Supplementary information

Deep eutectic solvent-based microextraction system for simultaneous lignocellulose fractionation and furfural production

Liu Liu, Qianwei Li, Caixia Wan*

Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street,

Columbia, MO, United States 65211

* Corresponding author: Tel: +1 573 884 7882, Email: wanca@missouri.edu

Numbers of Page: 15

Number of Table: 8

Number of Figure: 3

Quantitative analysis

Quantitative analysis was performed according to the method described by Wen et al.¹

$$I_{C9} = I(S_{2/6} + S'_{2/6})/2 + I(G_2) + I(H_{2/6})/2$$
(S1)

where I_{C9} represents the integral value of aromatic ring in lignin; $I(S_{2,6}+S'_{2/6})$ is the integration of $S_{2/6}$ and $S'_{2/6}$; $I(G_2)$ is the integral value of G_2 ; $I(H_{2/6})$ is the integral value of $H_{2,6}$. The integration was conducted in the same contour level by using MestReNova.

$$I_X\% = I_X/I_{C9} \times 100\%$$
 (S2)

where I_X is the integral value of A (β –O–4, β '–O–4), B (β –5), and C (β – β); S/G ratio was calculated with the following equation:

S/G ratio=
$$I(S_{2/6}+S'_{2/6})/2/I(G_2)$$
 (S3)

Enzymatic hydrolysis

The enzymatic hydrolysis was carried out at 50 °C for 72 h in an incubator shaker. The pretreated solids (2 g) were added to 20 mL of citric acid buffer (50 mM, pH 5.5) and NaN₃ was then added to the mixture.

The enzyme loading was 5 mg protein/g solid, with Cellic[®] CTec2 and HTec2 added at 10:1 volumetric mixing ratio. After the hydrolysis, the enzymes were deactivated by heating the mixture at 80 °C. The liquid was collected for sugar analysis using high performance liquid chromograph (HPLC). Glucose yields were calculated according to Equation S4.

$$Glucose yield (\%) = \frac{Mass of glucose released after hydrolysis}{Mass of cellulose in pulp} \times 0.9 \times 100\%$$
(S4)

	Aqueous phase (wt%)					Organic phase (wt%)	
Sample No.	DES	NaCl solution			ШО	MIDV	
	(PEG:OA)	Total	NaCl	H_2O	1120	MIDK	
D_{70}	70.0	-	-	-	-	30.0	
$D_{63}W_7$	63.0	-	-	-	7.0	30.0	
$D_{49}W_{21}$	49.0	-	-	-	21.0	30.0	
$D_{35}W_{35}$	35.0	-	-	-	35.0	30.0	
$D_{56}S_{14}$	56.0	14.0	3.5	10.5	-	30.0	
$D_{49}S_{21}$	49.0	21.0	5.3	15.7	-	30.0	
$D_{42}S_{28}$	42.0	28.0	7.0	21.0	-	30.0	
$D_{35}S_{35}$	35.0	35.0	8.8	26.2	-	30.0	
$D_{28}S_{42}$	28.0	42.0	10.5	31.4	-	30.0	
$D_{21}S_{49}$	21.0	49.0	12.3	36.7	-	30.0	
$D_{14}S_{56}$	14.0	56.0	14.0	41.9	-	30.0	

 Table S1. Composition of biphasic solvent systems

$\chi_{ m PEG}$	Melting point (Tm, °C)	Melting enthalpy (ΔHm, J/g)
0.1	97.16	565.5
0.3	25.90	38.2
0.5	-63.94	5.0
0.7	-22.09	38.8
0.9	-13.11	105.7
1.0	-10.37	131.2

Table S2. Thermal behavior of DES with PEG mole fraction (χ_{PEG}) varied from 0.1 to 1

Sample ^a	Viscosity [mPa·s] ^b	
PEG 400	63.03	
DES +0%H ₂ O	215.17	
DES+10%H ₂ O	107.95	
DES+20%H ₂ O	28.45	
DES+40%H ₂ O	33.38	

 Table S3. Viscosity of DES

^a In DES, molar ratio of PEG and OA was 1:1. ^b Viscosity measured at room temperature.

Sample No. of	Reaction c	Reaction condition		
biphasic solvent	Temperature (°C)	Time (min)	(mol%)	
$D_{56}S_{14}$	150	60	93.75±0.44	
$D_{49}S_{21}$	150	60	97.33±0.33	
$D_{42}S_{28}$	150	60	96.76±0.81	
$D_{35}S_{35}$	150	60	98.23±1.10	
$D_{28}S_{42}$	150	60	97.54±1.03	
$D_{21}S_{49}$	150	60	94.19±0.77	
$D_{14}S_{56}$	150	60	88.01±1.10	
$D_{42}S_{28}$	160	60	99.92±0.06	
$D_{42}S_{28}$	140	60	74.93±2.36	
$D_{42}S_{28}$	130	60	50.46±0.01	
$D_{42}S_{28}$	150	20	66.45±3.64	
$D_{42}S_{28}$	150	40	92.20±2.62	
$D_{42}S_{28}$	150	80	99.93±0.05	
$D_{42}S_{28}$	150	100	100.00±0.01	

 Table S4. Xylose conversion under different reaction conditions

Lignin type	Lignin int	erlinkage abund	S/G ratio	
	β-Ο-4	β-5	β-β	
PEG-g-lignin	18.25	0.37	2.44	1.47

Table S5. Structural characteristics of lignin by 2D HSQC NMR

* Data expressed as per 100 Ar.

