Supplemental informations

For

New Scandium Based Catalyst for the Green Synthesis of Polyols-Polyesters Starting from Waste Raw Materials

Onofrio Losito,^a Lorenzo Veronico,^a Alessia De Cataldo,^b Michele Casiello,^c Caterina Fusco,^c Luigi Gentile,^a Ernesto Mesto,^d Emanuela Schingaro,^d Lucia D'Accolti^{*a, c}

^a Chemistry Department University of Bari via Orabona, 4. 70126 Bari, Italy

^{b.}Aerospace Sciences And Engineering (Inter-University Ph.D.) Polytechnic of Bari and University Of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy.

^cCNR-ICCOM, SS Bari via Orabona 4, 70126 Bari, Italy

^dDipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy

Table of Contents							
List of abbreviation							
EDS analysis of the catalyst							
Magnification of SEM images of Figure 4	<i>S5</i>						
Table S1. Parameters of XRD characterization for the catalysts	S7						
Table S2 Catalyst screening reactions	<i>S8</i>						
GPC analysis of representative samples of polyol-polyester	<i>S9</i>						
EDS analysis and composition Sc. A.T. after III cycles	<i>S11</i>						
TGA and DTG of the polymers	<i>S12</i>						
¹ H NMR insert analysis of GSA-03 polymer	<i>S15</i>						
¹³ C NMR analysis of GSA-03 polymer	<i>S16</i>						
Additional analysis of HRMS	<i>S17</i>						
ATR-FT-IR of the ink	<i>S19</i>						
Certification Analysis of crude glycerol	<i>S20</i>						
Picture of reaction	<i>S21</i>						
Additional References	<i>S21</i>						

(21 pages including the cover)

List of abbreviations: GSX-XX (Samples obtained from Glycerol and succinic acid), GSA-XX (Samples obtained from Glycerol and Succinic acid with Sc-A.T. catalyst), GSB-XX (Samples obtained from Glycerol and Succinic acid with Sc(III)O-KIT-6), GSN-XX (Samples obtained from Glycerol and Succinic acid with no catalyst), GSA-03N (sample obtained in Nitrogen atmosphere), GSA-03V (sample obtained in vacuum), GSA-03D (sample obtained with glycerol 70% purity), GSA-03Sc, GSR-XX (Samples obtained from Glycerol and Succinic acid using commercial Sc₂O₃ and Sc(OTf)₃ as catalyst).

Label	0	AI	Si	S	К	Sc	Fe	Total W%
Spectrum 37	21.08		22.10	0.95	0.31	54.93	<mark>0.63</mark>	100.00
Spectrum 38	36.24		39.06	0.49	0.22	24.00		100.00
Spectrum 39	29.32		21.67	0.82	0.26	47.92		100.00
Spectrum 40	31.12	0.25	16.97	0.68	0.20	50.36	0.42	100.00

Figure S1. EDS analysis and composition Sc(III)O-KIT-6 catalyst before NaOH treatment

Label	0	Al	Si	S	K	Са	Sc	Total W%
Spectrum 13	10.69	0.41	0.89				88.01	100.00
Spectrum 14	20.20		28.05	0.44	5.66	2.53	43.12	100.00
Spectrum 15	6.95	0.46	0.59				91.83	100.00
Spectrum 16	23.51	0.33	2.54		0.22		73.40	100.00
Spectrum 17	22.13		10.05	0.45	0.32		67.05	100.00
Spectrum 18	16.81	0.27	11.76	0.45	0.38		69.92	100.00

Figure S2. EDS analysis and composition Sc. A.T. after NaOH treatment.

Figure S3. Magnification of SEM image at 10 µm Sc(III)O-KIT-6 before NaOH treatment

Figure S4. Magnification of SEM image at 10 µm of the Sc. A.T. after NaOH treatment.

	Literature data	Catalysts						
Parameters	Ref XX in paper	Sc2O3	Sc(III)-KIT	5 SCAT	SC A T m			
Sc2O3		1	,					
Unit Cell								
Parameters								
a (Å)	9,81	9.8462(6)	9.849(1)	9.8419(4)	9.859(2)			
Volume (Å ³)	930,704	954.57(17)	955.38(29)	953.32(12)	958.29(58)			
Bond								
Distances (A) Sol $O(x6)$	2 1 2	2 1 2 0	2 121	2 1 2 0	2 1 2 2			
SCI-0 (X0)	2,12	2,130	2,131	2,129	2,135			
Sc2-O(x2)	2 16	2 087	2 088	2 086	2 090			
$Sc_2=O'(x_2)$	2,10	2,007	2,000	2,000	2,090			
Sc2=O''(x2)	2,00	2,100	2,101	2,075	2,103			
S(2=0) (X2)	2,09	2,171	2,171	2,170	2,173			
<502-0>	2,11	2,119	2,120	2,110	2,122			
$\frac{Sc_2Sl_2O_7}{Unit Call}$			1					
Parameters								
a (Å)	6,56		6.516(1)	6.5046(4)	6.49(1)			
b ((Å)	8,58		8.512(1)	8.5087(6)	8.58(2)			
c (Å)	4,74		4.6950(8)	4.6902(4)	4.693(8)			
β (°)	103,83		102.78(1)	102.737(4)	103.1(1)			
Volume (Å ³)	259,52		253.95(7)	253.19(3)	254.53(84)			
Bond								
Distances (A)	2.1(2(1)		2.1.40	2.120	0.147			
Sc-02	2.162(1)		2,140	2,139	2,147			
Sc-O3	2.124(2)		2,088	2,086	2,086			
Sc-O3'	2.234(2)		2,212	2,212 2,208				
<sc-o></sc-o>	2,173		2,146	2,144	2,148			
Si-O1	1.608(1)		1,583	1,580	1,580			
Si-O2	1.624(2)		1,606	1,605	1,589			
Si-O3 (x2)	1.631(2)		1,619	1,628	1,628			
<si-o></si-o>	1,623		1,607	1,610	1,606			

