Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting information

Enantioselective Electrosynthesis of Inherently Chiral Calix[4]arenes via a Cobalt-Catalyzed Aryl C-H Acyloxylation

Liming Zhang,[†] Chen Yang,[†] Xinhai Wang, Taixin Yang, Dandan Yang, Yingchao Dou^{*} & Jun-Long Niu^{*}

[†]L. Zhang and C. Yang, contributed equally to this work.

College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Henan, P. R. China Email: yingchaodou@zzu.edu.cn; niujunlong@zzu.edu.cn

1. GENERAL INFORMATION	3
2. EXPERIMENTAL PROCEDURES	4
2.1 Preparation of substrates	4
2.2 EXPERIMENTAL PROCEDURES OF ELECTROLYSIS	5
3. OPTIMIZATION OF REACTION CONDITIONS	6
3.1 Screening of the ligands	6
3.2 Screening of the solvents	7
3.3 Screening of the additives	8
3.4 Screening of the cobalt salts	9
3.5 Screening of the current	
3.6 Screening of the reaction time and temperature	
3.7 Screening of the dosages of catalysts and ligands	
3.8 Screening of the electrode materials	13
4. MECHANISTIC STUDIES	14
4.1 Non-linear effect studies	14
4.2 Dynamic electrode potential analysis	14
4.3 Cyclic voltammetry studies	14
5. APPLICATION STUDIES	15
6. X-RAY DIFFRACTION ANALYSIS	16
7. NMR DATA OF THE ACYLOXYLATED INHERENTLY CHIRAL CALIX[4]ARENES	
8. COPIES OF NMR SPECTRA OF THE ACYLOXYLATED INHERENTLY CHIRAL	
CALIX[4]ARENES	

1. General information

The commercial reagent-grade chemicals were used directly without further treatment unless noted. The reactions were carried out in commercially available analytical solvents under air atmosphere unless otherwise noted, and monitored with analytical thin-layer chromatography (TLC) on silica gel 60 F254 plates and visualized under UV (254nm, 365nm). The purifications were implemented by flash column chromatography on silica gel (200-300 mesh) as stationary phase.

NMR spectra were recorded on Bruker Avance 400 (400 MHz for ¹H and 100 MHz for ¹³C) and Bruker Avance 600 (600 MHz for ¹H, 564 MHz for ¹⁹F and 150 MHz for ¹³C) spectrometers at 295 K. Chemical shifts were reported in part per million relative to residual peak (CDCl₃: ¹H δ 7.26 ppm, ¹³C δ 77.16 ppm; DMSO-D6: ¹H δ 2.50 ppm, ¹³C δ 39.52 ppm; CD₃OD: ¹H δ 3.31 ppm, ¹³C δ 49.00 ppm). The mentioned abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). The melting points were measured on a WC-1 instrument. The cyclic voltammetry analysis was conducted on an electrochemical workstation (CHI 760E). The enantiomeric excess (ee) of the products were measured by high-performance liquid chromatography (Agilent 1260 Infinity LC instrument) equipped with chiral columns (Daicel chiral technologies, China). High-Resolution mass spectra (HRMS) were measured on a Waters ACQUITYUPLC 1-Class PLUS liquid chromatogram coupled with a Waters Xevo G2-XS QTof mass spectrometer. The single crystal diffraction was performed on the Oxford (Agilent Gemini E, USA) X-ray diffractometer. The specific rotations were measured on a WZZ-3A polarimeter.

2. Experimental procedures

2.1 Preparation of substrates

To a solution of compound S1 (25 g, 38.5 mmol) and phenol (4.8 equiv) in toluene (250 mL) was added AlCl₃ (5.3 equiv) within 10 minutes at room temperature. The mixture was stirred at this temperature for 3-5 h until S1 was totally consumed detected by TLC. The reaction was quenched by addition of 0.2 M HCl, leading to white precipitate as the good product S2. After filtration, the filtrate was extracted with ethyl acetate. The organic phase was concentrated to remove 80 % of the solvent under reduced pressure, giving a white precipitate as the good product S2.

To a solution of **S2** in DMF (250 mL) was added NaH (10 equiv) within 20 minutes in an icewater bath. After stirring at this temperature for 1 h, the alkyl halides (10 equiv) were added dropwise. Then the mixture was stirred at room temperature for 20 h, following by quenching with 1 M HCl. The pH value was adjusted to 1-2 with 1 M HCl. The resulting white precipitate was collected by filtration, leading to a white powder as the good product **S3**.

To a solution of the obtained white powder in anhydrous CH_2Cl_2 was added 1,1-dichloromethyl ether (1.1 equiv) at -15 °C under Ar atmosphere. Then the reaction was stirred at this temperature for 30 minutes, followed by the slow addition of TiCl₄ (1.3 equiv). Subsequently, the mixture was stirred at -10 °C for 1-1.5 h until the total consumption of the starting material monitored by TLC. The reaction was quenched by slow addition of water. The resulting mixture was extracted with ethyl acetate. The organic phase was collected and concentrated on a rotovap under reduced pressure to give a residue, which was purified by flash column chromatography

(petroleum ether/ethyl ether = 20/1), leading to the desired compound as a yellow solid, S4 (R = Et), S5 (R = n Pr), S6 ((R = n Bu).

To a solution of the yellow solid in acetone (100 mL) was added the aqueous of KMnO₄ (2.5 equiv). The reaction was refluxed in an oil bath (105 °C) for 3-5 h. After dilution with ethyl acetate, the pH value was adjusted to 1-2 with 1 M HCl. Then the mixture was extracted with ethyl acetate. The organic phase was collected and concentrated under reduced pressure, leading to the good product as a yellow solid (**S7**).

To a solution of the acid in CH₂Cl₂ (40 mL) was added 2-pyridinamine 1-oxide (1.1 equiv), DMAP (0.1 equiv), EDCI (1.2 equiv). The reaction was stirred at room temperature for 12 h. Then the mixture was extracted with ethyl acetate and washed with Na₂CO₃ aqueous solution. The organic phase was concentrated under reduced pressure. The residue was purified by flash column chromatography, leading to the final product as a white solid, **S8** (R = Et), **S9** (R = ^{*n*}Pr), **S10** ((R = ^{*n*}Bu).

2.2 Experimental procedures of electrolysis

The electrolysis of 1a and 2a leading to 3aa was set as the template reaction.

To a flask (30 mL) was added **1a** (0.1 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), **L10** (20 mol%), NaOH (2 equiv), pivalic acid (2 equiv) and hexafluoroisopropanol (5 mL). It was then equipped with a graphite anode (15 mm×10 mm×6 mm) and a platinum cathode (10 mm×10 mm×0.1 mm) in an undivided cell. The reaction was conducted at a constant current model (2 mA) and stirred at 40 °C for 6 h. After the total consumption of **1a** monitored by TLC, the reaction was diluted with CH₂Cl₂ and washed with NaHCO₃ aqueous solution. The organic phase was concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to furnish the desired product **3aa**.

3. Optimization of reaction conditions

3.1 Screening of the ligands

^{*a*}Undivided cell, GF anode (15 mm \times 10 mm \times 6 mm submerged), platinum plated cathode (10 mm \times 10 mm \times 0.1 mm submerged), constant current of 2 mA; isolated yields are indicated; ee values were determined by chiral HPLC analysis.

^b**1a** (0.1 mmol), **2a** (0.2 mmol), Co(OAc)₂·4H₂O (10 mol%), **Ligand** (20 mol%), NaOH (2 equiv), 40 °C, 6 h, air, HFIP (5 mL).

3.2 Screening of the solvents

npr npr 1a	PyO + PivOH 2a	GF Pt Co(OAc) ₂ ·4H ₂ O L10, NaOH 2 mA, 40 °C, 6 h air, solvent undivided cell	Pivo Pyo npr npr npr 3aa
Entry	Solvents	Yield (%)	ee (%)
1	CH ₃ OH	Trace	-
2	EtOH	Trace	-
3	TFE	Trace	-
4	IPrOH	Trace	-
5	HFIP	89	>99
6	CH_2Cl_2	Trace	-
7	CH ₃ CN	45	78
8	Acetone	Trace	-
9	Ethyl acetate	Trace	-
10	DMF	Trace	-
11	EA:HFIP = 1:5	61	91
12	Acetone:HFIP = 1:5	Trace	-
13	CH_2Cl_2 :HFIP = 1:5	57	93
14	$CH_3CN:HFIP = 1:5$	Trace	-

Table S2. Screening of the solvents^{a,b}

^{*a*}Undivided cell, GF anode (15 mm \times 10 mm \times 6 mm submerged), platinum plated cathode (10 mm \times 10 mm \times 0.1 mm submerged), constant current of 2 mA; isolated yields are indicated; ee values were determined by chiral HPLC analysis.

^b**1a** (0.1 mmol), **2a** (0.2 mmol), Co(OAc)₂·4H₂O (10 mol%), **L10** (20 mol%), NaOH (2 equiv), 40 °C, 6 h, air, Solvent (5 mL).

3.3 Screening of the additives

npr npr npr npr	+ PivOH 2a	GF Pt Co(OAc) ₂ :4H ₂ O L10, additive 2 mA, 40 °C, 6 h air, HFIP undivided cell	Pivo Pivo Pro Pyo Pro Pyo Pro Pyo Pro Pyo Pro Pyo Pro Pyo Pro Pyo Pro Pyo Pivo Pivo Pivo Pivo Pivo Pivo Pivo Piv
Entry	Additives	Yield (%)	ee (%)
1	-	41	98
2	AcOH	trace	-
3	Na ₂ CO ₃	69	94
4	NaHCO ₃	51	92
5	DBU	85	96
6	Pyridine	11	89
7	DMAP	27	89
8	Et ₃ N	71	98
9	^t BuONa	85	>99
10	NaOH	89	>99
11 ^c	NaOH	86	>99

Table S3. Screening of the additives a,b

^{*a*}Undivided cell, GF anode (15 mm \times 10 mm \times 6 mm submerged), platinum plated cathode (10 mm \times 10 mm \times 0.1 mm submerged), constant current of 2 mA; isolated yields are indicated; ee values were determined by chiral HPLC analysis.

^b**1a** (0.1 mmol), **2a** (0.2 mmol), Co(OAc)₂·4H₂O (10 mol%), **L10** (20 mol%), additive (2 equiv), 40 °C, 6 h, air, HFIP (5 mL).

^cTetrabutylammonium hexafluorophosphate (2 equiv).

3.4 Screening of the cobalt salts

npr npr npr 1a	O + PivOH 2a	GF Pt Cobalt salt L10, NaOH 2 mA, 40 °C, 6 h air, HFIP undivided cell	Pivo Pivo npr npr npr 3aa
Entry	Cobalt salts	Yield (%)	ee (%)
1	Co(OAc) ₂ ·4H ₂ O	89	>99
2	$Co(OAc)_2$	85	>99
3	$Co(OOCC_6H_5)_2$	55	96
4	$Co(acac)_2$	Trace	-
5	Co(ONO ₃) ₂ ·6H ₂ O	Trace	-
6	CoF_2	14	93
7	CoBr ₂	23	92
8	CoSO ₄ ·H ₂ O	Trace	-
9	Co(BF ₄) ₂ ·6H ₂ O	trace	-

Table S4. Screening of the cobalt salts^{*a,b*}

^{*a*}Undivided cell, GF anode (15 mm \times 10 mm \times 6 mm submerged), platinum plated cathode (10 mm \times 10 mm \times 0.1 mm submerged), constant current of 2 mA; isolated yields are indicated; ee values were determined by chiral HPLC analysis.

^b**1a** (0.1 mmol), **2a** (0.2 mmol), Cobalt salt (10 mol%), **L10** (20 mol%), NaOH (2 equiv), 40 °C, 6 h, air, HFIP (5 mL).

