Supporting Information

Synthesis of Axially Chiral Thiourea by NHC-Catalyzed

Desymmetrizative Amidation

Yingtao Wu^a, Xin Guan^a, Kehan Jiao^b, Huaqiu Zhao^a, Mingrui Li^a, Jiaqiong Sun^b, Guangfan Zheng^{*,a} and Qian Zhang^{a,c}

^{*a*} Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China

E-mail: zhenggf265@nenu.edu.cn

^b School of Environment, Northeast Normal University, Changchun 130117, China

^c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032, China

Table of Contents

I. General Information	S1
II. Experimental Section	S2
III. Synthetic Applications	S51
IV. Mechanistic Studies	S62
V. Determination of Rotational Barrier and half-life	S75
VI. X-Ray Crystallographic Data of 3ah	S81
VII. References	S82
VIII. ¹ H, ¹³ C, ¹⁹ F, ³¹ P NMR Spectra of New Compounds	S83

I. General Information.

All reactions were performed under nitrogen atmosphere in flame dried flasks. All reactions were monitored by thin layer chromatography (TLC) using Macherey-Nagel 0.20 mm silica gel 60 plates. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Taizhou, China). ¹H, ¹³C, ¹⁹F spectra were recorded with Varian 500 MHz (Inova-500) or Bruker 600 MHz (Avance-600) instrument. Chemical shifts were referenced to $\delta_{TMS} = 0.00$ ppm (¹H, ¹³C). Chemical shifts (δ) are reported in ppm. Coupling constants (J) are reported in Hz. Dichloromethane- d_2 (δ (¹H) = 5.32 ppm, δ (¹³C) = 53.8 ppm), chloroform- d_1 (δ (¹H) = 7.26 ppm, δ (¹³C) = 77.2 ppm) or methanol- d_4 (δ (¹H) = 3.31 ppm, δ (¹³C) = 49.0 ppm) were used as solvents. The following abbreviations are used to describe peak patterns as appropriate: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, dd = doublet of doublet, dt = triplet of doublet, td = doublet of triplet, bs = broad singlet. High-pressure liquid chromatography (HPLC) was performed on Agilent 1200 Series chromatographs using a chiral column (25 cm) as noted for each compound. High-resolution mass spectra HRMS (ESI-TOF) were recorded on Brucker microtof. Compounds were visualized by irradiation with UV light, or stained with iodine/silica gel, or potassium permanganate. Preparatory thinlayer chromatography (Prep-TLC) was performed on silica gel GF with UV 254 (20×20 cm, 1000 microns, from Yantai Jiang you Silica Gel Development Co., Ltd.) and visualized with UV light. Optical rotations were reported as follows: $[\alpha]_D^T = (c: g/100 \text{ mL in CH}_2\text{Cl}_2).$

II. Experimental Section

2.1 Synthesis of Starting Materials

Figure S1. List of starting materials

A 250 mL round-bottom Schlenk flask was charged with 2-bromoisophthalaldehyde (2.13 g, 10.0 mmol), 2-biphenylboronic acid (4.536 g, 22.9 mmol), K_2CO_3 (9.59 g, 68.9 mmol) and Pd(PPh_3)₄ (0.21 g, 0.18 mmol) and was evacuated and charged with argon three times. Then degassed 1,4-dioxane (112 mL) and water (15 mL) were added and the reaction was heated at 95 °C for 3 days under argon atmosphere. After cooling to room temperature, the mixture was poured into water and extracted with DCM three times. The organic layer was washed with brine and dried over anhydrous MgSO₄. The solvent was removed under vacuum. The residue was purified by silica gel column chromatography (ethyl acetate : cyclohexane = 1:20 to 1:10) and washed with ethanol to give compound as a white solid (2.3 g, yield: 81 %).

2.1.2 Procedure for the synthesis of Substrates 1i.

A 25 mL round-bottom Schlenk flask was charged with 2-bromoisophthalaldehyde s1 (0.639 g, 3.0

mmol), 2-methoxycarbonylphenylboronic acid **s3** (1.35 g, 2,5 equiv), S-Phos (0.124 g, 10 mol%), K₃PO₄ (3.82 g, 6.0 equiv) and Pd(OAc)₂ (0.034 g, 5 mol%) and was evacuated and charged with argon three times. Then degassed toluene (12 mL) were added and the reaction was heated at 100 °C for 10 h under argon atmosphere. After cooling to room temperature, the mixture was poured into water and extracted with DCM three times. The organic layer was washed with brine and dried over anhydrous MgSO₄. The solvent was removed under vacuum. The residue was purified by silica gel column chromatography (ethyl acetate : cyclohexane = 1:20 to 1:10) and washed with ethanol to give compound as a white solid (0.57 g, yield: 71 %).