No.	DES (wt%)	25%NaCl solution (wt%)	H ₂ O (wt%)	рН	mV
1	80	20	-	0.68	368
2	60	40	-	0.45	381
3	40	60	-	0.30	390
4	20	80	-	0.16	397
5	80	-	20	1.48	324
6	60	-	40	1.44	326
7	40	-	60	1.45	325
8	20	-	80	1.60	317
9	100	0	-	1.19	340
10	0	100	-	6.52	43

 Table S6. NaCl effect on acidity of DES (PEG:OA)

Feedstock	Biphasic system	Catalyst	Temperature (°C)	Duration (min)	Furfural yield (%)	Ref.
Xylose	SBP/H ₂ O	-	190	180	59	2
Birch hydrolysate liquor	SBP/H ₂ O	-	190	180	54	3
Xylose	EA/ChCl:H2O:PTSA	-	130	15	50	3
Xylose	2-MTHF/NaCl solution	MC-SnO _x /NaCl	180	20	53.9	4
Xylose	MIBK/H ₂ O	AlCl ₃ /HCl	160	12	90	5
Xylose	Toluene/H ₂ O	H_2SO_4	190	2.5	70	6
Xylan	GVL/LiCl·3H ₂ O	LiCl·3H ₂ O	140	120	77.22	7
Corncob	Toluene/H ₂ O	CrCl ₃ ·6H ₂ O/NaCl	140	60	23.88	8
Corn Stover	THF/H ₂ O	AlCl ₃ ·6H ₂ O/NaCl	160	60	55	9
Switchgrass	THF/H ₂ O	AlCl ₃ ·6H ₂ O/NaCl	160	60	56	10
Pinewood	THF/H ₂ O	AlCl ₃ ·6H ₂ O/NaCl	160	60	38	10
Poplar	THF/H ₂ O	AlCl ₃ ·6H ₂ O/NaCl	160	60	64	10
Corn Stalk	GVL/H ₂ O	[BMIM]Cl/AlCl ₃	140	240	47.96	10
Eucalyptus	2-MTHF/ChCl:LA	$Al_2(SO_4)_3/H_2SO_4$	150	30	54.7	11
Bamboo	GVL/BDO:ChCl	$Al_2(SO_4)_3/H_2SO_4$	130	90	53.81	12
Corncob	MIBK/FeCl ₃ solution	FeCl ₃	180	60	73.49	13
Tung hull	MIBK/FeCl ₃ solution	FeCl ₃	180	60	69.38	14

 Table S7. Comparison of furfural production via biphasic systems*

Tung shell	MIBK/FeCl ₃ solution	FeCl ₃	180	60	99.86	14
Miscanthus×giganteus	MIBK/FeCl ₃ solution	FeCl ₃	180	60	73.75	14
Eucalyptus	MIBK/FeCl ₃ solution	FeCl ₃	180	60	75.18	14
Corncob	Toluene/H ₂ O	H_2SO_4	140	10	65.67	14
Corncob	DOP/ChCl:OA	AlCl ₃ ·6H ₂ O/H ₂ SO ₄	120	30	46	15
Wheat straw	THF/NaCl solution	CrPO ₄	180	90	67	16
Switchgrass	MIBK/PEG:OA	NaCl	150	60	76.5	This work

* 2-MTHF: 2-methyltetrahydrofuran; ChCl: Choline chloride; LA: Lactic acid; MIBK: Methyl isobutyl ketone; GVL: γ-valerolactone; BDO: 1,4-butanediol; DOP: Dioctyl phthalate; SBP: 2-sec-butylphenol; PTSA: *p*-toluenesulfonic acid; EA: Ethyl acetate; THF: Tetrahydrofuran toluene.