3.5 Screening of the current

PyO PyO PyO PyO PyO PyO PyO PyO PyO PyO	+ PivOH 2a	GF Pt Co(OAc) ₂ ·4H ₂ O L10, NaOH current, 40 °C, 6 h air, HFIP undivided cell	Pivo Pivo Pivo Pivo Pivo Pivo Pivo Pivo
Entry	Current (mA)	Yield (%)	ee (%)
1	1	39	99
2^c	1	43	99
3	2	89	>99
4^d	3	69	98
5^d	4	59	98

Table S5. Screening of the current a,b

^{*a*}Undivided cell, GF anode (15 mm \times 10 mm \times 6 mm submerged), platinum plated cathode (10 mm \times 10 mm \times 0.1 mm submerged), constant current of 2 mA; isolated yields are indicated; ee values were determined by chiral HPLC analysis.

^b**1a** (0.1 mmol), **2a** (0.2 mmol), Cobalt salt (10 mol%), **L10** (20 mol%), NaOH (2 equiv), 40 °C, 6 h, air, HFIP (5 mL).

^c8 h. ^d5 h.

3.6 Screening of the reaction time and temperature

	Pyo + PivOH 2a	GF Co(OAc) L10, N 2 mA air, H undivid	$\begin{array}{c} \begin{array}{c} Pt \\ 2^{2}H_{2}O \\ aOH \\ T, t \\ FIP \\ ed cell \end{array}$	O PyO PyO PyO PyO PyO PyO PyO Py
Entry	T (°C)	t (h)	Yield (%)	ee (%)
1	80	6	86	98
2	60	6	88	99
3	40	6	89	>99
4	25	6	48	98
5	40	2	44	98
6	40	4	67	99
7	40	6	89	>99
8	40	8	79	>99
9	40	10	65	99

Table S6. Screening of the reaction time and temperature^{*a,b*}

^{*a*}Undivided cell, GF anode (15 mm \times 10 mm \times 6 mm submerged), platinum plated cathode (10 mm \times 10 mm \times 0.1 mm submerged), constant current of 2 mA; isolated yields are indicated; ee values were determined by chiral HPLC analysis.

^b**1a** (0.1 mmol), **2a** (0.2 mmol), Cobalt salt (10 mol%), **L10** (20 mol%), NaOH (2 equiv), air, HFIP (5 mL).

3.7 Screening of the dosages of catalysts and ligands

	8	8	5 8		
npr npr npr 1a	PyO + PivOH 2a	GF Co(OAc) ₂ ·4 L10 (y m 2 mA, air undiv	Pt H ₂ O (x mol%) ol%), NaOH 40 °C, 6 h , HFIP ided cell	PyO PyO PyO PyO PyO PyO PyO PyO PyO PyO	
Entry	х	У	Yield (%)	ee (%)	_
1	10	20	89	>99	
2	10	15	64	94	
3	10	10	53	93	
4	5	10	23	92	

Table S7. Screening of the dosages of catalysts and ligands^{*a,b*}

^{*a*}Undivided cell, GF anode (15 mm \times 10 mm \times 6 mm submerged), platinum plated cathode (10 mm \times 10 mm \times 0.1 mm submerged), constant current of 2 mA; isolated yields are indicated; ee values were determined by chiral HPLC analysis.

^b**1a** (0.1 mmol), **2a** (0.2 mmol), Cobalt salt (x mol%), **L10** (y mol%), NaOH (2 equiv), 2 mA, 40 °C, 6 h, air, HFIP (5 mL).

3.8 Screening of the electrode materials

	Pyo + PivC 2a	Anode Co(OAc) ₂ :4F L10, NaOH current, 40 °C air, HFIP undivided c	Cathode $\frac{H_2O}{H_2O}$ $\frac{H_2O}{H_2O}$ $\frac{H_2O}{H_2O}$ $\frac{H_2O}{P_1}$	Pyo Pyo Pyo Pyo Pyo Pyo Pyo Pyo Pyo Pyo
Entry	Anode	Cathode	Yield (%)	ee (%)
1	GF	Pt	89	>99
2	Pt	Pt	23	94
3	GF	GF	36	93
4	GF	Pt	44	98
5	GF	Stainless steel	54	95

 Table S8. Screening of the electrode materials^{a,b}

^{*a*}Undivided cell, anode (15 mm \times 10 mm \times 6 mm submerged), cathode (10 mm \times 10 mm \times 0.1 mm submerged), constant current of 2 mA; isolated yields are indicated; ee values were determined by chiral HPLC analysis.

^b**1a** (0.1 mmol), **2a** (0.2 mmol), Cobalt salt (10 mol%), **L10** (20 mol%), NaOH (2 equiv), 2 mA, 40 °C, 6 h, air, HFIP (5 mL).

Screening of the oxidants

Table	S8-1 .	Sc	reening	of the	oxidants ^a
-------	---------------	----	---------	--------	-----------------------

Pyo Pr npr npr npr 1a	+ PivOH 2a	Co(OAc) ₂ ·4H ₂ O L10, NaOH, oxidant 40 °C, 6 h, air, HFIP	Pivo Pyo Pivo Pyo npr npr npr 3aa
Entry	Oxidant	Yield (%)	ee (%)
1	Ag ₂ CO ₃	18	>99
2	$Mn(OAc)_3 \cdot 2H_2O$	trace	-
3	O_2	_b	-
4°	O_2	_b	-
5^d	O_2	_b	-

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), Co(OAc)₂·4H₂O (10 mol%), **L10** (20 mol%), NaOH (2 equiv), oxidant (1.0 equiv.), 40 °C, 6 h, air, HFIP (5 mL). ^{*b*}No desired compound was observed. ^{*c*}60 °C. ^{*d*}100 °C

4. Mechanistic studies

4.1 Non-linear effect studies

The synthesis of compound **3aa** was set as the template reaction to conduct the non-linear effect studies. The ligand **L10** samples with various ee values were prepared by rational mixture of enantiopure and racemic **L10** as shown in Table xx. Then the obtained ligands were subjected to the synthesis of compound **3aa** under standard conditions, leading to the corresponding products which were purified by flash column chromatography (PE:EA = 2:1). The ee values were determined by chiral HPLC analysis. The results indicated the linearity between the ee values of **L10** and product **3aa**.

Table S9. Non-linear effect studies

4.2 Dynamic electrode potential analysis

The synthesis of compound **3aa** was set as the template reaction to conduct the dynamic electrode potential analysis. The silver wire (100 mm \times 1 mm) was used as the reference electrode. A steady potential was observed.

4.3 Cyclic voltammetry studies

The cyclic voltammetry analysis was conducted on an electrochemical workstation (CHI 760E). The electrolysis experiments were implemented with a glassy carbon electrode, Pt electrode and Ag/AgCl reference electrode. The electrolysis was irreversible since the value of ipa/ipc was far less than 1.

5. Application studies

Scale-up synthesis of 3aa: 0.3 mmol

To a flash (30 mL) was added **1a** (0.3 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), **L10** (20 mol%), NaOH (2 equiv), pivalic acid (2 equiv) and hexafluoroisopropanol (20 mL). It was then equipped with a graphite anode (20 mm×20 mm×6 mm) and a platinum cathode (10 mm×10 mm×0.1 mm) in an undivided cell. The reaction was conducted at a constant current model (2 mA) and stirred at 40 °C for 10 h. After the total consumption of 1a monitored by TLC, the reaction was diluted with CH₂Cl₂ and washed with NaHCO₃ aqueous solution. The organic phase was concentrated under reduced pressure to give a residue, which was purified by flash column chromatography (petroleum ether/ethyl acetate = 2/1) to furnish the desired product as a light grey solid (0.18 g, 72%, 99% ee).

Scale-up synthesis of 3aa: 1.0 mmol

To a flash (100 mL) was added **1a** (1.0 mmol), $Co(OAc)_2 \cdot 4H_2O$ (10 mol%), **L10** (20 mol%), NaOH (2 equiv), pivalic acid (2 equiv) and hexafluoroisopropanol (80 mL). It was then equipped with a graphite anode (45 mm×20 mm×6 mm) and a platinum cathode (45 mm×20 mm×0.1 mm) in an undivided cell. The reaction was conducted at a constant current model (2 mA) and stirred at 40 °C for 72 h. After the total consumption of **1a** monitored by TLC, the reaction was diluted with CH₂Cl₂ and washed with NaHCO₃ aqueous solution. The organic phase was concentrated under reduced pressure to give a residue, which was purified by flash column chromatography (petroleum ether/ethyl acetate = 2/1) to furnish the desired product as a light grey solid (0.662 g, 80%, 99% ee).

Hydrolysis of the ester motif:

To a flask was added **3aa** (0.1 mmol), NaOH (40 equiv) and EtOH/H₂O (3 mL/1 mL). The mixture was stirred at 25 °C for 8 h under Ar atmosphere. After the total consumption of **3aa** monitored by TLC, the reaction was diluted with CH_2Cl_2 and washed with 1 N HCl aqueous solution. The organic phase was concentrated under reduced pressure to give a residue, which

was purified by flash column chromatography (petroleum ether/ethyl acetate = 1/1) to furnish the desired product **4** as a white solid (70.0 mg, 94%, >99% ee).

Synthesis of an inherently chiral calix[4] arenes embedded with a seven-membered amide:

To a dry flask was added the previously obtained compound 4 (0.1 mmol), 5 (1 mmol, 10 equiv), K_2CO_3 (2 mmol, 20 equiv) and acetone (5 mL). The mixture was stirred in an oil bath (70 °C) for 12 h. After the total consumption of 4 monitored by TLC, the solvent was removed with a rotovap under reduced pressure to give a residue, which was dissolved in dry THF (5 mL) in a dry flash under Ar atmosphere. After the addition of NaH (0.23 mmol) at 0 °C, the reaction was stirred at room tempersture for 6 h, followed by quenching with NH₄Cl aqueous solution. The mixture was extracted with DCM. The organic phase was washed with brine and dried over Na₂SO₄. After concentration under reduced pressure, the resulting residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 1/2) to furnish the desired product **6** as a white solid (66 mg, 85%, 99% ee).

6. X-ray diffraction analysis

Preparation of crystal

The single crystal of **3al** was obtained by slow evaporation at room temperature from a mixed solvent of isopropanol and hexane (1:2).

Table S10. Crystal data and structure refinement for 3al (CCDC 2339942).

Identification code	3al
Empirical formula	$C_{54}H_{65}N_2O_8$
Formula weight	870.08
Temperature/K	200.00(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁

a/Å	9.7335(2)
b/Å	13.0898(4)
c/Å	38.4467(11)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4898.5(2)
Z	4
$\rho_{calc}g/cm^3$	1.180
µ/mm ⁻¹	0.627
F(000)	1868.0
Crystal size/mm ³	0.2 imes 0.12 imes 0.11
Radiation	Cu Ka ($\lambda = 1.54184$)
2 Θ range for data collection/°	7.134 to 149.194
Index ranges	$-12 \le h \le 6, -16 \le k \le 15, -46 \le l \le 47$
Reflections collected	54476
Independent reflections	9828 [$R_{int} = 0.0611, R_{sigma} = 0.0393$]
Data/restraints/parameters	9828/0/583
Goodness-of-fit on F ²	1.051
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0552, wR_2 = 0.1530$
Final R indexes [all data]	$R_1 = 0.0666, wR_2 = 0.1636$
Largest diff. peak/hole / e Å-3	0.58/-0.47
Flack parameter	-0.04(8)

7. NMR data of the acyloxylated inherently chiral calix[4]arenes

2-(1⁴-(pivaloyloxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane-1⁵carboxamido)pyridine 1-oxide (3aa)

Yield: 73.7 mg (89%), Grey solid, mp: 115 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.53 (s, 1H), 8.58 (dd, J = 8.5, 1.6 Hz, 1H), 8.28 (dd, J = 6.5, 1.0 Hz, 1H), 7.56 (s, 1H), 7.41-7.35 (m, 1H), 7.11 (dd, J = 7.4, 2.6 Hz, 2H), 7.05-6.98 (m, 1H), 6.92 (t, J = 7.4 Hz, 1H), 6.26 (ddd, J = 26.0, 16.8, 7.4 Hz, 3H), 6.15 (dd, J = 17.1, 7.8 Hz, 3H), 4.51-4.39 (m, 3H), 4.21-4.09 (m, 3H), 4.06-3.95 (m, 2H), 3.74-3.59 (m, 4H), 3.40 (d, J = 13.9 Hz, 1H), 3.24 (d, J = 13.7 Hz, 1H), 3.15 (dd, J = 13.4, 4.9 Hz, 2H), 1.98 (dt, J = 15.4, 7.5 Hz, 4H), 1.87 (ddd, J = 14.1, 7.1, 4.6 Hz, 4H), 1.36 (s, 9H), 1.09 (dd, J = 16.1, 7.5 Hz, 6H), 0.90 (dt, J = 10.5, 7.5 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 176.9, 164.8, 162.3, 157.9, 157.2, 155.2, 155.1, 146.5, 144.7, 137.1, 137.0, 136.9, 134.9, 133.4, 133.3, 131.9, 131.81, 131.78, 128.97, 128.94, 128.3, 128.0, 127.9, 127.86, 127.82, 127.5, 127.3, 122.7, 122.4, 121.9, 121.7, 118.5, 77.1, 77.0, 76.5, 39.3, 31.0, 30.7, 27.2, 23.5, 23.49, 23.1, 23.0, 10.8, 10.77, 9.8, 9.76. **HRMS** (ESI): m/z [M+H]⁺calcd for [Cs₁H₆₁N₂O₈]⁺ requires 829.4428, found 829.4435. [**α**]_D²⁵ = +27 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 12.648 min, t₂ (minor) = 11.460 min.