2.1.3 General procedure for the synthesis of Substrates 1x-z.^[2b] Preparation of 1z is shown as a representative example.

2-bromo-5-methoxy-1,3-dimethylbenzene (5 mmol), NBS (4.5 equiv.) and AIBN (50 mol%) cat. were dissolved in CCl₄ (50 mL) and refluxed for 16 h, The mixture was cooled and the precipitated succinimide was removed by filtration. The solvent was removed under reduced pressure to give a brown oil which was purified by flash column chromatography (petroleum ether) to give the corresponding brominated compound (69% yield);

2-bromo-1,3-bis(dibromomethyl)-5-methoxybenzene (3.4 mmol), sodium acetate (8.5 equiv.) and silver nitrate (16.1 equiv.) were dissolved in a mixture of THF and H_2O (5:1). The mixture was heated at reflux for 24 h. The inorganic precipitate was filtered, washed, and the solvent was removed in vacuo. The crude mixture was purified by flash column chromatography (ethyl acetate : petroleum ether = 1:10 to 1:20) to give the 2-bromo-5-methoxyisophthalaldehyde (92% yield);

2-bromo-5-methoxyisophthalaldehyde (3.1 mmol), 2-biphenylboronic acid (2.29 equiv), K_2CO_3 (9.59 g, 6.89 equiv) and Pd(PPh_3)_4 (0.018 mmol) and was evacuated and charged with argon three times. Then degassed 1,4-dioxane (33 mL) and water (5 mL) were added and the reaction was heated at 95 °C for 3 days under argon atmosphere. After cooling to room temperature, the mixture was poured into water and extracted with DCM three times. The organic layer was washed with brine and dried over anhydrous MgSO₄. The solvent was removed under vacuum. The residue was purified by silica gel column chromatography (ethyl acetate : petroleum ether = 1:20 to 1:10) and washed with ethanol to give compound as a light yellow solid (0.5 g, yield: 51 %).

2.1.4 Procedure for the synthesis of Substrates 1a'.

To a solution of 5-bromoisatin (1.44 g, 5 mmol) in toluene (50 mL), ethylene glyco1 (5.6 mL, 100 mmol) and p-toluenesulphonic acid (86.1 mg, 0.5 mmol) were added. The reaction mixture was refluxed for 3 days and then evaporated to dryness. The residue was diluted with dichlomethane and washed with saturated sodium bicarbonate solution. The aqueous layer was extracted with dichloromethane three times. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and evaporated. The crude mixture was purified using column chromatography to

give the product s2. Yield: 55%.

To a distilled THF solution (14 mL) of **s2** (2.75 mmol) was added dropwise nBuLi (5.2 mL, 8.25 mmol, 1.6 M in hexane) at -78 °C under N₂ atmosphere. The reaction mixture was stirred for 2 hour, then Ph₂PCl (8.25 mmol) was added at -78 °C, then the temperature was slowly raised to room temperature and stirred overnight, The reaction mixture was quenched with saturated aqueous ammonium chloride solution and extracted using ethyl acetate. The organic extracts were combined dried over with anhydrous sodium sulphate and concentrated in vacuo, the residual viscous crude product was purified by silica gel chromatography using petroleum ether/ethyl acetate 20:1-10:1 (v/v) to give the product s4 (yield: 10%, 0.24 mmol).

s4 was dissolved in acetone/water (2 mL, 15:1) mixture in a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar, TsOH (20% mmol) was added and stirred at 60 °C for 2 days. The reaction mixture was quenched with saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic extracts were combined, dried over anhydrous sodium sulphate and concentrated. The crude product was purified by silica gel column chromatography using petroleum ether/ethyl acetate (5:1) as eluent to afford compounds **1a'** (yield: 50%, 0.12 mmol).

