-tolylamino)butanoate (5a): Yield: 75%, $R_f = 0.3$ (PE: EA = 6:1). Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.67 (dt, J = 7.3, 1.3 Hz, 2H), 7.62 – 7.55 (m, 2H), 7.43 – 7.32 (m, 6H), 7.01 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 8.0 Hz, 2H), 4.28 – 4.24 (m, 1H), 4.21 (qd, J = 7.1, 4.1 Hz, 2H), 3.14 – 3.00 (m, 2H), 2.53 – 2.43 (m, 1H), 2.35 (dq, J = 14.7, 7.5 Hz, 1H), 2.26 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 173.6, 162.5, 145.4, 144.4, 135.1, 132.5, 129.8, 129.0, 128.64, 128.58, 128.4, 128.1, 127.9, 127.8, 126.5, 113.9, 61.4, 56.6, 30.1, 24.6, 20.4, 14.2; HRMS m/z (ESI) calcd for C₂₈H₂₉N₂O₃ [M+H]⁺: 441.2173, found: 441.2168.

Ethyl 3-propyl-2-(*p*-tolylamino)hexanoate (5b): Yield: 82%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.00 (d, J = 8.1 Hz, 2H), 6.58 (d, J = 8.0 Hz, 2H), 4.24 – 4.13 (m, 2H), 4.06 (dd, J = 5.0, 1.2 Hz, 1H), 2.26 (s, 3H), 1.92 – 1.83 (m, 1H), 1.51 – 1.31 (m, 8H), 1.27 (t, J = 7.1 Hz, 3H), 0.97 – 0.88 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 174.2, 145.2, 129.8, 127.4, 113.8, 60.7, 59.4, 40.7, 32.8, 32.2, 20.40, 20.35, 20.3, 14.34, 14.31, 14.29. HRMS m/z (ESI) calcd for C₁₈H₃₀NO₂ [M+H]⁺: 292.2271, found: 292.2278.

Ethyl 6-(2,5-dimethylphenoxy)-3,3-dimethyl-2-(*p*-tolylamino)hexanoate (5c): Yield: 79%, $R_f = 0.3$ (PE: EA = 30:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.03 (dd, J = 11.4, 7.7 Hz, 3H), 6.70 (d, J = 7.5 Hz, 1H), 6.67 – 6.60 (m, 3H), 4.18 (tdd, J = 7.2, 6.2, 1.3 Hz, 2H), 4.00 – 3.93 (m, 2H), 3.90 (d, J = 1.4 Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H), 2.22 (s, 3H), 2.00 – 1.81 (m, 2H), 1.63 (tt, J = 11.0, 3.2 Hz, 2H), 1.27 (td, J = 7.2, 1.2 Hz, 3H), 1.12 (dd, J = 7.5, 1.4 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 157.0, 145.3, 136.4, 130.3, 129.8, 127.7, 123.6, 120.7, 114.2, 112.0, 68.3, 64.7, 60.6, 36.8, 36.1, 24.1, 24.0, 23.5, 21.4, 20.4, 15.7, 14.3; HRMS m/z (ESI) calcd for C₂₅H₃₅NNaO₃ [M+Na]⁺: 420.2509, found: 420.2485.

Tert-butyl2-(2-ethoxy-2-oxo-1-(p-tolylamino)ethyl)pyrrolidine-1-carboxylate(5d): Yield: 76%, 1:1 d.r., $R_f = 0.3$ (PE: EA = 15:1). Light yellow oil. ¹H NMR (500MHz, CDCl₃) δ 6.97 (dd, J = 18.4, 7.9 Hz, 2H), 6.61 (t, J = 8.2 Hz, 2H), 5.28 – 4.90

(m, 0.29H), 4.71 (d, J = 3.6 Hz, 0.29H), 4.53 (d, J = 21.5 Hz, 0.59H), 4.40 (d, J = 8.0 Hz, 0.50H), 4.35 – 4.26 (m, 0.39H), 4.18 (dddt, J = 17.8, 10.8, 7.1, 3.3 Hz, 2.12H), 3.69 – 3.02 (m, 2H), 2.23 (s, 3H), 2.03 – 1.75 (m, 4H), 1.55 (dd, J = 41.4, 14.7 Hz, 9H), 1.31 – 1.26 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 172.6, 155.9, 154.9, 154.1, 145.6, 144.9, 144.1, 129.7, 129.6, 127.2, 126.6, 123.6, 113.8, 113.4, 113.1, 61.3, 61.1, 60.5, 59.8, 59.2, 58.1, 57.8, 47.1, 28.6, 28.5, 27.3, 26.6, 24.3, 23.7, 20.3, 14.2, 14.1; HRMS m/z (ESI) calcd for C₂₀H₃₀N₂NaO₄ [M+Na]⁺: 385.2098, found: 385.2096.