Peak	RetTime	Area	Height	Area
1	11.233	22591.3	363.82465	49.9398
2	12.893	22645.7	454.52222	50.0602

Peak	RetTime	Area	Height	Area
1	11.460	37.4368	3.01561	0.0383
2	12.648	97781.5	2088.38672	99.9617

2-(1⁴-((2,2-dimethylbutanoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ab)

Yield: 71.6 mg (85%), Grey solid, mp: 118 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 10.53 (s, 1H), 8.59 (dd, J = 8.5, 1.4 Hz, 1H), 8.30 (d, J = 6.1 Hz, 1H), 7.56 (s, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 7.5 Hz, 2H), 7.07-6.98 (m, 1H), 6.93 (t, J = 7.4 Hz, 1H), 6.25 (ddd, J = 33.9, 20.7, 7.4 Hz, 3H), 6.13 (dd, J = 13.7, 6.4 Hz, 3H), 4.51-4.39 (m, 3H), 4.22-4.05 (m, 3H), 4.01 (dd, J = 9.8, 6.7 Hz, 2H), 3.83-3.50 (m, 4H), 3.42 (d, J = 13.9 Hz, 1H), 3.24 (d, J = 13.7 Hz, 1H), 3.15 (dd, J = 13.4, 4.2 Hz, 2H), 2.05-1.90 (m, 4H), 1.87 (dt, J = 14.0, 7.0 Hz, 4H), 1.73 (dt, J = 13.9, 6.5 Hz, 2H), 1.33 (d, J = 3.5 Hz, 6H), 1.10 (dd, J = 16.2, 7.5 Hz, 6H), 0.94-0.85 (m, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 176.5, 164.9, 162.3, 157.9, 155.2, 155.0, 146.4, 144.7, 137.1, 137.03, 137.01, 134.9, 133.3, 133.2, 131.88, 131.82, 131.80, 129.0, 128.9, 128.3, 128.0, 127.82, 127.78, 127.5, 127.3, 122.7, 122.4, 121.9, 118.5, 114.9, 77.1, 76.9, 76.5, 43.0, 33.0, 31.0, 30.7, 24.6, 24.4, 23.5, 23.1, 23.0, 22.7, 10.83, 10.81, 9.8, 9.7, 9.0. HRMS (ESI): m/z [M+H]⁺ calcd for [C₅₂H₆₃N₂O₈]⁺ requires 843.4584, found 843.4587. [**α**]_D²⁵ = +11 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 12.565 min, t₂ (minor) = 10.595 min.

2-(1⁴-((1-methylcyclopropane-1-carbonyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ac)

Yield: 66.9 mg (81%), White solid, mp: 117 °C. ¹**H** NMR (600 MHz, CDCl₃) δ 10.53 (s, 1H), 8.59 (dd, J = 8.5, 1.6 Hz, 1H), 8.34-8.29 (m, 1H), 7.50 (s, 1H), 7.42-7.29 (m, 1H), 7.00 (ddd, J= 18.5, 12.5, 4.6 Hz, 3H), 6.83 (t, J = 7.4 Hz, 1H), 6.42 – 6.19 (m, 6H), 4.51-4.40 (m, 3H), 4.19 (d, J = 13.9 Hz, 1H), 4.15-4.04 (m, 2H), 3.97 (dd, J = 9.2, 6.8 Hz, 2H), 3.79-3.53 (m, 4H), 3.38 (d, J = 13.9 Hz, 1H), 3.24 (d, J = 13.7 Hz, 1H), 3.16 (dd, J = 13.4, 4.2 Hz, 2H), 2.12-1.72 (m, 8H), 1.47 (s, 3H), 1.07 (q, J = 7.3 Hz, 6H), 1.03-0.88 (m, 8H), 0.79 (d, J = 2.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 174.5, 165.6, 164.6, 162.1, 157.5, 156.8, 155.5, 155.4, 146.5, 144.7, 137.1, 136.5, 136.4, 135.9, 135.7, 134.8, 134.6, 134.5, 133.9, 133.8, 132.4, 132.1, 131.2, 128.87, 128.81, 128.7, 128.3, 128.1, 128.0, 127.6, 127.58, 122.5, 122.4, 122.3, 122.0, 121.9, 121.4, 118.5, 115.0, 114.6, 76.9, 76.7, 76.5, 31.0, 30.98, 30.7, 24.3, 23.5, 23.4, 23.2, 23.1, 23.0, 19.4, 19.0, 17.7, 17.6 10.7, 10.6, 10.0, 9.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₁H₅₉N₂O8]⁺ requires 827.4271, found 827.4280. [α]²⁵ = +36 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 13.637 min, t₂ (minor) = 11.703 min.

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height	Area
1	11.619	5802.98096	107.56480	49.9495	1	11.703	861.91315	19.45750	2.3893
2	14.160	5814.71924	92.69424	50.0505	2	13.637	35211.5	590.70612	97.6107

2-(1⁴-((1-methylcyclohexane-1-carbonyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ad)

Yield: 62.5 mg (82%), White solid, mp: 128 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.51 (s, 1H), 8.58 (dd, J = 8.5, 1.5 Hz, 1H), 8.32 – 8.27 (m, 1H), 7.54 (s, 1H), 7.42-7.35 (m, 1H), 7.13 (d, J = 7.5 Hz, 2H), 7.05-6.98 (m, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.30-6.23 (m, 2H), 6.19 (d, J = 7.4, 1H), 6.15-6.09 (m, 3H), 4.51-4.40 (m, 3H), 4.22-4.07 (m, 3H), 4.02 (dd, J = 10.0, 6.6 Hz, 2H), 3.74-3.59 (m, 4H), 3.45 (d, J = 13.9 Hz, 1H), 3.24 (d, J = 13.7 Hz, 1H), 3.15 (dd, J = 13.4, 5.1 Hz, 2H), 2.22-2.04 (m, 2H), 1.98 (dt, J = 9.7, 7.9 Hz, 4H), 1.87 (dt, J = 14.5, 7.2 Hz, 4H), 1.56-1.31 (m, 8H), 1.34 (s, 3H), 1.10 (dt, J = 10.0, 7.4 Hz, 6H), 0.90 (dt, J = 12.4, 7.5 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 176.4, 165.0, 162.2, 157.9, 155.1, 155.0, 146.2, 144.7, 137.1, 137.06, 137.03, 134.9, 133.3, 133.2, 131.9, 131.86, 131.81, 129.0, 128.99, 128.2, 128.0, 127.8, 127.77, 127.4, 127.2, 122.7, 122.4, 122.2, 121.9, 118.5, 114.8, 77.1, 77.0, 76.5, 43.3, 35.3, 35.1, 31.0, 30.7, 25.7, 23.5, 23.49, 23.1, 23.0, 22.6, 22.5, 10.84, 10.82, 9.8, 9.7. **HRMS** (ESI): m/z [M+H]⁺calcd for [C_{34H65}N₂O₈]⁺ requires 869.4741, found 869.4744. [**α**]_D²⁵ = +39 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH =95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 14.755 min, t₂ (minor) = 9.806 min.

2-(1⁴-((adamantane-1-carbonyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ae)

Yield: 65.3 mg (72%), White solid, mp: 130 °C. ¹**H** NMR (600 MHz, CDCl₃) δ 10.51 (s, 1H), 8.58 (d, *J* = 8.3 Hz, 1H), 8.29 (d, *J* = 6.4 Hz, 1H), 7.55 (s, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 7.4 Hz, 2H), 7.02 (t, *J* = 7.0 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 6.35-6.21 (m, 3H), 6.21-6.09 (m, 3H), 4.46 (dd, *J* = 20.8, 13.5 Hz, 3H), 4.21-4.06 (m, 3H), 4.01 (td, *J* = 7.1, 2.7 Hz, 2H), 3.73-3.51 (m, 4H), 3.40 (d, *J* = 13.8 Hz, 1H), 3.24 (d, *J* = 13.7 Hz, 1H), 3.15 (dd, *J* = 13.4, 4.6 Hz, 2H), 2.07 (s, 6H), 2.04-1.92 (m, 7H), 1.88 (dd, *J* = 14.2, 7.1 Hz, 4H), 1.71 (s, 6H), 1.10 (td, *J* = 7.4, 3.5 Hz, 6H), 0.90 (dd, *J* = 17.0, 7.6 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 176.0, 164.7, 162.3, 157.9, 155.2, 155.1, 146.5, 144.7, 137.05, 137.01, 136.9, 134.8, 133.4, 133.3, 131.9, 131.8, 129.0, 128.9, 128.3, 128.0, 127.86, 127.80, 127.5, 127.3, 122.7, 122.4, 121.9, 121.8, 118.5, 114.9, 77.1, 77.0, 76.5, 41.2, 38.6, 36.4, 31.0, 30.7, 27.9, 23.5, 23.4, 23.1, 23.0, 10.82, 10.80, 9.83, 9.77. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₇H₆₇N₂O₈]⁺ requires 907.4897, found 907.4896. [α]²⁵ = +11 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 25.081 min, t₂ (minor) = 10.392 min.

2-(1⁴-((2-methyl-2-phenylpropanoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3af)

2

25.353

12739.7

104.82605

Yield: 62.3 mg (70%), White solid, mp: 128 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.41 (s, 1H), 8.48 (dd, J = 8.4, 1.4 Hz, 1H), 8.26 (d, J = 6.3 Hz, 1H), 7.50 (s, 1 H), 7.49-7.44 (m, 2H), 7.37 (t, J = 8.0 Hz, 1H), 7.17-7.05 (m, 4H), 7.05-6.98 (m, 2H), 6.90 (t, J = 7.4 Hz, 1H), 6.25 (dt, J = 11.7, 7.6 Hz, 2H), 6.13 (dd, J = 16.1, 6.7 Hz, 3H), 6.01 (d, J = 7.4 Hz, 1H), 4.47-4.37 (m, 3H), 4.07 (qd, J = 11.0, 2.8 Hz, 2H), 4.01-3.93 (m, 2H), 3.85 (d, J = 13.9 Hz, 1H), 3.72-3.54 (m, 3H), 3.54-3.44 (m, 1H), 3.21 (d, J = 13.7 Hz, 1H), 3.14 (dd, J = 13.4, 6.7 Hz, 2H), 2.83 (d, J = 14.0 Hz, 1H), 1.93 (dt, J = 15.5, 7.6 Hz, 4H), 1.88-1.79 (m, 4H), 1.78 (s, 3H), 1.75 (s, 3H), 1.07 (dt, J = 14.7, 7.4 Hz, 6H), 0.88 (td, J = 7.4, 2.9 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 174.8, 164.7, 162.3, 157.9, 155.1, 146.2, 144.5, 143.3, 137.1, 137.0, 136.9, 135.0, 133.4 133.0, 131.9, 131.85, 131.82, 128.93, 128.92, 128.3, 128.1, 127.9, 127.8, 127.6, 127.5, 127.3, 126.7, 126.1, 122.5, 122.4, 121.9, 121.6, 118.5, 115.0, 76.9, 76.5, 46.6, 31.0, 30.9, 30.7, 26.3, 25.8, 23.5, 23.4, 23.2, 23.05, 23.0, 10.8, 10.7, 9.8, 9.7. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₆H₆₃N₂O₈]⁺ requires 891.4584, found 891.4589. [**\alpha**]₂²⁵</sup> = +28 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 25.521 min, t₂ (minor) = 22.523 min.

