Supporting information

Additive Manufacturing via Protein Denaturation

Chang-Uk Lee^a; Sung June Kim^a; Rachel B. Dietrich^b; Audrey L. Girard^b; Andrew J. Boydston^{a,c,d*} ^aDepartment of Chemistry, ^bDepartment of Food Science, ^cDepartment of Chemical & Biological Engineering, ^dDepartment of Materials Science & Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA

Table S1. Results from compressive tests on cylinders of BSA with glycerol, BSA with glycerol after postcuring, and BSA after post-curing and hydration.

Sample	Compressive modulus (MPa)	Stress at 60% strain (MPa)
BSA after post-curing at 120 °C and hydration ^a	62 ± 9	53 ± 8
BSA with glycerol after post-curing	60 ± 5	39 ± 4
BSA with glycerol	23 ± 0.6	12 ± 2
BSA with hydration ^a	2.3 ± 0.4	2.9 ± 0.4

a. Without hydration, cylinders were too brittle for the compressive tests.

	E' at 25 °C (MPa)	Peak at β transition (°C)	Glass transition (°C)	Peak at tan& at glass transition	Crosslinking density (v _e , kmol/m³)
BSA with glycerol	159	-45	80	0.387	0.58
BSA with glycerol after post-curing	131	-43	70	0.301	0.61
BSA without glycerol after post-curing and no hydration	616ª	_b	123	0.148	14.41

a. E' at 40 $^{\circ}$ C

b. We were not able to measure β transition for BSA after post-curing and no hydration since the sample became too brittle at low temperature from -80 °C.

Figure S1. Results from tensile tests on dogbones of BSA with glycerol after aging for 2 weeks, 1 month, 2 months or 3 months under ambient conditions.

Table S3. Results from tensile tests on dogbones of BSA with glycerol after aging for 2 weeks, 1 mc	onth, 2
months or 3 months under ambient conditions.	

	Young's modulus (MPa)	Ultimate strength (MPa)	Elongation at break (%)	Moisture content (%)
BSA with glycerol (after 2 weeks)	79 ± 17	4 ± 0.3	66 ± 7	10 ± 0.5
BSA with glycerol after 1-month aging	41 ± 9	3 ± 0.4	42 ± 17	13 ± 1.1
BSA with glycerol after 2-month aging	101 ± 23	4 ± 0.4	44 ± 10	12 ± 0.8
BSA with glycerol after 3-month aging	140 ± 47	4.8 ± 1.1	18 ± 9	13 ± 1.5

Figure S2. Results from tensile tests on dogbones of BSA with glycerol after post-curing and aging for 2 weeks, 1 month, 2 months or 3 months under ambient conditions.

Table S4. Results from tensile tests on dogbones of BSA with glycerol after post-curing and agi	ng for 2
weeks, 1 month, 2 months or 3 months under ambient conditions.	

	Young's modulus (MPa)	Ultimate strength (MPa)	Elongation at break (%)	Moisture content (%)
BSA with glycerol				
after post-curing	233 ± 9	8 ± 1	31 ± 6	8.0 ± 1.4
(2 days)				
BSA with glycerol				
after post-curing and	180 ± 47	5 ± 1	14 ± 2	11.0 ± 0.1
1-month aging				
BSA with glycerol				
after post-curing and	187 ± 39	6 ± 0.3	12 ± 3	11.4 ± 0.4
2-month aging				
BSA with glycerol				
after post-curing and	131 ± 14	5 ± 0.2	20 ± 9	13.4 ± 0.8
3-month aging				

Table S5. Degradation profiles of printed BSA cylinders without or after post-curing at 120 C.

Figure S3. Emission spectrum of the DLP projector for HAPPI.