Ethyl 3-(((benzyloxy)carbonyl)amino)-4-methyl-2-(*p*-tolylamino)pentanoate (5e): Yield: 78%, d.r. > 20:1, $R_f = 0.3$ (PE: EA = 6:1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.30 (m, 5H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.61 (d, *J* = 8.1 Hz, 2H), 5.12 (s, 2H), 5.04 – 4.95 (m, 1H), 4.23 – 4.12 (m, 3H), 4.02 – 3.94 (m, 1H), 2.26 (s, 3H), 1.93 (tq, *J* = 11.9, 6.1, 5.4 Hz, 1H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.09 (d, *J* = 6.7 Hz, 3H), 0.99 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.8, 156.7, 144.9, 136.4, 129.9, 128.5, 128.14, 128.09, 128.05, 114.2, 66.9, 61.5, 59.5, 58.7, 29.7, 20.4, 20.3, 18.1, 14.1; HRMS m/z (ESI) calcd for C₂₃H₃₁N₂O₄ [M+H]⁺: 399.2278, found: 399.2290.

Ethyl 3-((*tert*-butoxycarbonyl)amino)-4-phenyl-2-(*p*-tolylamino)butanoate (5f): Yield: 76%, d.r. > 20:1, $R_f = 0.3$ (PE: EA = 6:1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, J = 7.5 Hz, 2H), 7.24 (dt, J = 7.1, 3.2 Hz, 3H), 7.00 (d, J = 8.1 Hz, 2H), 6.63 – 6.56 (m, 2H), 4.71 (d, J = 9.5 Hz, 1H), 4.49 (s, 1H), 4.20 (q, J = 6.7 Hz, 2H), 4.07 (d, J = 3.7 Hz, 1H), 3.04 (dd, J = 14.0, 6.5 Hz, 1H), 2.83 (t, J = 10.9 Hz, 1H), 2.26 (s, 3H), 1.38 (s, 9H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 155.3, 144.8, 137.4, 129.8, 129.4, 128.5, 128.1, 126.6, 114.4, 79.6, 61.6, 60.1, 53.5, 38.3, 28.2, 20.4, 14.1; HRMS m/z (ESI) calcd for C₂₄H₃₂N₂NaO₄ [M+Na]⁺: 435.2254, found: 435.2270.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-cyclohexyl-2-(p-tolylamino)acetate (5g): yield: 64%, d.r. = 1:1, $R_f = 0.3$ (PE: EA = 50:1). Colorless oil. ¹H NMR (400 MHz, CDCl₃) (two isomers) δ 7.01 – 6.91 (m, 2H), 6.55 (dd, J = 8.3, 5.9 Hz, 2H), 4.65 (qd, J = 11.1, 4.4 Hz, 1H), 3.97 (s, 1H), 3.81 (dd, J = 18.7, 6.0 Hz, 1H), 2.22 (s, 3H), 1.96 – 1.87 (m, 2H), 1.83 – 1.74 (m, 4H), 1.73 – 1.58 (m, 6H), 1.33 – 1.17 (m, 9H), 0.90 – 0.85 (m, 6H), 0.60 (dd, J = 20.0, 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) (two isomers) δ 173.6, 173.5, 145.4, 145.2, 129.7, 129.7, 127.4, 127.3, 114.1, 113.7, 75.0, 74.9, 62.9, 62.8, 46.9, 41.3, 41.3, 40.8, 40.8, 34.2, 31.4, 29.9, 29.8, 29.6, 29.4, 28.9, 26.3, 26.2, 26.1, 26.1, 26.1, 25.9, 25.5, 23.0, 22.7, 22.1, 22.0, 20.9, 20.9, 20.4, 20.4, 15.9, 15.4. LC-MS m/z (ESI) calcd for C₂₅H₄₀NO₂ [M+H]⁺: 386.3, found: 386.3.