2

25.521

19394.1

151.93422

98.9662

53.2718

2-(1⁴-((2,2-diphenylpropanoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ag)

Yield: 75.2 mg (79%), White solid, mp: 134 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.47 (s, 1H), 8.56 (dd, *J* = 8.5, 1.4 Hz, 1H), 8.29 (d, *J* = 6.3 Hz, 1H), 7.52 (s, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.35 (dd, *J* = 7.2, 5.0 Hz, 4H), 7.21 (t, *J* = 7.5 Hz, 2H), 7.18-7.10 (m, 3H), 7.10-7.05 (m, 3H), 7.05-6.99 (m, 1H), 6.90 (t, J = 7.4 Hz, 1H), 6.27 (t, J = 7.5 Hz, 1H), 6.22 (t, J = 7.6 Hz, 1H), 6.17-6.09 (m, 3H), 6.01 (d, J = 7.4 Hz, 1H), 4.50-4.35 (m, 3H), 4.07 (td, J = 11.4, 3.3 Hz, 2H), 4.02-3.92 (m, 2H), 3.83 (d, J = 14.0 Hz, 1H), 3.72-3.57 (m, 3H), 3.47 (dt, J = 9.4, 6.9 Hz, 1H), 3.23 (d, J = 13.8 Hz, 1H), 3.15 (dd, J = 13.4, 5.9 Hz, 2H), 2.80 (d, J = 14.1 Hz, 1H), 2.18 (s, 3H), 1.98-1.76 (m, 8H), 1.08 (dt, J = 14.9, 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.4, 164.7, 162.4, 157.9, 155.2, 155.1, 146.3, 144.72, 144.68, 155.5, 143.7, 143.6, 137.2, 137.0, 136.8, 135.1, 133.5, 133.0, 132.0, 131.9, 131.8, 128.93, 128.91, 128.29, 128.25, 128.18, 128.01, 128.00, 127.9, 127.8, 127.6, 127.5, 127.4, 126.9, 126.8, 126.7, 122.4, 121.9, 121.4, 118.5, 115.0, 76.7, 76.5, 56.9, 31.0, 30.9, 30.7, 26.7, 23.5, 23.35, 23.30, 23.05, 23.01, 10.8, 10.76, 9.9, 9.8. HRMS (ESI): m/z [M+H]⁺calcd for [C₆₁H₆₅N₂O₈]⁺ requires 953.4741, found 953.4749. $[\alpha]_D^{25} = +30$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK AD-H, hexane/i-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t_1 (major) = 16.776 min, t_2 (minor) = 11.785 min.

2-(1²,3²,5²,7²-tetrapropoxy-1⁴-(2,2,2-triphenylacetoxy)-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ah)

Yield: 76.1 mg (75%), White solid, mp: 145 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.34 (s, 1H), 8.48 (d, J = 7.2 Hz, 1H), 8.23 (d, J = 3.0 Hz, 1H), 7.44 (s, 1H), 7.40 (d, J = 7.8 Hz, 6H), 7.36 (br, 1H), 7.20-6.91 (m, 12H), 6.87 (t, J = 7.4 Hz, 1H), 6.28 (t, J = 7.5 Hz, 1H), 6.15 (dd, J = 14.1, 7.0 Hz, 3H), 6.08 (d, J = 7.3 Hz, 1H), 5.83 (d, J = 7.3 Hz, 1H), 4.50-4.34 (m, 3H), 4.04 (dt, J = 8.7, 5.7 Hz, 2H), 3.95 (dd, J = 8.9, 7.3 Hz, 2H), 3.79-3.53 (m, 4H), 3.51-3.39 (m, 1H), 3.27-3.15 (m, 1H), 3.12 (d, J = 13.1 Hz, 2H), 2.69 (d, J = 14.0 Hz, 1H), 1.97-1.71 (m, 8H), 1.06 (dt, J = 15.1, 7.4 Hz, 6H), 0.88 (td, J = 7.4, 3.0Hz, 6H). ¹³C **NMR** (151 MHz, CDCl₃) δ 171.9, 165.1, 162.0, 157.8, 155.1, 155.0, 146.1, 144.4, 142.3, 137.0, 136.8, 136.7, 134.9, 133.4, 132.9, 131.9, 131.83, 131.80, 130.6, 128.9, 128.8, 128.7, 127.8, 127.7, 127.5, 127.4, 127.39, 126.8, 122.3, 122.2, 121.9, 121.8, 118.4, 114.8, 76.9, 76.6, 76.4, 68.1, 60.3, 30.89, 30.85, 30.6, 23.4, 23.2, 23.1, 22.95, 22.92, 10.68, 10.67, 9.8, 9.7. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₆₆H₆₇N₂O₈]⁺ requires 1015.4897, found 1015.4895. [**α**]²⁵_D = +27 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IC-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 35.320 min, t₂ (minor) = 25.867 min

	ñ 4 1ñ	14 30 94	9ñ 98 4ñ	25 mi	
Peak	RetTime	Area	Height	Area	
1	21.743	25996.6	382.59467	49.9607	
2	35.411	26037.5	205.55771	50.0393	

Peak	RetTime	Area	Height	Area
1	21.867	64.27583	1.03985	0.2067
2	35.320	31032.4	233.59198	99.7933

2-(1⁴-(2,2-diphenylacetoxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ai)

Yield: 66.6 mg (71%), White solid, mp: 132 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.90 (s, 1H), 8.42 (d, J = 7.6 Hz, 1H), 8.22 (d, J = 6.1 Hz, 1H), 7.55 (s, 1H), 7.44 (d, J = 7.3 Hz, 2H), 7.35 (d, J = 7.4 Hz, 2H), 7.27 (dt, J = 30.1, 7.6 Hz, 4H), 7.17 (t, J = 7.3 Hz, 1H), 7.08 (dt, J = 25.0, 7.1 Hz, 3H), 7.00-6.85 (m, 3H), 6.78 (t, J = 7.3 Hz, 1H), 6.31 (ddt, J = 21.5, 15.5, 7.9 Hz, 5H), 6.11 (d, J = 7.3 Hz, 1H), 5.67 (s, 1H), 4.48-4.37 (m, 3H), 4.12-3.99 (m, 2H), 3.93 (dd, J = 15.1, 7.4 Hz, 3H), 3.81-3.59 (m, 3H), 3.53 (dd, J = 16.6, 7.2 Hz, 1H), 3.24 (d, J = 13.7 Hz, 1H), 3.15 (d, J = 12.9 Hz, 2H), 2.94 (d, J = 14.1 Hz, 1H), 2.00-1.83 (m, 6H), 1.88-1.69 (m, 2H), 1.26 (s, 1H), 1.03 (dt, J = 26.6, 7.4 Hz, 6H), 0.91 (t, J =7.5 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 171.1, 164.1, 162.3, 157.6, 155.5, 155.4, 145.7, 144.5, 138.1, 137.8, 136.9, 136.6, 136.3, 135.1, 134.0, 133.6, 132.5, 132.1, 131.3, 129.7, 128.9, 128.7, 128.67, 128.59, 128.2, 128.0, 127.9, 127.77, 127.72, 127.6, 127.4, 127.1, 122.4, 122.2, 121.9, 120.9, 118.4, 115.0, 76.9, 76.6, 76.5, 56.4, 31.0, 30.9, 30.7, 23.4, 23.2, 23.1, 23.0, 10.6, 10.5, 10.0, 9.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₆₀H₆₃N₂O₈]⁺ requires 939.4584, found 939.4585. [**α**]₂²⁵ = +39 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 22.167 min, t₂ (minor) = 19.830 min.

0	5	10 1	5 20	25 m/r
Peak	RetTime	Area	Height	Area
1	19.410	41406.4	548.28741	48.4082
2	22.412	44129.5	522.83246	51.5918

	5 1	0 15	20	25
Peak	RetTime	Area	Height	Area
1	19.830	46.38927	1.32011	0.1822
2	22.167	25418.0	309.09381	99.8178

2-(1⁴-(2,2-bis(4-chlorophenyl)acetoxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3aj)

Yield: 73.5 mg (73%), White solid, mp: 140 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 10.80 (s, 1H), 8.37 (d, J = 8.1 Hz, 1H), 8.18 (d, J = 6.3 Hz, 1H), 7.52 (s, 1H), 7.34 (dd, J = 15.5, 7.8 Hz, 3H), 7.27 (s, 1H), 7.22 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 7.01-6.92 (m, 2H), 6.90 (s, 1H), 6.77 (d, J = 6.9 Hz, 1H), 6.38 (t, J = 7.4 Hz, 1H), 6.31 (dd, J = 16.7, 8.0 Hz, 4H), 6.13 (d, J = 7.2 Hz, 1H), 5.57 (s, 1H), 4.50-4.38 (m, 3H), 4.03 (ddd, J = 31.6, 17.8, 8.0 Hz, 3H), 3.96-3.88 (m, 2H), 3.88-3.63 (m, 3H), 3.56 (dd, J = 16.5, 7.1 Hz, 1H), 3.24 (d, J = 13.7 Hz, 1H), 3.16 (dd, J = 13.5, 6.7 Hz, 2H), 2.89 (d, J = 14.1 Hz, 1H), 1.98-1.75 (m, 8H), 1.04 (dt, J = 17.8, 7.4 Hz, 6H), 0.92 (t, J = 7.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 170.4, 163.9, 162.3, 157.4, 155.6, 145.3, 144.2, 136.9, 136.4, 136.2, 135.9, 135.2, 134.2, 134.0, 133.7, 133.3, 132.5, 131.9, 131.0, 130.1, 129.9, 129.8, 128.9, 128.7, 128.6, 128.1, 127.9, 127.6, 127.5, 122.4, 122.2, 122.0, 120.8, 118.5, 114.9, 76.7, 76.6, 55.0, 31.0, 30.9, 30.7, 23.4, 23.2, 23.10, 23.09, 10.63, 10.59, 10.0, 9.9. HRMS (ESI): m/z [M+H]⁺calcd for [C₆₀H₆₁Cl₂N₂O₈]⁺ requires 1007.3808, found 1007.3815. [**α**]_D²⁵ = +34 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IC-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 12.265 min, t₂ (minor) = 10.591 min.

Peak	RetTime	Area	Height	Area
1	10.504	7452.92139	232.79915	49.2383
2	35.320	7683.51904	196.75146	50.7617

Peak	RetTime	Area	Height	Area
1	10.591	4.85887	1.68972	0.0162
2	12.265	30019.9	740.54327	99.9838

(S)-2-(1⁴-((2-phenylpropanoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ak)

Yield: 56.1 mg (64%), White solid, mp: 123 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.72 (s, 1H), 8.46 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 6.2 Hz, 1H), 7.59 (s, 1H), 7.34 (dd, J = 10.9, 3.8 Hz, 3H), 7.18-6.96 (m, 6H), 6.85 (t, J = 7.4 Hz, 1H), 6.31 (dt, J = 11.1, 7.6 Hz, 2H), 6.19 (dd, J = 22.7, 6.8 Hz, 4H), 4.48-4.38 (m, 3H), 4.30 (d, J = 7.1 Hz, 1H), 4.05 (dt, J = 10.7, 5.3 Hz, 2H), 3.94 (dd, J = 16.5, 8.5 Hz, 3H), 3.74-3.58 (m, 3H), 3.53 (d, J = 8.6 Hz, 1H), 3.24 (d, J = 13.8 Hz, 1H), 3.15 (d, J = 13.5 Hz, 2H), 2.94 (d, J = 13.2 Hz, 1H), 2.00-1.75 (m, 8H), 1.60 (d, J = 7.1 Hz, 3H), 1.05 (dt, J = 19.9, 7.4 Hz, 6H), 0.89 (dd, J = 13.1, 7.4 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 173.0, 164.2, 162.5, 157.8, 155.34, 155.32, 145.9, 144.6, 139.7, 137.0, 136.8, 136.6, 135.1, 133.7, 133.3, 132.3, 131.9, 131.4, 129.4, 128.9, 128.8, 128.3, 127.91, 127.89, 127.84, 127.80, 127.6, 127.4, 127.1, 122.45, 122.42, 121.9, 120.9, 118.4, 115.1, 77.0, 76.7, 76.6, 45.5, 31.0, 30.9, 30.7, 23.5, 23.3, 23.0, 18.5, 10.73, 10.67, 9.9, 9.8. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₅H₆₁N₂O₈]⁺ requires 877.4428, found 877.4426. [**α**]²⁵_D = +89 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% de (CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 19.351 min, t₂ (minor) = 13.577 min.