	Wavenumber (cm ⁻¹)	Band assignments
Pulp	3346	v(O–H): cellulose, lignin
	1611, 1514	v(C=C): aromatic skeleton stretching of lignin
	1313	$\delta(CH_2)$ of crystalline cellulose: wagging; $\delta(CH_2)$: rocking
	1164	$v_{as}(C-O-C)$: bridge of β -(1-4)-glycosidic in crystalline cellulose; $v(C-O)$ of glucopyranose; $v(C-O-C)$ of carbohydrate; $\delta(C-H)$ of carbohydrate
	1104	v(C–O): H–OOC– from OA, C–O from PEG
	1054	v (C–O): primary alcohol of carbohydrate; C–O– ether of cellulose or CH ₃ –O in lignin; CH ₃ –O– of ester and β –O–4 linkages in lignin
	777, 721	$\delta_{ m oop}$ (O–H) of crystalline cellulose
Switchgrass	3361	v(O–H): cellulose, lignin, hemicellulose
	1606, 1514	v(C=C): aromatic skeleton stretching of lignin
	1318	$\delta(CH_2)$ of crystalline cellulose: wagging; $\delta(CH_2)$: rocking
	1164	$v_{as}(C-O-C)$: bridge of β -(1-4)-glycosidic in crystalline cellulose; $v(C-O)$ of glucopyranose; $v(C-O-C)$ of carbohydrate; $\delta(C-H)$ of carbohydrate
	1069	v (C–O): primary alcohol of carbohydrate; C–O– ether of cellulose or CH ₃ –O in lignin; CH ₃ –O– of ester and β –O–4 linkages in lignin
	986	δ_{oop} (C–H): Deformation in lignin

 Table S8. Assignments of ATR-FTIR bands for pulp and switchgrass

* *v*: stretching vibration; v_{as} : asymmetric stretching vibration; δ : in plane deformation; δ_{oop} : out-of-plane bending vibration

Figure S1. HPLC chromograms of the DES from $D_{42}S_{28}$ before (a, b) and after (c, d) heating at 150 °C for 60 min.

Figure S2. DES-based biphasic solvent at heating around 120 °C without (a) and with (b) NaCl solution. (120°C is the maximum limit of the pressure tube. These pictures are used to show the mixture state under heating and stirring.)

Figure S3. FTIR spectra of pulp (from $D_{42}S_{28}$) and switchgrass (assignments of bands in Table S8).

Reference

- 1. J.-L. Wen, B.-L. Xue, F. Xu and R.-C. Sun, *BioEnergy Research*, 2012, **5**, 886-903.
- 2. G. Gómez Millán, R. P. Bangalore Ashok, P. Oinas, J. Llorca and H. Sixta, *Biomass Conversion and Biorefinery*, 2021, **11**, 2095-2106.
- 3. D. M. E. Delgadillo, G. A. D. Castro and S. A. Fernandes, *Reaction Chemistry & Engineering*, 2024.
- 4. N. Zhou, C. Zhang, Y. Cao, J. Zhan, J. Fan, J. H. Clark and S. Zhang, *Journal of Cleaner Production*, 2021, **311**, 127780.
- 5. W. Guo, H. C. Bruining, H. J. Heeres and J. Yue, *Green Chemistry*, 2023, **25**, 5878-5898.
- 6. M. Papaioannou, R. J. T. Kleijwegt, J. van der Schaaf and M. F. Neira d'Angelo, *Industrial & Engineering Chemistry Research*, 2019, **58**, 16106-16115.
- 7. C. Liu, L. Wei, X. Yin, X. Pan, J. Hu, N. Li, J. Xu, J. Jiang and K. Wang, *Chemical Engineering Journal*, 2021, **425**, 130608.
- 8. Y. Zhang, M. Chen, J. Wang and Q. Hu, *Asian Journal of Chemistry*, 2014, 26, 1717.
- 9. Y. Yang, C. W. Hu and M. M. Abu-Omar, *ChemSusChem*, 2012, 5, 405-410.
- 10. S. Wang, Y. Zhao, H. Lin, J. Chen, L. Zhu and Z. Luo, *Green chemistry*, 2017, **19**, 3869-3879.
- 11. L.-L. Sun, Z. Yue, S.-C. Sun, S.-N. Sun, X.-F. Cao, T.-Q. Yuan and J.-L. Wen, *Bioresource Technology*, 2022, **352**, 127074.
- 12. J. Cheng, X. Liu, C. Huang, Y. Zhan, C. Huang, T. Chen, X. Meng, C. G. Yoo, G. Fang and A. J. Ragauskas, *Green Chemistry*, 2023, **25**, 6270-6281.
- 13. Q. Zhang, Z. Guo, X. Zeng, B. Ramarao and F. Xu, *Renewable Energy*, 2021, **179**, 351-358.
- 14. Q. Wang, W. Qi, W. Wang, Y. Zhang, N. Leksawasdi, X. Zhuang, Q. Yu and Z. Yuan, *Renewable Energy*, 2019, **144**, 139-146.
- 15. C.-Y. Bu, Y.-X. Yan, L.-H. Zou, S.-P. Ouyang, Z.-J. Zheng and J. Ouyang, *Bioresource Technology*, 2021, **319**, 124156.
- 16. Z. Cao, Z. Fan, Y. Chen, M. Li, T. Shen, C. Zhu and H. Ying, *Applied Catalysis B: Environmental*, 2019, **244**, 170-177.