tert-butyl 4-(2-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-2-oxo-1-(p-tolylamino)ethyl)piperidine-1-carboxylate (5h): yield: 52%, d.r. = 1:1, $R_f = 0.2$ (PE: EA = 10:1). Colorless oil. ¹H NMR (400 MHz, CDCl₃) (one isomers) δ 6.96 (d, J = 8.1 Hz, 2H), 6.54 (d, J = 8.4 Hz, 2H), 4.63 (td, J = 10.9, 4.3 Hz, 1H), 4.05 (d, J = 86.0 Hz, 3H), 3.87 (d, J = 6.3 Hz, 1H), 2.69 (s, 2H), 2.22 (s, 3H), 1.96 – 1.84 (m, 2H), 1.81 – 1.72 (m, 1H), 1.70 – 1.54 (m, 6H), 1.45 (s, 9H), 1.38 – 1.22 (m, 4H), 0.87 (d, J = 6.5 Hz, 4H), 0.77 (d, J = 7.0 Hz, 3H), 0.56 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) (one isomers) δ 173.0, 154.7, 145.0, 129.8, 127.7, 113.9, 79.5, 75.4, 62.2, 46.8, 40.8, 39.7, 34.1, 31.4, 28.5, 25.5, 22.7, 22.0, 20.9, 20.4, 15.4. LC-MS m/z (ESI) calcd for C₂₉H₄₆N₂NaO₄ [M+Na]⁺: 509.3, found: 509.3.

tert-butyl 4-(2-ethoxy-1-((3-fluoro-4-morpholinophenyl)amino)-2oxoethyl)piperidine-1-carboxylate (5i): yield: 54%, $R_f = 0.3$ (PE: EA = 2:1), white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (t, J = 9.0 Hz, 1H), 6.44 – 6.31 (m, 2H), 4.15 (dq, J = 24.1, 7.1 Hz, 5H), 3.87 – 3.82 (m, 4H), 3.80 (d, J = 6.4 Hz, 1H), 2.99 – 2.92 (m, 4H), 2.68 (s, 2H), 1.95 – 1.71 (m, 3H), 1.61 (d, J = 13.0 Hz, 2H), 1.45 (s, 9H), 1.27 – 1.24 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 156.8 (d, $J_{C-F} = 245.6$ Hz), 154.7, 143.7 (d, $J_{C-F} = 10.2$ Hz), 131.6 (d, $J_{C-F} = 4.4$ Hz), 120.3 (d, $J_{C-F} = 2.6$ Hz), 109.3 (d, $J_{C-F} = 24.2$ Hz), 102.5, 79.6, 67.2, 61.7, 61.3, 51.7, 39.7, 28.4, 14.3. LC-MS m/z (ESI) calcd for C₂₄H₃₆FN₃NaO₅ [M+Na]⁺: 488.3, found: 488.2.

1-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)-2-cyclohexyl-2-(p-tolylamino)ethan-1-one (5j): yield: 56%, $R_f = 0.3$ (PE: EA = 4:1), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.49 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.38 (ddd, J = 8.1, 6.9, 1.0 Hz, 1H), 6.99 – 6.95 (m, 2H), 6.58 (d, J = 8.4 Hz, 2H), 4.38 (s, 1H), 4.15 (d, J = 5.9 Hz, 1H), 3.98 – 3.71 (m, 4H), 3.62 – 3.40 (m, 4H), 2.22 (s, 3H), 1.94 – 1.88 (m, 1H), 1.79 – 1.65 (m, 5H), 1.30 – 1.12 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 163.3, 152.8, 145.9, 134.3, 129.9, 129.8, 127.9, 127.8, 127.4, 124.2, 123.6, 123.6, 120.7, 114.2, 59.0, 50.5, 49.9, 45.5, 42.0, 41.8, 30.4, 28.8, 26.3, 26.2, 26.2, 20.4. LC-MS m/z (ESI) calcd for C₂₆H₃₃N₄OS [M+H]⁺: 449.2, found: 449.2.

1-(4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)-2-cyclohexyl-2-(*p*-tolylamino) ethan-1-one (5k): yield: 51%, $R_f = 0.5$ (PE: EA = 4:1), white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 4H), 7.30 – 7.23 (m, 4H), 7.23 – 7.18 (m, 1H), 6.93 (d, *J* = 8.1 Hz, 2H), 6.55 – 6.47 (m, 2H), 4.37 (s, 1H), 4.18 (s, 1H), 4.03 (d, *J* = 5.9 Hz, 1H), 3.59 (dt, *J* = 24.6, 5.1 Hz, 4H), 2.34 (dt, *J* = 16.9, 5.1 Hz, 4H), 2.21 (s, 3H), 1.96 – 1.54 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 146.0, 141.6, 140.8, 134.7, 132.9, 129.8, 129.1, 128.9, 128.8, 127.7, 127.5, 127.2, 123.9, 114.1, 75.2, 58.8, 52.1, 51.7, 45.9, 42.1, 42.0, 30.4, 28.8, 28.7, 26.3, 26.2, 20.4. LC-MS m/z (ESI) calcd for C₃₂H₃₉ClN₃O [M+H]⁺: 516.3, found: 516.3.