]	Sale. Des		
 2	 6	 10	12	14	16	18

Peak	RetTime	Area Area	Height	Area
1	13.940	1748.24609	19.17593	49.6423
2	19.636	1773.43933	17.45177	50.3577

0 2	4 6	8 10	12 14 16	18 mir
Peak	RetTime	Area	Height	Area
1	13.577	70839.0	780.81744	99.7801
2	19.351	156.12155	3.82582	0.2199

2-(1²,3²,5²,7²-tetrapropoxy-1⁴-((2-propylpentanoyl)oxy)-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3al)

Yield: 67.9 mg (78%), White solid, mp: 116 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 10.87 (s, 1H), 8.62 (dd, J = 8.5, 1.6 Hz, 1H), 8.29 (dd, J = 6.5, 0.9 Hz, 1H), 7.65 (s, 1H), 7.41-7.34 (m, 1H), 7.09 (d, J = 7.5 Hz, 2H), 7.04-6.98 (m, 1H), 6.91 (t, J = 7.4 Hz, 1H), 6.28 (t, J = 7.6 Hz, 2H), 6.21 (d, J = 7.2 Hz, 1H), 6.15 (t, J = 6.6 Hz, 3H), 4.50-4.40 (m, 3H), 4.21-4.06 (m, 3H), 4.03-3.96 (m, 2H), 3.75-3.59 (m, 4H), 3.39 (d, J = 14.0 Hz, 1H), 3.26 (d, J = 13.7 Hz, 1H), 3.16 (dd, J = 13.4, 2.3 Hz, 2H), 3.02-2.91 (m, 1H), 2.02-1.81 (m, 8H), 1.80-1.66 (m, 2H), 1.61-1.45 (m, 2H), 1.45-1.18 (m, 4H), 1.08 (dt, J = 16.4, 7.4 Hz, 6H), 0.94-0.85 (m, 6H), 0.82 (t, J = 7.3 Hz, 3H), 0.75 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.8, 164.6, 162.5, 157.9, 155.2, 155.1, 146.0, 144.8, 137.1, 136.95, 136.90, 135.1, 133.5, 133.3, 132.0, 131.8, 131.7, 129.3, 128.9, 127.9, 127.8, 127.4, 127.3, 122.5, 122.4, 121.9, 121.3, 118.5, 115.0, 76.95, 76.93, 76.5, 44.7, 33.8, 33.5, 31.0, 30.9, 30.7, 23.9, 23.5, 23.4, 23.1, 23.0, 20.4, 20.3, 14.0, 13.98, 10.8, 10.7, 9.87, 9.80. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₄H₆₇N₂O₈]⁺ requires 871.4897, found 871.4893. [α]₂²⁵ = +42 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 9.376 min, t₂ (minor) = 8.487 min.

2-(1⁴-((2-ethylbutanoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3am)

Yield: 57.3 mg (54%), White solid, mp: 112 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 10.90 (s, 1H), 8.63 (dd, J = 8.5, 1.5 Hz, 1H), 8.34 (dd, J = 6.5, 0.8 Hz, 1H), 7.68 (s, 1H), 7.44-7.35 (m, 1H), 7.09 (d, J = 7.4 Hz, 2H), 7.08-6.98 (m, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.28 (td, J = 7.6, 2.4 Hz, 2H), 6.22 (d, J = 7.0 Hz, 1H), 6.16 (dd, J = 8.2, 3.8 Hz, 3H), 4.52-4.40 (m, 3H), 4.26-4.08 (m, 3H), 4.01 (dd, J = 15.0, 6.8 Hz, 2H), 3.85-3.50 (m, 4H), 3.41 (d, J = 14.0 Hz, 1H), 3.27 (d, J = 13.7 Hz, 1H), 3.16 (dd, J = 13.4, 4.1 Hz, 2H), 2.93-2.81 (m, 1H), 1.97 (dp, J = 15.3, 7.7 Hz, 4H), 1.92-1.84 m, 4H), 1.83-1.73 (m, 2H), 1.71-1.59 (m, 2H), 1.13-1.05 (m, 6 H), 0.97-0.87 (m, 9H), 0.84 (t, J = 7.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 164.5, 162.5, 157.8, 155.2, 155.1, 146.0, 144.7, 137.1, 136.84, 136.82, 135.0, 133.4, 133.3, 132.0, 131.8, 131.6, 129.4, 128.9, 128.2, 127.80, 127.77, 127.4, 127.3, 122.5, 122.3, 121.9, 121.0, 118.5, 115.0, 76.5, 47.7, 30.92, 30.90, 30.7, 29.5, 27.1, 24.1, 23.9, 23.7, 23.44, 23.37, 23.0, 22.9, 11.4, 11.3, 10.7, 10.7, 9.8, 9.7. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₂H₆₃N₂O₈]⁺ requires 843.4584, found 843.4602. [α]₂²⁵ = +23 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IC-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 18.395 min, t₂ (minor) = 15.950 min.

×.	RetTime	Alca	rieigin	Alca	100
	15.817	1162.22095	25.67161	51.0181	1
	18.532	1115.83569	19.79645	48.9819	2

2

583.38098 99.9792

32847.4

18.395

2-(1⁴-((cyclobutanecarbonyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3an)

Yield: 44.6 mg (54%), White solid, mp: 118 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.83 (s, 1H), 8.60 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 6.3 Hz, 1H), 7.59 (s, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.06-6.90 (m, 3H), 6.81 (t, J = 7.4 Hz, 1H), 6.36 (dd, J = 15.2, 7.6 Hz, 2H), 6.31-6.22 (m, 4H), 4.51-4.39 (m, 3H), 4.19 (d, J = 13.9 Hz, 1H), 4.15-4.03 (m, 2H), 3.96 (dd, J = 8.9, 7.1 Hz, 2H), 3.78-3.63 (m, 4H), 3.34 (d, J = 14.0 Hz, 1H), 3.25 (d, J = 13.7 Hz, 1H), 3.16 (dd, J = 13.4, 5.2 Hz, 2H), 2.49-2.17 (m, 4H), 2.12-1.77 (m, 11H), 1.06 (dt, J = 11.6, 7.4 Hz, 6H), 0.93 (q, J = 7.4 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 173.9, 164.3, 162.3, 157.5, 155.55, 155.52, 146.1, 144.8, 137.0, 136.5, 136.4, 134.7, 134.0, 133.9, 132.5, 132.1, 131.1, 129.6, 128.7, 128.1, 128.08, 127.9, 127.6, 122.38, 122.36, 122.0, 120.7, 118.5, 115.1, 76.8, 76.5, 38.1, 31.0, 30.98, 30.7, 25.5, 25.1, 23.5, 23.3, 23.2, 23.08, 18.5, 10.7, 10.6, 10.0, 9.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₁H₅₉N₂O₈]⁺ requires 827.4271, found 827.4281. [**α**]_D²⁵ = +18 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 13.838 min, t₂ (minor) = 11.545 min.

0 2 4 6 8 10 12 14 16 18 min						
Peak	RetTime	Area	Height	Area		
1	11.545	400.68967	17.87404	0.5513		
2	13.838	72284.4	1052.42639	99.4487		

2-(1⁴-((3-methylbutanoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ao)

Yield: 43.8 mg (52%), White solid, mp: 113 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.90 (s, 1H), 8.60 (d, J = 8.2 Hz, 1H), 8.29 (d, J = 6.0 Hz, 1H), 7.61 (s, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.08-6.91 (m, 3H), 6.81 (t, J = 7.5 Hz, 1H), 6.43-6.09 (m, 6H), 4.51-4.39 (m, 3H), 4.19 (d, J = 14.0 Hz, 1H), 4.15-4.03 (m, 2H), 3.96 (dd, J = 13.9, 6.0 Hz, 2H), 3.89-3.49 (m, 4H), 3.34 (d, J = 14.0 Hz, 1H), 3.26 (d, J = 13.6 Hz, 1H), 3.16 (dd, J =13.5, 2.8 Hz, 2H), 2.81-2.60 (m, 2H), 2.25-2.15 (m, 1 H), 2.01-1.80 (m, 8H), 1.10-1.02 (m, 6H), 1.00-0.89 (m, 12H). ¹³**C NMR** (151 MHz, CDCl₃) δ 171.6, 164.3, 162.4, 157.5, 155.53, 155.51, 146.2, 144.8, 137.0, 136.5, 136.4, 134.7, 134.0, 133.9, 132.5, 132.1, 131.1, 129.7, 128.8, 128.1, 128.0, 127.9, 127.6, 122.4, 122.3, 122.0, 120.6, 118.5, 115.0, 76.6, 42.9, 31.00, 30.98, 30.7, 29.4, 25.1, 24.7, 23.5, 23.3, 23.1, 23.08, 22.5, 22.3, 10.7, 10.6, 10.0, 9.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₁H₆₁N₂O₈]⁺ requires 829.4428, found 829.4430. [**α**]_D²⁵ = +34 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (CHIRALPAK IC-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 17.237 min, t₂ (minor) = 14.766 min.

wv [u^n	01 A, Wavelength=254 nm (ZLM/2024-07-23 18-48-25.D)
500 -	
400-	1221
300	
200-	
100-	99 J
0	

Peak	RetTime	Area	Height	Area
1	14.756	5249.07471	122.06635	50.7166
2	17.309	5100.74316	96.54317	49.2834

Peak	RetTime	Area	Height	Area
1	14.766	67.21010	6.95162	1.3322
2	17.237	20810.3	380.16534	98.6678

2-(1⁴-((3,3-dimethylbutanoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ap)

Yield: 52.2 mg (62%), White solid, mp: 116 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.88 (s, 1H), 8.61 (d, J = 8.2 Hz, 1H), 8.29 (d, J = 6.2 Hz, 1H), 7.61 (s, 1H), 7.36 (t, J = 7.9 Hz, 1H), 6.99 (dd, J = 13.7, 6.6 Hz, 3H), 6.82 (t, J = 7.4 Hz, 1H), 6.40-6.18 (m, 6H), 4.51-4.39 (m, 3H), 4.19 (d, J = 14.0 Hz, 1H), 4.15-4.04 (m, 2H), 4.00-3.92 (m, 2H), 3.81-3.57 (m, 4H), 3.39 (d, J = 14.0 Hz, 1H), 3.25 (d, J = 13.7 Hz, 1H), 3.16 (dd, J = 13.4, 3.9 Hz, 2H), 2.72 (dd, J = 40.3, 16.0 Hz, 2H), 2.03-1.81 (m, 8H), 1.11 -0.99 (m, 16H), 0.97-0.87 (m, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 170.6, 164.4, 162.4, 157.6, 155.5, 155.4, 146.1, 144.8, 137.0, 136.6, 136.5, 134.7, 133.9, 133.8, 132.4, 132.0, 131.2, 129.6, 128.8, 128.05, 128.02, 127.9, 127.6, 122.4, 122.0, 120.8, 118.5, 115.0, 76.9, 76.6, 46.9, 31.00, 30.98, 30.7, 30.5, 29.4, 24.7, 23.5, 23.3, 23.1, 23.07, 10.7, 10.6, 10.0, 9.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₂H₆₃N₂O₈]⁺ requires 843.4584, found 843.4593. [**α**]_D²⁵ = +28 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 97/3, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 11.031 min, t₂ (minor) = 9.053 min.