Table S1. Parameters of XRD characterization for the catalysts

Entr y	Catalyst (mg)*	Т (°С)	Time (h)	Polyeste r Label	$ \begin{array}{c} M_{w1} \\ (Da)/ \\ \text{Selectivit} \\ y (\%)^d \end{array} $	<i>P.D.</i> ₁	M_{w2}	Р. D.2	M _{w3}	<i>P.D.</i> ³
1	none	180	2	GS- N01 ^b	c					
2	none	150	2	GS-N02	15,592 / 8	1.13	805 / 92			
3	La-B.T. (120)	150	2	GS-B01	1,458 / 92°	1.37				
4	Sc-B.T. (120)	150	2	GSB02	18,389/1 0	1.008	5,345/7 7	1.0 9	642/1 2	1.007
5	Sc-B.T. (120)	120	2	no reactio n						
6	Sc-A.T. (120)	120	2	GS-A01	27,643 / 65 ^e	2.2				
7	Sc(OTf) ₃ (25)	120	2	GS-R01	2,408 / 56	1.06	448 / 43	1.0 3		
+8	Sc ₂ O ₃	120	2	GS-R02	1,655 / 90°	4.06				

Table S2. Catalyst scope in the polymerization of glycerol and succinic acid under solvent free conditions.^a

^a Ratio Succinic acid/Glycerol (w/w) 2:1, ^bValerio et al., 2015, ^cDeterminated using the GPC analysis, , ^dPolyethers tetramer of glycerol Mw 315 (Mw-H⁺)

Figure S5. GPC analysis of sample GSB-01

Figure S6. GPC analysis of sample GSA-01

Figure S7. GPC analysis of sample GSA-03

Figure S8. GPC analysis of sample GSA-05

Label	0	Na	AI	Si	S	К	Ca	Sc	Fe	Total W%
Spectrum 1	32.57	2.14	1.33	18.52	0.78			44.23	0.42	100.00
Spectrum 2	32.89	20.05		1.58			0.42	45.06		100.00
Spectrum 3	30.33	51.83	0.53	4.66			0.66	12.00		100.00
Spectrum 4	34.06	2.38	2.64	16.36		0.21		43.67	0.68	100.00
Spectrum 5	34.84	48.68		2.31			0.59	13.59		100.00
Spectrum 6	27.06	55.69		2.60			1.23	13.42		100.00
Spectrum 7	6.77	3.05	0.19	1.71	0.31			86.71	1.26	100.00

Figure S9. EDS analysis and composition Sc. A.T. after III cycles

Figure S10. TGA and DTG of GSA-02 polymer.

Figure S11. TGA and DTG of GSA-03 polymer.

Figure S12. TGA and DTG of GSA-04 polymer.

Figure S13. TGA and DTG of GSA-05 polymer.

Figure S14. TGA and DTG of GSA-06 polymer.

Figure S15. TGA and DTG of GSA-07 polymer.

Figure S16. ¹H-NMR of GSA-03 (0-5 ppm, blue line) vs polyol-polyether from reference 18

Figure.S17 ¹³C-NMR analysis of **GSA-03** polymer in Tetrahydrofuran- d_8^1

Supplementary Studies of Mass structures

The figure *S18* (A-G) shows the experimental mass signals with relative isotopic patterns (blue traces), compared with the theoretical ones (red traces) suggested by the software. It is easy to see high degree of overlap. Moreover, the software provides a possible molecular formula. As expected, the formation of the adduct with the Na⁺ cation is preponderant among all oligomers. All measured m/z values have a deviation of less than 15 ppm compared to the theoretical ones and in some cases less than 2 ppm allowing us to have a solid certainty on the attributions of the various signals. A further verification was the analysis of the isotopic patterns, also in this case the software analysis provides to an additional confirmation of the nature of the signals.

Figure S18: Isotopic pattern comparison

Oligomers	Molecular formula	Exact Mass (molecular ion)	Predicted Mass (Na adduct)	Measured Mass	Diff ppm
A	C ₁₁ H ₁₆ O ₉	292.0809	315.0687	315.0701	4.44
В	$C_{14}H_{22}O_{11}$	366.1183	389.1054	389.1075	5.40
С	$C_{17}H_{28}O_{13}$	440.1527	463.1422	463.1419	-0.65
D	C ₁₈ H ₂₆ O ₁₄	466.1337	489.1215	489.1229	2.86
E	$C_{21}H_{32}O_{16}$	540.1726	563.1583	563.1618	6.21
F	$C_{22}H_{30}O_{17}$	566.1563	589.1375	589.1455	13.58
G	C ₂₅ H ₃₆ O ₁₉	640.1747	663.1743	663.1639	-15.68

Table S3: List of determined oligomers

Figure S19. Ink ATR-FT-IR analysis

& Greenswitch

DESCRIZIONERaw glycerol from FAMES 70LUOGO DI FABBRICAZIONEFerrandina (MT)

(%weight)
65-70
15
5
1
5-10

Figure S20. Picture of the reactor

Additional references

M. Agach, S. Delbaere, S. Marinkovic B. Estrine, V. Nardello-Rataj *Polym. Degrad. Stab.* 2012, **97**, 1956.