Ethyl (2-cyclohexyl-2-(phenylamino)acetyl)glycinate (5l): yield: 62%, $R_f = 0.2$ (PE: EA = 4:1), white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.35 (t, *J* = 6.0 Hz, 1H), 7.03 (t, *J* = 7.7 Hz, 2H), 6.61 (d, *J* = 8.0 Hz, 2H), 6.52 (t, *J* = 7.3 Hz, 1H), 5.59 (d, *J* = 7.4 Hz, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 3.80 (d, *J* = 5.8 Hz, 2H), 3.54 (t, *J* = 7.0 Hz, 1H), 1.86 (d, *J* = 11.6 Hz, 1H), 1.65 (d, *J* = 34.5 Hz, 5H), 1.16 (q, *J* = 11.4, 7.1 Hz, 8H). ¹³C NMR (101 MHz, DMSO) δ 173.7, 170.2, 148.9, 129.2, 116.6, 113.1, 62.8, 60.8, 41.1, 40.9, 29.5, 29.2, 26.4, 26.3, 14.5. LC-MS m/z (ESI) calcd for C₁₈H₂₇N₂O₃ [M+H]⁺: 319.2, found: 319.2.

Methyl (2-cyclohexyl-2-(phenylamino)acetyl)-*D***-alaninate (5m):** yield: 63%, d.r. =1:1, $R_f = 0.25$ (PE: EA = 4:1), white solid. ¹H NMR (400 MHz, DMSO-*d*₆) (two isomers) δ 8.47 – 8.27 (m, 1H), 7.03 (ddd, *J* = 8.4, 7.2, 3.2 Hz, 2H), 6.61 (ddd, *J* = 8.6, 2.6, 1.1 Hz, 2H), 6.57 – 6.46 (m, 1H), 5.52 (t, *J* = 7.8 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 1H),

3.57 (d, J = 0.9 Hz, 3H), 1.86 (t, J = 14.0 Hz, 1H), 1.66 (d, J = 30.7 Hz, 5H), 1.27 – 1.11 (m, 8H). ¹³C NMR (101 MHz, DMSO- d_6) (two isomers) δ 173.3, 172.9, 148.9, 129.1, 116.5, 113.1, 62.2, 52.2, 47.7, 41.0, 29.5, 26.4, 26.2, 17.6. LC-MS m/z (ESI) calcd for C₁₈H₂₇N₂O₃ [M+H]⁺: 319.2, found: 319.2.

Methyl (2-cyclohexyl-2-(phenylamino)acetyl)-L-tryptophanate (5n): yield: 60%, d.r. =1:1, $R_f = 0.3$ (PE: EA = 2:1), white solid. ¹H NMR (400 MHz, CDCl₃) (one isomer) δ 8.16 (s, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.21 – 7.06 (m, 5H), 6.87 (d, J = 2.3 Hz, 1H), 6.76 (t, J = 7.3 Hz, 1H), 6.55 (d, J = 7.9 Hz, 2H), 4.92 (td, J = 7.5, 5.4 Hz, 1H), 3.66 (d, J = 15.8 Hz, 1H), 3.60 (s, 3H), 3.51 (d, J = 4.6 Hz, 1H), 3.26 (qd, J = 14.9, 6.3 Hz, 2H), 1.98 – 1.85 (m, 1H), 1.77 – 1.56 (m, 5H), 1.19 – 0.99 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) (one isomer) δ 172.8, 172.1, 147.4, 136.1, 129.2, 127.6, 122.7, 122.2, 119.5, 118.8, 118.5, 113.9, 111.3, 110.1, 64.7, 52.8, 52.3, 40.9, 30.0, 27.9, 27.5, 26.2, 26.1. LC-MS m/z (ESI) calcd for C₂₆H₃₂N₃O₃ [M+H]⁺: 434.2, found: 434.2.