2-(14-(butyryloxy)-12,32,52,72-tetrapropoxy-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane-15-carboxamido)pyridine 1-oxide (3aq)

Yield: 25 mg (31%), Yellow solid, mp: 142 °C

¹**H NMR** (600 MHz, CDCl₃) δ 10.91 (s, 1H), 8.61 (dd, J = 8.5, 1.9 Hz, 1H), 8.29 (dd, J = 6.5, 1.5 Hz, 1H), 7.61 (s, 1H), 7.40–7.32 (m, 1H), 7.01–6.98 (m, 1H), 6.97–6.92 (m, 2H), 6.79 (t, J = 7.5 Hz, 1H), 6.40–6.35 (m, 2H), 6.33–6.27 (m, 4H), 4.49–4.42 (m, 3H), 4.20 (d, J = 14.0 Hz, 1H), 4.14–4.03 (m, 2H), 3.95 (t, J = 8.0 Hz, 2H), 3.78–3.70 (m, 4H), 3.32 (d, J = 14.0 Hz, 1H), 3.26 (d, J = 13.7 Hz, 1H), 3.17 (d, J = 3.8 Hz, 1H), 3.15 (d, J = 3.9 Hz, 1H), 2.85–2.72 (m, 2H), 1.97–1.92 (m, 4H), 1.90–1.85 (m, 4H), 1.78–1.72 (m, 2H), 1.08–1.03 (m, 6H), 0.9–0.91 (m, 9H). ¹³C **NMR** (151 MHz, CDCl₃) δ 172.2, 164.2, 162.4, 157.5, 155.6, 146.2, 144.8, 137.1, 136.4, 136.3, 134.7, 134.1, 134.0, 132.6, 132.1, 131.1, 129.8, 128.7, 128.7, 128.5, 128.1, 128.0, 127.7, 122.4, 122.3, 122.0 120.5, 118.5, 115.1, 36.0, 31.0, 30.99, 30.7, 24.8, 23.4, 23.3, 23.2, 23.1, 18.0, 13.6, 10.6, 10.57, 10.0, 9.9. **HRMS** (ESI): m/z [M+K]⁺calcd for [C₅₀H₅₈N₂O₈K]⁺ requires 853.3825, found 853.3832. [**α**]_D²⁵ = +22 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 96% ce (CHIRALPAK IC-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 19.255 min, t₂ (minor) = 16.493 min.

Area

1.7226

98.2774

Peak	RetTime	Area	Height	Area	Peak	RetTime	Area	Height
1	16.793	11075.5	201.88644	48.2453	1	16.493	951.23639	13.37805
2	19.866	11881.1	172.20108	51.7547	2	19.255	54270.4	799.63397

2-(1⁴-(benzoyloxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane-1⁵carboxamido)pyridine 1-oxide (3ar)

Yield: 85.6 mg (72%), grey solid, mp: 121 °C. ¹H NMR (600 MHz, CDCl₃) δ 10.58 (s, 1H), 8.43 (dd, J = 8.5, 1.5 Hz, 1H), 8.25-8.16 (m, 3H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.42 (s, 1H), 7.27-7.20 (m, 1H), 6.95-6.81 (m, 3H), 6.73 (t, J = 7.4 Hz, 1H), 6.60-6.24 (m, 6H), 4.56-4.40 (m, 3H), 4.25 (d, J = 13.9 Hz, 1H), 4.13-3.97 (m, 2H), 3.92 (dd, J = 8.3, 7.2 Hz, 2H), 3.88-3.67 (m, 4H), 3.38 (d, J = 14.0 Hz, 1H), 3.27 (d, J = 13.6 Hz, 1H), 3.18 (t, J = 13.0Hz, 2H), 2.00-1.81 (m, 8H), 1.05 (t, J = 7.4 Hz, 3H), 0.97 (ddd, J = 20.0, 10.0, 4.4 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 165.0, 164.4, 161.8, 157.2, 155.9, 155.88, 146.4, 144.6, 136.9, 136.0, 135.8, 134.6, 134.4, 133.6, 133.0, 132.4, 131.0, 130.8, 129.0, 128.96, 128.6, 128.5, 128.48, 128.33, 128.30, 127.9, 127.6, 122.4, 122.2, 122.1, 121.5, 118.3, 114.9, 77.2, 76.7, 76.6, 31.1, 31.0, 30.7, 25.3, 23.4, 23.2, 23.17, 23.14, 10.5, 10.4, 10.1, 10.0. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₃H₅₇N₂O₈]⁺ requires 849.4115, found 849.4122. [α]²⁵_D = +32 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 18.013 min, t₂ (minor) = 15.945 min.

51.5845

2

18.013

25289.6

357.24292

97.3712

10756.7

2

18.117

148.70924

S	3	5

2-(1⁴-((4-methylbenzoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3as)

Yield: 73.7 mg (61%), white solid, mp: 122 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 10.61 (s, 1H), 8.45 (dd, J = 8.5, 1.4 Hz, 1H), 8.19 (d, J = 5.9 Hz, 1H), 8.12 (d, J = 8.1 Hz, 2H), 7.45 (s, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.23 (dd, J = 12.3, 4.7 Hz, 1H), 6.95-6.82 (m, 3H), 6.75 (t, J = 7.4 Hz, 1H), 6.58-6.29 (m, 6H), 4.56-4.40 (m, 3H), 4.24 (d, J = 13.9 Hz, 1H), 4.07 (dtd, J = 18.6, 10.3, 8.1 Hz, 2H), 3.93 (dd, J = 8.3, 7.2 Hz, 2H), 3.86-3.67 (m, 4H), 3.38 (d, J = 13.9 Hz, 1H), 3.28 (d, J = 13.6 Hz, 1H), 3.18 (t, J = 12.8 Hz, 2H), 2.43 (s, 3H), 2.01-1.81 (m, 8H), 1.06 (t, J = 7.4Hz, 3H), 1.02-0.93 (m, 9H). ¹³C **NMR** (151 MHz, CDCl₃) δ 165.1, 164.4, 161.9, 157.2, 155.9, 155.8, 146.5, 144.6, 144.5, 136.9, 136.1, 135.9, 134.6, 134.4, 134.36, 133.0, 132.4, 131.0, 130.8, 129.2, 129.1, 128.6, 128.5, 128.3, 128.28, 127.9, 127.6, 126.2, 122.4, 122.3, 122.1, 121.5, 118.3, 115.0, 77.2, 76.7, 76.6, 31.07, 31.03, 30.7, 25.3, 23.4, 23.2, 23.16, 21.8, 10.6, 10.4, 10.1, 10.0. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₃H₅₇N₂O₈]⁺ requires 863.4271, found 863.4275. [α]₂²⁵ = +26 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 16.369 min, t₂ (minor) = 15.371 min.

Peak	RetTime	Area	Height	Area
1	15.305	7678.85352	184.89508	47.9825
2	16.898	8324.58594	141.65874	52.0175

Peak	RetTime	Area	Height	Area
1	15.371	655.08588	14.85541	1.1636
2	16.369	55643.4	957.31390	98.8364
2-(1²,3²,5²,7²-tetrapropoxy-1⁴-((4-(trifluoromethyl)benzoyl)oxy)-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3at)

Yield: 66.7 mg (52%). White solid, mp: 126 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 8.38 (dd, J = 8.5, 1.6 Hz, 1H), 8.29 (d, J = 8.2 Hz, 2H), 8.20 (dd, J = 6.5, 0.9 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.33 (s, 1H), 7.26-7.20 (m, 1H), 6.95-6.89 (m, 1H), 6.78 (dd, J = 15.8, 7.1 Hz, 2H), 6.67 (t, J = 7.4 Hz, 1H), 6.62-6.47 (m, 4H), 6.44-6.30 (m, 2H), 4.56-4.41 (m, 3H), 4.29 (d, J = 14.0 Hz, 1H), 4.13-3.95 (m, 2H), 3.89 (dd, J = 16.8, 9.4 Hz, 3H), 3.78 (tt, J = 17.5, 8.7 Hz, 3H), 3.33 (d, J = 14.0 Hz, 1H), 3.27 (d, J = 13.6 Hz, 1H), 3.19 (t, J = 13.1 Hz, 2H), 2.23-1.70 (m, 8H), 0.99 (ddt, J = 22.4, 9.9, 7.4 Hz, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 164.2, 163.8, 161.6, 156.9, 156.2, 156.1, 146.1, 144.4, 136.9, 135.7, 135.4, 135.1, 135.0, 134.97, 134.8, 134.4, 133.2, 132.4, 132.37, 131.1, 130.6, 128.8, 128.6, 128.57, 128.48, 128.37, 127.9, 127.7, 125.5, 125.48, 124.5, 122.7, 122.5, 122.15, 122.1, 121.2, 118.4, 114.8, 76.6, 76.6, 31.1, 31.0, 30.7, 25.8, 23.4, 23.3, 23.2, 23.0, 10.4, 10.3, 10.2, 10.1. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.1. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₄H₅₆F₃N₂O₈]⁺ requires 917.3989, found 917.3992. [α]_D²⁵ = +37 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 13.782 min, t₂ (minor) = 11.124 min.

Peak	RetTime	Area	Height	Area	
1	11.344	4534.72559	135.12341	51.2788	
2	14.123	4308.55127	84.81761	48.7212	

Peak	RetTime	RetTime Area		Area	
1	11.124	869.32764	39.08958	0.7849	
2	13.782	109889	2471.35986	99.2151	

2-(1⁴-((4-chlorobenzoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3au)

Yield: 69.2 mg (56%). White solid, mp: 126 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 10.52 (s, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 6.3 Hz, 1H), 8.13 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.37 (s, 1H), 7.23 (d, J = 7.8 Hz, 1H), 6.92 (dd, J = 10.1, 3.9 Hz, 1H), 6.80 (s, 2H), 6.69 (t, J = 7.3 Hz, 1H), 6.53 (d, J = 32.3 Hz, 4H), 6.42 (s, 2H), 4.58-4.40 (m, 3H), 4.28 (d, J = 14.0 Hz, 1H), 4.04 (qd, J = 17.5, 9.2 Hz, 2H), 3.89 (dt, J = 16.9, 7.4 Hz, 3H), 3.77 (tt, J = 17.5, 8.7 Hz, 3H), 3.34 (d, J = 13.9 Hz, 1H), 3.27 (d, J = 13.6 Hz, 1H), 3.19 (dd, J = 13.2, 10.9 Hz, 2H), 1.92 (dddd, J = 50.9, 28.9, 14.8, 7.4 Hz, 8H), 1.07-0.94 (m, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 164.2, 164.18, 161.7, 157.0, 156.1, 156.0, 146.2, 144.5, 140.2, 136.9, 135.8, 135.6, 134.9, 134.8, 134.4, 133.2, 132.5, 132.2, 130.7, 128.9, 128.8, 128.56, 128.5, 128.4, 127.9, 127.7, 127.5, 122.5, 122.1, 121.3, 118.4, 114.9, 77.2, 76.7, 76.6, 31.1, 31.0, 30.7, 25.6, 23.4, 23.3, 23.2, 23.1, 10.5, 10.3, 10.2, 10.1. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₃H₅₆ClN₂O₈]⁺ requires 883.3725, found 883.3734. [**α**]_D²⁵ = +22 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 15.915 min, t₂ (minor) = 14.198 min.

2-(1⁴-((4-(methoxycarbonyl)benzoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3av)

Yield: 77.4 mg (61%). White solid, mp: 128 °C.