Methyl (2-cyclohexyl-2-(phenylamino)acetyl)-L-phenylalaninate (50): yield: 53%, d.r. =1.3:1, $R_f = 0.5$ (PE: EA = 2:1), colorless oil. ¹H NMR (400 MHz, CDCl₃) (two isomers) δ 7.26 – 7.14 (m, 4H), 7.12 – 7.08 (m, 1H), 7.05 – 6.99 (m, 1H), 6.85 – 6.71 (m, 2H), 6.64 – 6.51 (m, 2H), 4.96 (dtd, J = 27.3, 8.7, 5.5 Hz, 1H), 3.97 – 3.80 (m, 1H), 3.67 (d, J = 31.2 Hz, 3H), 3.55 (dt, J = 33.7, 3.9 Hz, 1H), 3.14 (ddd, J = 61.3, 13.9, 5.7 Hz, 1H), 2.94 (dt, J = 13.4, 6.5 Hz, 1H), 2.04 – 1.81 (m, 1H), 1.77 – 1.48 (m, 5H), 1.38 – 1.05 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) (two isomers) δ 172.8, 172.5, 171.8, 171.7, 147.4, 147.1, 136.1, 135.3, 129.4, 129.2, 129.2, 129.1, 128.6, 127.0, 127.0, 119.1, 118.9, 114.0, 113.5, 65.1, 64.4, 52.8, 52.3, 52.1, 41.1, 41.0, 38.0, 37.9, 30.3, 30.0, 28.0, 27.9, 26.3, 26.2, 26.2, 26.2, 26.1, 26.0. **LC-MS** m/z (ESI) calcd for $C_{24}H_{31}N_2O_3$ [M+H]⁺: 395.2, found: 395.2.

Ethyl (2-cyclohexyl-2-(phenylamino)acetyl)-L-phenylalanylglycinate (5p): yield: 60%, d.r. =1.3:1, $R_f = 0.1$ (PE: EA = 2:1), colorless oil. ¹H NMR (400 MHz, CDCl₃) (two isomers) δ 7.30 – 7.04 (m, 6H), 6.98 – 6.71 (m, 2H), 6.63 – 6.45 (m, 2H), 4.88 – 4.77 (m, 1H), 4.24 – 4.08 (m, 2H), 3.94 – 3.85 (m, 1H), 3.79 – 3.67 (m, 1H), 3.55 (t, *J* = 5.2 Hz, 1H), 3.29 (dd, *J* = 14.3, 5.3 Hz, 1H), 2.99 (t, *J* = 7.1 Hz, 1H), 2.87 (dd, *J* = 14.3, 9.9 Hz, 1H), 1.92 (tt, *J* = 10.9, 2.9 Hz, 1H), 1.74 – 1.59 (m, 3H), 1.26 (td, *J* = 7.1, 2.1 Hz, 4H), 1.10 (dtd, *J* = 20.8, 11.9, 10.2, 5.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) (two isomers) δ 173.5, 173.5, 171.1, 171.1, 169.4, 169.3, 147.2, 147.1, 136.8, 136.0, 129.5, 129.4, 129.2, 129.1, 128.6, 128.6, 126.9, 126.9, 119.1, 118.9, 113.6, 64.7, 64.5, 61.5, 61.4, 53.8, 53.7, 41.4, 41.2, 41.1, 40.8, 37.7, 37.2, 30.1, 29.8, 28.3, 28.2, 26.2, 26.2, 26.1, 26.0, 26.0, 14.2, 14.2. LC-MS m/z (ESI) calcd for C₂₇H₃₆N₃O₄ [M+H]⁺: 466.3, found: 466.2.

6. Mechanism Investigation.

6.1 Control Experiments.

According to the general procedure, 3 eq. TEMPO was added. **3a** was not detected and **6** was detected by **HRMS**. **HRMS** m/z (ESI) calcd for $C_{15}H_{30}NO$ [M+H]⁺: 240.2322, found: 240.2316.

According to the general procedure, the product **4u** was isolated via flash chromatography (PE: EA = 30:1) as a colorless oil (30 mg, 40% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.00 (d, J = 8.2 Hz, 2H), 6.63 – 6.48 (m, 2H), 5.91 – 5.77 (m, 1H), 5.16 – 4.99 (m, 2H), 4.19 (q, J = 7.1 Hz, 2H), 4.06 (dd, J = 7.2, 5.8 Hz, 1H), 2.25 (s, 3H), 1.95 (dtd, J = 13.5, 7.7, 5.7 Hz, 1H), 1.84 (dq, J = 13.6, 7.4 Hz, 1H), 1.28 (d, J = 1.1 Hz, 3H), 1.26 (d, J = 7.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 174.2, 144.6, 137.3, 129.8, 127.6, 115.6, 113.8, 61.0, 56.6, 32.3, 29.7, 20.4, 14.2; HRMS m/z (ESI) calcd for C₁₅H₂₂NO₂ [M+H]⁺: 248.1645, found: 248.1638.

According to the general procedure, Cyhex-COOH was used as substrate and no desired product was formed.

According to the general procedure, *N*-protected glycine derivative **7** was used as substrate and no desired product was formed.

The imine **8** was prepared according to the previously reported procedure.⁷ According to the general procedure, imine **8** was used as substrate and Mg was used as anode. After electrolysis, the reaction mixture affords desired product **3a** in 57% yield.

According to the general procedure, the product **9** was isolated via flash chromatography (PE: EA = 10:1) as a colorless oil (8 mg, 10% yield). ¹H NMR (500 MHz, CDCl₃) (two isomers) δ 7.01 (dd, J = 8.5, 2.5 Hz, 2H), 6.66 – 6.61 (m, 2H), 4.60 (d, J = 18.8 Hz, 1H), 4.28 – 4.16 (m, 2H), 2.26 (s, 3H), 1.31 – 1.23 (m, 3H). LC-MS m/z (ESI) calcd for C₂₂H₂₉N₂O₄ [M+H]⁺: 385.2, found: 385.2.

Figure S2. ¹H-NMR of product 9.

6.2 Cyclic Voltammetry Studies.

All the voltammetric experiments were recorded with a CHI600E potentiostat at room temperature in DMSO. LiClO₄ (0.1 M) was used as the supporting electrolyte, a glass carbon electrode (diameter, 3 mm) and a platinum wire were used as working and counter electrodes, respectively. The working electrode potentials were measured versus Ag/AgNO₃ reference electrode (internal solution, 0.1 M AgNO₃ in DMAc). The redox potential of ferrocene/ferrocenium (Fc/Fc⁺) was measured (same experimental conditions) and used to provide an internal reference. The potential values were then adjusted relative to Fc/Fc⁺, and electrochemical studies in organic solvents were recorded accordingly. The scan rate was 100 mV s⁻¹.

Figure S3. Cyclic voltammograms of 10 mM Ferrocene, DMSO solvent, 0.1M LiClO₄ supporting electrolyte, GC working electrode, 100 mV/s scan rate.

Figure S4. Cyclic voltammograms. a) 10 mM **1a**. c) 10 mM **2a**. c) 20 mM **DABCO**. d) 10 mM **1a** + 10 mM **2a** + 20 mM **DABCO**. Scan rate: 100 mv/s.

Figure S5. Cyclic voltammograms. c1) 20 mM **DABCO** (-1.0 ~ 0.7 V vs Fc/Fc⁺). c2) 20 mM **DABCO** (-0.3~0.7 V vs Fc/Fc⁺). c3) 20 mM **DABCO** (-0.3~0.2 V vs Fc/Fc⁺). e) 10 mM **3a**. Scan rate: 100 mv/s.

6.3 Voltage Monitoring Experiments.

According to the general procedure, however the undivided cell was equipped with graphite felt anode (10 mm \times 10 mm \times 5 mm), nickel cathode (10 mm \times 10 mm \times 1.5 mm) and Ag/AgNO₃ as reference electrode, the real-time potential of reaction was monitored under standard conditions.

Table S11. Voltage of the reaction at different time under standard conditions.

Time (min)	0	5	10	20	30	60	120	180	210
Voltage of anode	0.21	0.25	0.26	0.27	0.27	0.27	0.30	0.29	0.29
Voltage of cathode	-1.38	-1.40	-1.45	-1.40	-1.45	-1.48	-1.45	-1.55	-1.50

The anode potential was around 0 V vs Fc/Fc⁺. The cathode potential was around - 1.8 V vs Fc/Fc⁺.
7. References.