¹**H** NMR (600 MHz, CDCl₃) δ 10.49 (s, 1H), 8.39 (dd, J = 8.5, 1.3 Hz, 1H), 8.25 (d, J = 8.4 Hz, 2H), 8.22-8.17 (m, 1H), 8.15 (d, J = 8.5 Hz, 2H), 7.34 (s, 1H), 7.22 (dd, J = 12.3, 4.7 Hz, 1H), 6.95-6.87 (m, 1H), 6.79 (dd, J = 13.0, 7.2 Hz, 2H), 6.68 (t, J = 7.4 Hz, 1H), 6.65-6.44 (m, 4H), 6.44-6.30 (m, 2H), 4.56-4.41 (m, 3H), 4.28 (d, J = 14.0 Hz, 1H), 4.03 (dtd, J = 18.2, 9.9, 8.2 Hz, 2H), 3.96 (s, 3H), 3.92-3.84 (m, 3H), 3.83-3.72 (m, 3H), 3.35 (d, J = 14.0 Hz, 1H), 3.27 (d, J = 13.6 Hz, 1H), 3.18 (t, J = 13.5 Hz, 2H), 2.00-1.81 (m, 8H), 1.60-0.93 (m, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 166.3, 164.2, 161.7, 156.9, 156.2, 156.1, 146.2, 144.5, 136.9, 135.7, 135.5, 135.0, 134.8, 134.4, 134.3, 133.2, 132.9, 132.4, 130.7, 129.6, 128.8, 128.6, 128.5, 128.48, 128.41, 127.9, 127.7, 122.4, 122.1, 121.2, 118.4, 114.8, 76.6, 52.5, 31.1, 31.0, 30.6, 23.4, 23.3, 23.2, 23.1, 10.5, 10.3, 10.2, 10.1. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₅H₅₉ClN₂O₁₀]⁺ requires 907.4169, found 907.4171. [α]_D²⁵ = +34 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 28.451 min, t₂ (minor) = 37.742 min.

2-(1⁴-((3-fluorobenzoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3aw)

Yield: 69.1 mg (57%). White solid, mp: 122 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.49 (s, 1H), 8.41 (dd, *J* = 8.5, 1.4 Hz, 1H), 8.24-8.19 (m, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.47 (td, J = 8.0, 5.5 Hz, 1H), 7.34 (s, 1 H), 7.33-7.28 (m, 1H), 7.24 (dd, J = 12.4, 4.9 Hz, 1H), 6.97-6.89 (m, 1H), 6.81 (dd, J = 13.1, 7.4 Hz, 2H), 6.69 (t, J = 7.4 Hz, 1H), 6.52 (dd, J = 32.1, 6.9 Hz, 4H), 6.45-6.35 (m, 2H), 4.56-4.41 (m, 3H), 4.27 (d, J = 14.0 Hz, 1H), 4.04 (dtd, J = 18.4, 10.1, 8.1 Hz, 2H), 3.88 (dt, J = 17.0, 7.4 Hz, 3H), 3.82 - 3.71 (m, 3H), 3.35 (d, *J* = 14.0 Hz, 1H), 3.27 (d, *J* = 13.6 Hz, 1H), 3.18 (t, *J* = 13.0 Hz, 2H), 2.00-1.89 (m, 6H), 1.87-1.82 (m, 2 H), 1.08-1.01 (m, 3 H), 1.00-0.92 (m, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 164.2, 163.9, 163.3, 161.7, 157.0, 156.1, 156.0, 146.2, 144.5, 136.9, 135.8, 135.6, 134.9, 134.8, 134.4, 133.1, 132.4, 131.2, 130.7, 130.10, 130.05, 128.7, 128.5, 128.5, 128.4, 127.9, 127.6, 126.4, 122.4, 122.1, 121.2, 120.7, 120.6, 118.4, 117.6, 117.5, 114.8, 76.7, 76.6, 31.1, 31.0, 30.7, 23.4, 23.3, 23.2, 23.1 10.5, 10.3, 10.2, 10.1. ¹⁹F NMR (565 MHz, CDCl₃) δ -112.1. HRMS (ESI): m/z [M+H]⁺calcd for [C₅₃H₅₆FN₂O₈]⁺ requires 867.4020, found 867.4032. $[\alpha]_D^{25} = +21$ (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IC-H, hexane/i-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 29.033 min, t₂ (minor) = 21.345 min.

Peak	RetTime	Area	Height	Area	
1	21.269	4555.01611	60.24934	49.0742	
2	29.336	4726.88574	46.57448	50.9258	

Peak	RetTime	Area	Height	Area	
1	21.345	55.92454	2.03804	0.2739	
2	29.033	20365.1	189.51302	99.7261	

2-(1⁴-((2-methylbenzoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ax)

Yield: 82.1 mg (68%). White solid, mp: 122 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.55 (s, 1H), 8.46 (dd, J = 8.5, 1.5 Hz, 1H), 8.25 (d, J = 7.7 Hz, 1H), 8.21 (d, J = 6.5 Hz, 1H), 7.50-7.41 (m, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.28-7.24 (m, 2H), 6.97-6.86 (m, 3H), 6.78 (t, J = 7.4 Hz, 1H), 6.50-6.44 (m, 1H), 6.41 (d, J = 7.3 Hz, 2H), 6.35 (dt, J = 20.3, 7.2 Hz, 3H), 4.55-4.40 (m, 3H), 4.23 (d, J = 13.9 Hz, 1H), 4.08 (ddd, J = 15.6, 10.4, 2.5 Hz, 2H), 3.98-3.90 (m, 2H), 3.82-3.68 (m, 4H), 3.44 (d, J = 14.0 Hz, 1H), 3.27 (d, J = 13.6 Hz, 1H), 3.17 (dd, J = 16.0, 13.7 Hz, 2H), 2.62 (s, 3H), 2.15-1.66 (m, 8H), 1.06 (t, J = 7.4 Hz, 3H), 1.02-0.91 (m, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 165.3, 164.5, 162.0, 157.3, 155.7, 146.6, 144.6, 141.7, 136.9, 136.2, 136.1, 134.4, 134.2, 132.8, 132.7, 132.3, 131.9, 131.7, 128.64, 128.61, 128.59, 128.3, 128.2, 128.1, 127.8, 127.7, 125.9, 122.4, 122.3, 122.0, 121.5, 118.3, 114.8, 77.1, 76.7, 76.6, 31.02, 30.97, 30.7, 23.4, 23.2, 23.1, 22.0, 10.6, 10.5, 10.1, 10.0. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₄H₅₉N₂O₈]⁺ requires 863.4271, found 863.4278 [α]_D²⁵ = +22 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (CHIRALPAK IC-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 30.313 min, t₂ (minor) = 22.601 min.

	WD1 A, Wavelength=254 nm (ZLMi2024-07-25 14-04-38.D)
U	
0	
0	
0	
0	55
0	Å
0-	
0	E withthe
0-	Show A
1	5 10 15 20 25 30 35 40 45

5	10	15 20	25 30	35 n	
Peak	RetTime	Area	Height	Area	
1	22.410	1731.66602	25.00605	50.9331	
2	30.191	1668.21912	17.30567	49.0669	

0	5 10 1	5 20 25	30 35 40) 45 I	
Peak	RetTime	Area	Height	Area	
1	22.601	269.48618	3.41499	1.6424	
2	30.313	16138.4	156.92009	98.3576	

2-(1⁴-((3,5-dimethoxybenzoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3ay)

Yield: 76.3 mg (60%). White solid, mp: 129 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.52 (s, 1H), 8.43 (dd, J = 8.5, 1.5 Hz, 1H), 8.23-8.17 (m, 1H), 7.36 (t, J = 7.3 Hz, 3H), 7.26-7.22 (m, 1H), 6.96-6.89 (m, 1H), 6.83 (d, J = 7.3 Hz, 2H), 6.77-6.67 (m, 2H), 6.57-6.49 (m, 3H), 6.48-6.39 (m, 3H), 4.55-4.41 (m, 3H), 4.26 (d, J = 14.0 Hz, 1H), 4.05 (ddd, J = 18.5, 10.5, 5.1 Hz, 2H), 3.94-3.89 (m, 2H), 3.86 (s, 6H), 3.83-3.70 (m, 4H), 3.36 (d, J = 14.0 Hz, 1H), 3.27 (d, J = 13.6 Hz, 1H), 3.23-3.13 (m, 2H), 2.03-1.79 (m, 8H), 1.05 (t, J = 7.4 Hz, 3H), 1.01-0.93 (m, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 164.8, 164.3, 161.7, 160.6, 157.0, 156.0, 155.9, 146.3, 144.5, 136.9, 135.9, 135.6, 134.7, 134.5, 134.3, 133.1, 132.4, 130.9, 130.7, 128.8, 128.5, 128.39, 128.35, 128.3, 127.9, 127.6, 122.4, 122.2, 122.1, 121.5, 118.3, 114.9, 108.0, 107.0, 77.1, 76.6, 76.6, 55.6, 31.1, 31.0, 30.7, 23.4, 23.2, 23.19, 23.11, 10.5, 10.4, 10.2, 10.1. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₅H₆₁N₂O₁₀]⁺ requires 909.4326, found 909.4330. [**α**]_D²⁵ = +34 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (CHIRALPAK AS-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 16.500 min, t₂ (minor) = 27.006 min.

Peak	RetTime	Area	Height	Area
1	16.299	10006.8	33.81359	47.0880
2	26.960	11244.5	26.27214	52.9120

Peak	RetTime	Area	Height	Area	
1	16.500	108009	397.15347	97.1667	
2	27.006	3149.44019	16.17056	2.8333	

2-(1⁴-((2-naphthoyl)oxy)-1²,3²,5²,7²-tetrapropoxy-1,3,5,7(1,3)-

tetrabenzenacyclooctaphane-1⁵-carboxamido)pyridine 1-oxide (3az)

2

25.032

20580.0

174.72723

Yield: 78.0 mg (62%). White solid, mp: 167 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.59 (s, 1H), 8.84 (s, 1H), 8.40 (d, J = 8.3 Hz, 1H), 8.19 (d, J = 8.6 Hz, 1H), 8.15 (d, J = 6.3 Hz, 1H), 8.05 (d, J = 8.1 Hz, 1H), 7.91 (dd, J = 16.3, 8.4 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.39 (s, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.92-6.76 (m, 3H), 6.71 (t, J = 7.4 Hz, 1H), 6.63-6.47 (m, 5H), 6.42 (t, J = 7.3 Hz, 1H), 4.59-4.42 (m, 3H), 4.30 (d, J = 14.0 Hz, 1H), 4.07 (dtd, J = 18.0, 10.0, 8.0 Hz, 2H), 3.90 (dt, J = 16.8, 7.4 Hz, 3H), 3.85-3.70 (m, 3H), 3.43 (d, J = 14.0 Hz, 1H), 3.29 (d, J = 13.5 Hz, 1H), 3.20 (dd, J = 13.5, 9.2 Hz, 2H), 2.05-1.81 (m, 8H), 1.05 (t, J = 7.4 Hz, 3H), 1.03-0.92 (m, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 165.1, 164.4, 161.7, 157.0, 156.1 156.07, 146.4, 144.5, 136.9, 135.9, 135.87, 135.6, 134.9, 134.7, 134.3, 133.3, 132.9, 132.6, 132.5, 130.9, 129.8, 129.0, 128.6, 128.5, 128.48, 128.43, 128.2, 128.0, 127.7, 127.6, 126.6, 126.1, 125.9, 122.5, 122.2, 122.1, 121.6, 118.3, 114.9, 77.2, 76.7, 76.6, 31.1, 31.0, 30.7, 23.4, 23.3, 23.2, 23.1, 10.5, 10.3, 10.2, 10.1. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₅₇H₅₉N₂O₈]⁺ requires 899.4271, found 899.4271. [α]_D²⁵ = 113 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 23.509 min, t₂ (minor) = 12.187 min.