- 1. Nithinchandra; Kalluraya, B.; Aamir, S.; Shabaraya, A. R., Eur. J. Med. Chem. 2012, 54, 597-604.
- Xue, W.; Oestreich, M., Angew. Chem. Int. Ed. 2017, 56, 11649-11652. Angew. Chem. 2017, 129, 11808-11811.
- Wang, C.; Guo, M.-Z.; Qi, R.-P.; Shang, Q.-Y.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z.-Q, Angew. Chem. Int. Ed. 2018, 57, 15841-15846. Angew. Chem. 2018, 130, 16067 –16072.
- 4. Peng, H.-B.; Yu, J. -T.; Jiang, Y.; Yang, H.-T.; Cheng, J., J. Org. Chem. 2014, 79, 9847-9853.
- Xiao, X.-S.; Zhang, W.; Lu, X.-X.; Deng, Y.-F; Jiang, H.-F.; Zeng, W., Adv. Syn. Catal. 2016, 358, 2497-2509.
- 6. Okamura, I.; Park, S.; Han, J. H.; Notsu, S.; Sugiyama, H., Chem. Lett. 2017, 46, 1597-1600.
- 7. Tian, H.; Xu, W.-T.; Liu, Y.-X.; Wang, Q.-M., Org. Lett. 2020, 22, 5005-5008.

8. NMR spectra of all compounds.

Ethyl 2-cyclohexyl-2-(p-tolylamino)acetate (3a)

Ethyl 2-cyclohexyl-2-(m-tolylamino)acetate (3b)

Ethyl 2-cyclohexyl-2-(phenylamino)acetate (3c)

 $\begin{array}{c} 7.12\\$

Ethyl 2-cyclohexyl-2-((4-ethylphenyl)amino)acetate (3d)

Ethyl 2-cyclohexyl-2-((4-isopropylphenyl)amino)acetate (3e)

Ethyl 2-((4-(tert-butyl)phenyl)amino)-2-cyclohexylacetate (3f)

Ethyl 2-cyclohexyl-2-((4-methoxyphenyl)amino)acetate (3g)

Ethyl 2-cyclohexyl-2-((4-fluorophenyl)amino)acetate (3h)

0.00

H NMR (500 MHz, CDCl₃)

Ethyl 2-((4-chlorophenyl)amino)-2-cyclohexylacetate (3i)

Ethyl 2-((4-bromophenyl)amino)-2-cyclohexylacetate (3j)

100 90 f1 (ppm) Ó

Methyl 5-((1-cyclohexyl-2-ethoxy-2-oxoethyl)amino)-2-methylbenzoate (3k)

Ethyl 2-((3-cyano-4-methylphenyl)amino)-2-cyclohexylacetate (3l):

Ethyl 2-cyclohexyl-2-((3-iodo-4-methylphenyl)amino)acetate (3m)

Ethyl 2-cyclohexyl-2-((3,4,5-trimethoxyphenyl)amino)acetate (3n)

Ethyl 2-cyclohexyl-2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)acetate (30):

Ethyl 2-cyclohexyl-2-(naphthalen-2-ylamino)acetate (3p)

Tert-butyl 2-cyclohexyl-2-(p-tolylamino)acetate (3q)

Benzyl 2-cyclohexyl-2-(p-tolylamino)acetate (3r)

¹H NMR (500 MHz, CDCl₃) Me 2.01. 2.07.4 2.04 J 1.02-€ 3.06년 3.16년 2.13년 2.29년 3.25년 7.0 4.5 4.0 f1 (ppm) 7.5 -1.0 -1 9.5 9.0 8.5 8.0 6.5 6.0 5.0 3.5 3.0 2.5 1.5 0.5 0.0 -0.5 5.5 2.0 1.0 -201.54 136.25 133.38 129.77 128.80 128.32 128.32 -114.18 -145.95 -63.62 30.87 26.41 26.19 26.06 20.35 -41.97 ¹³C NMR (126 MHz, CDCl₃) Me 100 90 fl (ppm) -1 200 190 110 80 70 50 20 10 ò 180 170 160 150 140 130 120 60 40 30

2-cyclohexyl-1-phenyl-2-(p-tolylamino)ethenone (3s)

2-cyclohexyl-1-(p-tolyl)-2-(p-tolylamino)ethanone (3t)

¹H NMR (500 MHz, CDCl₃)

$$\begin{split} & \underset{M}{ } \underset{M}{ }$$

2-cyclohexyl-2-(p-tolylamino)acetonitrile (3u)

2-cyclohexyl-*N*,*N*-dimethyl-2-(*p*-tolylamino)acetamide (3v):

2-cyclohexyl-1-(pyrrolidin-1-yl)-2-(p-tolylamino)ethan-1-one (3w)