2

23.509

77628.4

620.25781

99.4754

49.3705

2-(1²,3²,5²,7²-tetraethoxy-1⁴-(pivaloyloxy)-1,3,5,7(1,3)-tetrabenzenacyclooctaphane-1⁵carboxamido)pyridine 1-oxide (3ba)

Yield: 60.2 mg (78%). White solid, mp: 112 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.54 (s, 1H), 8.58 (dd, J = 8.4, 1.3 Hz, 1H), 8.29 (d, J = 6.3 Hz, 1H), 7.58 (s, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.17-7.09 (m, 2H), 7.06-6.98 (m, 1H), 6.93 (t, J = 7.4 Hz, 1H), 6.30 (dt, J = 22.0, 7.5 Hz, 3H), 6.26-6.15 (m, 3H), 4.51-4.39 (m, 3H), 4.31 (tdd, J = 11.0, 7.1, 3.9 Hz, 2H), 4.17 (dt, J = 20.4, 10.3 Hz, 3H), 3.85-3.74 (m, 4H), 3.39 (d, J = 13.7 Hz, 1H), 3.24 (d, J = 13.5 Hz, 1H), 3.15 (dd, J = 13.2, 3.9 Hz, 2H), 1.51-1.43 (m, 12H), 1.37 (s, 9H). ¹³C **NMR** (151 MHz, CDCl₃) δ 176.9, 164.8, 161.9, 157.4, 154.9, 154.8, 146.4, 144.7, 137.2, 137.19, 137.12, 135.3, 133.5, 133.47, 132.1, 132.06, 131.9, 128.9, 128.8, 128.2, 128.1, 127.9, 127.8, 127.5, 127.3, 122.7, 122.4, 122.1, 121.9, 118.5, 114.9, 70.6, 70.57, 70.53, 69.8, 39.3, 31.0, 30.8, 27.2, 23.6, 15.72, 15.70 15.65. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₄₇H₅₃N₂O₈]⁺ requires 773.3802 found 773.3807. [α]_D²⁵ = +40 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 26.642 min, t₂ (minor) = 21.624 min.

6159.38037

71.86004

50.0935

2

26.531

			a me a to	20042
	5 1	0 15	20 20 20 20 20 20 20 20 20 20 20 20 20 2	30 mi
ık	RetTime	Area	Height	Area

Peak	RetTime	Area	Height	Area
1	21.624	471.07001	5.58379	1.0060
2	26.642	46355.5	521.71954	98.9940

2-(1²,3²,5²,7²-tetrabutoxy-1⁴-(pivaloyloxy)-1,3,5,7(1,3)-tetrabenzenacyclooctaphane-1⁵carboxamido)pyridine 1-oxide (3ca)

Yield: 83.1 mg (94%). White solid, mp: 122 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 10.53 (s, 1H), 8.61-8.55 (m, 1H), 8.29 (d, J = 6.4 Hz, 1H), 7.57 (s, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.12 (dd, J = 7.4, 2.4 Hz, 2H), 7.05-6.97 (m, 1H), 6.93 (t, J = 7.4 Hz, 1H), 6.27 (ddd, J = 29.8, 14.9, 7.4 Hz, 3H), 6.19-6.09 (m, 3H), 4.51-4.39 (m, 3H), 4.26-4.11 (m, 3H), 4.06 (dd, J = 10.2, 6.3 Hz, 2H), 3.71 (dt, J = 9.6, 6.5 Hz, 4H), 3.40 (d, J = 13.9 Hz, 1H), 3.25 (d, J = 13.7 Hz, 1H), 3.16 (dd, J = 13.4, 5.0 Hz, 2H), 1.95 (dd, J = 16.1, 7.9 Hz, 4H), 1.85 (dd, J = 14.6, 6.7 Hz, 4H), 1.60 (ddd, J = 15.2, 11.0, 7.6 Hz, 4H), 1.35 (d, J = 19.0 Hz, 9H), 1.31 (ddd, J = 15.5, 10.1, 7.7 Hz, 4H), 1.05-0.94 (m, 12H). ¹³**C NMR** (151 MHz, CDCl₃) δ 176.9, 164.8, 162.3, 157.8, 155.2, 155.1, 146.5, 144.7, 137.1, 137.0, 136.9, 134.9, 133.4, 133.3, 131.9, 131.8, 129.0, 128.9, 128.3, 128.0, 127.9, 127.8, 127.4, 127.2, 122.7, 122.4, 121.9, 121.7, 118.5, 114.9, 75.3, 75.1, 75.0, 74.8, 39.3, 32.6, 32.5, 32.1, 32.0, 30.9, 30.7, 27.2, 23.4, 19.7, 19.6, 19.1, 18.9, 14.2, 14.1, 14.0. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₃₅H₆₉N₂O₈]⁺ requires 885.5054 found 885.5064. [**\alpha**]₂²⁵ = +28 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 96/4, detector: 254 nm, T = 25 °C, flow rate: 0.5 mL/min), t₁ (major) = 40.779 min, t₂ (minor) = 39.329 min.

0-									
0-								e .1	13882
1								Stating.	
0-									
•									
0-									
								State son A	*
•	5	10	15	20	25	30	35	40	45

Peak	RetTime	Area	Height	Area
1	39.451	5654.09082	68.64409	51.6636
2	42.424	5289.96924	57.83927	48.3364

Peak	RetTime	Area	Height	Area
1	39.329	826.41180	9.16060	1.0569
2	40.779	77366.2	681.06677	98.9431

2-(1²,3²,5²,7²-tetrabutoxy-1⁴-hydroxy-1,3,5,7(1,3)-tetrabenzenacyclooctaphane-1⁵carboxamido)pyridine 1-oxide (4)

Yield: 70.0 mg (94%). White solid, mp: 145 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 11.94 (s, 1H), 10.97 (s, 1H), 8.56 (s, 1H), 8.32 (s, 1H), 7.50-7.30 (m, 2H), 7.19-6.95 (m, 3H), 6.80 (t, J = 7.4 Hz, 1H), 6.41 (d, J = 7.1 Hz, 1H), 6.33 (dt, J = 13.4, 6.7 Hz, 2H), 6.24 (t, J = 6.8 Hz, 3H), 4.50-4.38 (m, 3H), 4.21-3.87 (m, 6H), 3.87-3.60 (m, 4H), 3.18 (dd, J = 28.3, 13.5 Hz, 3H), 2.04-1.93 (m, 4H), 1.92-1.83 (m, 4H), 1.08 (dt, J = 12.3, 7.4 Hz, 6H), 0.93 (dt, J = 14.8, 7.5 Hz, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 169.2, 164.7, 160.7, 157.6, 155.5, 155.4, 136.7, 136.5, 133.9, 133.4, 133.2, 132.7, 128.75, 128.72, 128.5, 127.9, 127.64, 127.61, 127.4, 126.2, 125.6, 122.25, 122.20, 121.8, 107.9, 76.9, 76.5, 31.0, 30.9, 30.6, 23.5, 23.4, 23.3, 23.0, 22.5, 10.73, 10.71, 10.0, 9.9. **HRMS** (ESI): m/z [M+H]⁺calcd for [C₄₆H₅₃N₂O₇]⁺ requires 745.3863 found 745.3863. [**α**]_D²⁵ = +26 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (CHIRALPAK IB-H, hexane/*i*-PrOH = 95/5, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 21.407 min, t₂ (minor) = 26.790 min.

Peak	RetTime	Area	Height	Area
1	22.750	840.94098	6.48589	50.2388
2	26.291	832.94678	6.51230	49.7612

Peak	RetTime	Area	Height	Area
1	21.407	14513.8	100.68847	95.0671
2	26.790	753.09338	5.70805	4.9329

 $2-(1^5-0x0-1^8,3^2,5^2,7^2-tetrapropoxy-1^2,1^3,1^4,1^5-tetrahydro-1(7,9)-benzo[f][1,4]oxazepina-3,5,7(1,3)-tribenzenacyclooctaphane-1^4-yl)pyridine 1-oxide (6)$

Yield: 65.5 mg (85%). White solid, mp: 136 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.25 (d, *J* = 6.5 Hz, 1H), 7.48 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.29 (dd, *J* = 11.3, 4.4 Hz, 1H), 7.21 – 7.15 (m, 1H), 7.01 (s, 1H), 6.90 – 6.78 (m, 3H), 6.78 – 6.69 (m, 2H), 6.63 (m, 3H), 6.45 (d, *J* = 6.4 Hz, 1H), 4.49 (d, *J* = 13.3 Hz, 2H), 4.42 (d, *J* = 13.2 Hz, 1H), 4.26 (d, *J* = 13.4 Hz, 1H), 4.10 – 3.88 (m, 5H), 3.87 – 3.71 (m, 4H), 3.66 (d, *J* = 16.1 Hz, 1H), 3.54 (d, *J* = 13.4 Hz, 1H), 3.45 – 3.32 (m, 1H), 3.20 (m, 3H), 3.07 (s, 1H), 1.97 – 1.88 (m, 8H), 1.03 (m, 6H), 0.95 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 170.2, 161.0, 157.1, 156.7, 156.3, 150.6, 145.7, 140.4, 136.1, 135.4, 134.9, 134.8, 134.7, 134.5, 131.0, 129.9, 129.6, 128.7, 128.41, 128.35, 128.3, 127.9, 127.5, 126.9, 126.0, 123.8, 122.6, 122.4, 122.0, 121.9, 77.2, 76.9, 76.3, 71.8, 45.3, 31.4, 31.0, 30.6, 23.3, 23.3, 23.2, 22.6, 10.5, 10.4, 10.2, 10.0. HRMS (ESI): m/z [M+H]⁺calcd for [C₄₈H₅₅N₂O₇]⁺ requires 771.4004 found 771.4012. [α]²⁵_D = +42 (c = 0.1, CH₂Cl₂). The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (CHIRALPAK AD-H, hexane/*i*-PrOH = 90/10, detector: 254 nm, T = 25 °C, flow rate: 1 mL/min), t₁ (major) = 10.447 min, t₂ (minor) = 7.427 min.

Peak	RetTime	Area	Height	Area
1	7.865	1598.48083	28.66329	48.8446
2	10.710	1674.10315	22.89644	51.1554

Peak	RetTime	Area	Height	Area	
1	7.427	55.18159	2.72039	0.5694	
2	10.447	9636.82617	168.70889	99.4306	

8. Copies of NMR spectra of the acyloxylated inherently chiral calix[4]arenes ¹H NMR (600 MHz, CDCl₃), **3aa**

¹³C NMR (151 MHz, CDCl₃), 3aa

¹³C NMR (151 MHz, CDCl₃), 3ab

¹³C NMR (151 MHz, CDCl₃), 3ac

10.510 10.510 10.510 10.510 10.510 10.510 10.510 10.511 10.511 10.511 10.510 10.525 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555 10.555

¹³C NMR (151 MHz, CDCl₃), 3ad

¹³C NMR (151 MHz, CDCl₃), 3ae

¹³C NMR (151 MHz, CDCl₃), 3af

¹³C NMR (151 MHz, CDCl₃), 3ag

¹³C NMR (151 MHz, CDCl₃), 3ah

¹³C NMR (151 MHz, CDCl₃), 3ai

¹³C NMR (151 MHz, CDCl₃), 3aj

¹³C NMR (151 MHz, CDCl₃), 3ak

¹³C NMR (151 MHz, CDCl₃), 3al

¹H NMR (600 MHz, CDCl₃), 3am

¹³C NMR (151 MHz, CDCl₃), 3am

¹³C NMR (151 MHz, CDCl₃), 3an

¹H NMR (600 MHz, CDCl₃), 3ao

¹³C NMR (151 MHz, CDCl₃), 3ao

¹³C NMR (151 MHz, CDCl₃), **3ap**

¹³C NMR (151 MHz, CDCl₃), 3aq

¹³C NMR (151 MHz, CDCl₃), 3ar

¹³C NMR (151 MHz, CDCl₃), 3as

¹³C NMR (151 MHz, CDCl₃), 3at

¹³C NMR (151 MHz, CDCl₃), 3au

¹H NMR (600 MHz, CDCl₃), 3av

8 395 8 395 8 393 8 395 8 393 8 391 8

¹³C NMR (151 MHz, CDCl₃), 3av

¹³C NMR (151 MHz, CDCl₃), 3aw

¹⁹F NMR (565 MHz, CDCl₃), **3aw**

¹³C NMR (151 MHz, CDCl₃), 3ax

10.525 88.419 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.1199 88.111 88.123 <

¹³C NMR (151 MHz, CDCl₃), 3ay

8:843 8:157 8:157 8:157 8:157 8:157 8:157 8:157 8:156 8:

¹³C NMR (151 MHz, CDCl₃), 3az

¹³C NMR (151 MHz, CDCl₃), 3ba

¹³C NMR (151 MHz, CDCl₃), 3ca

¹³C NMR (151 MHz, CDCl₃), 4

¹H NMR (600 MHz, CDCl₃), 6