2-cyclohexyl-1-morpholino-2-(phenylamino)ethan-1-one (3x):

2-cyclohexyl-1-(4-phenylpiperazin-1-yl)-2-(p-tolylamino)ethan-1-one (3y)

Ethyl 2-(p-tolylamino)pentanoate (4a)

Ethyl 5-methyl-2-(p-tolylamino)hexanoate (4b)

Me

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5

Ethyl 7-(1,3-dioxoisoindolin-2-yl)-2-(p-tolylamino)heptanoate (4d)

¹H NMR (500 MHz,CDCl₃)

Ethyl 5-(1H-indol-3-yl)-2-(p-tolylamino)pentanoate (4e)

 $\begin{array}{c} & 3.8 \\$

¹H NMR (500 MHz, CDCl₃)

Ethyl 2-cyclobutyl-2-(p-tolylamino)acetate (4f)

S68

Ethyl 2-cyclopentyl-2-(p-tolylamino)acetate (4g)

Ethyl 2-(tetrahydrofuran-2-yl)-2-(p-tolylamino)acetate (4h)

 $\begin{array}{c} 7\,7\,7\,0\,2\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,6,5\\ 6\,6,5,5,5\\ 6\,6,5,5,5\\ 6\,6,5,5,5\\ 6\,6,5,5,5\\ 6\,6,5,5,5\\ 6\,$

Benzyl 4-(2-ethoxy-2-oxo-1-(p-tolylamino)ethyl)piperidine-1-carboxylate (4i)

Tert-butyl 4-(2-ethoxy-2-oxo-1-(p-tolylamino)ethyl)piperidine-1-carboxylate (4j)

S73

S75

Ethyl 2-(1-phenylcyclopropyl)-2-(p-tolylamino)acetate (40)

Ethyl 2-(1-phenylcyclopentyl)-2-(p-tolylamino)acetate (4p)

 $\begin{array}{c} & 1 \\ & 2$

S79

Ethyl 2-(p-tolylamino)-2-(2,2,5-trimethyl-1,3-dioxan-5-yl)acetate (4r)

H NMR (500 MHz, CDCl)

Ethyl 2-((3R,5R,7R)-adamantan-1-yl)-2-(p-tolylamino)acetate (4s)

Methyl 4-(2-ethoxy-2-oxo-1-(p-tolylamino)ethyl)bicyclo[2.2.2]octane-1-carboxylate (4t)

Ethyl 4-(4,5-diphenyloxazol-2-yl)-2-(p-tolylamino)butanoate (5a)

¹H NMR (600 MHz, CDCl₃)

Ethyl 3-propyl-2-(p-tolylamino)hexanoate (5b)

Ethyl 6-(2,5-dimethylphenoxy)-3,3-dimethyl-2-(p-tolylamino)hexanoate (5c)

Tert-butyl 2-(2-ethoxy-2-oxo-1-(p-tolylamino)ethyl)pyrrolidine-1-carboxylate (5d)

Ethyl 3-(((benzyloxy)carbonyl)amino)-4-methyl-2-(p-tolylamino)pentanoate (5e)

¹H NMR (600 MHz, CDCl₃)

-1 100 90 f1 (ppm)

Ethyl 3-((tert-butoxycarbonyl)amino)-4-phenyl-2-(p-tolylamino)butanoate (5f)

L138 1130 1129 17733 17773 17773 17723 17

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-cyclohexyl-2-(p-tolylamino)acetate (5g):

tert-butyl 4-(2-ethoxy-1-((3-fluoro-4-morpholinophenyl)amino)-2-oxoethyl)piperidine-1-carboxylate (5i):

1-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)-2-cyclohexyl-2-(p-tolylamino)ethan-1-one (5j):

1-(4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)-2-cyclohexyl-2-(*p*-tolylamino) ethan-1-one (5k):

Ethyl (2-cyclohexyl-2-(phenylamino)acetyl)glycinate (5l):

Methyl (2-cyclohexyl-2-(phenylamino)acetyl)-D-alaninate (5m)

Methyl (2-cyclohexyl-2-(phenylamino)acetyl)-L-tryptophanate (5n)

Methyl (2-cyclohexyl-2-(phenylamino)acetyl)-L-phenylalaninate (50)

Ethyl (2-cyclohexyl-2-(phenylamino)acetyl)-L-phenylalanylglycinate (5p)

Ethyl 2-(p-tolylamino)hex-5-enoate (4u)

H NMR (500 MHz, CDCl₃)