2.1.5 Procedure for the synthesis of Substrates 1b'.^[3]

2.1.6 Characterization data of the substrates 2'-ethyl-[1,1'-biphenyl]-2,6-dicarbaldehyde

1d: light green solid; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.71 (d, J = 0.8 Hz, 2H), 8.27 (d, J = 7.7 Hz, 2H), 7.68 (t, J = 7.7 Hz, 1H), 7.47 (td, J = 7.6, 1.4 Hz, 1H), 7.41 (dd, J = 7.9, 1.2 Hz, 1H), 7.33 (td, J = 7.5, 1.3 Hz, 1H), 7.22 (dd, J = 7.5, 1.3 Hz, 1H), 2.36 (q, J = 7.6 Hz, 2H), 1.02 (t, J = 7.6 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.05, 147.88, 143.01, 134.91, 132.71, 131.71, 130.86, 129.74, 128.85, 128.64, 126.09, 26.72, 14.73. HRMS (ESI-TOF) (m/z): Calcd for C₁₆H₁₄NaO₂, ([M + Na]⁺), 261.0886; found 261.0882.

2'-(methoxymethyl)-[1,1'-biphenyl]-2,6-dicarbaldehyde

OHC СНО MeC 1h

1h: white solid; ¹**H NMR** (**600 MHz**, **Chloroform**-*d*) δ 9.64 (d, J = 1.0 Hz, 2H), 8.26 (d, J = 7.7 Hz, 2H), 7.68 (td, J = 7.8, 1.0 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.49 – 7.44 (m, 1H), 7.34 – 7.28 (m, 1H), 4.06 (s, 2H), 3.06 (s, 3H). ¹³**C NMR** (**150 MHz**, **Chloroform**-*d*) δ 190.55, 146.24, 136.95, 134.86, 132.96, 132.16, 130.82, 129.70, 129.36, 128.64, 128.15, 72.85, 58.05. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₆H₁₄NaO₃, ([M + Na]⁺), 277.0835; found 277.0827.

2'-(prop-1-en-2-yl)-[1,1'-biphenyl]-2,6-dicarbaldehyde

11: white solid; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.76 (s, 2H), 8.24 (d, *J* = 7.7 Hz, 2H), 7.65 (t, *J* = 7.7 Hz, 1H), 7.50 (td, *J* = 7.6, 1.4 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.30 – 7.22 (m, 1H), 5.02 (t, *J* = 1.6 Hz, 1H), 4.82 (s, 1H), 1.56 (t, *J* = 1.2 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.84, 147.74, 144.63, 144.47, 134.62, 132.54, 131.45, 129.89, 129.54, 128.82, 128.47, 127.22, 118.41, 23.24. HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₄NaO₂, ([M + Na]⁺), 273.0886; found 273.0887.

3'-chloro-2'-methyl-[1,1'-biphenyl]-2,6-dicarbaldehyde

10: white solid; ¹**H NMR (600 MHz, Chloroform-***d***)** δ 9.71 (s, 2H), 8.28 (d, *J* = 7.7 Hz, 2H), 7.70 (t, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.28 (t, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 2.11 (s, 3H). ¹³**C NMR (150 MHz, Chloroform-***d***)** δ 190.29, 146.75, 135.90, 134.51, 134.27, 132.98, 130.25, 129.14, 128.91, 126.81, 117.13, 17.99. **HRMS**(ESI-TOF) (m/z): Calcd for C₁₅H₁₁ClNaO₂, ([M + Na]⁺), 281.0340; found 281.0341.

2'-ethyl-[1,1'-biphenyl]-2,6-dicarbaldehyde

1n: white solid; ¹**H NMR (600 MHz, Chloroform-***d***)** δ 9.70 (s, 2H), 8.26 (d, *J* = 7.7 Hz, 2H), 7.66 (s, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 2.37 (s, 3H), 1.97 (s, 3H). ¹³**C NMR (150 MHz, Chloroform-***d***)** δ 191.01, 148.69, 137.71, 135.48, 134.71, 132.52, 132.17, 130.75, 128.57, 128.29, 125.55, 20.40, 17.10. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₆H₁₄NaO₂, ([M + Na]⁺), 261.0886; found 261.0882.

2',4'-dimethyl-[1,1'-biphenyl]-2,6-dicarbaldehyde

1q: white solid; **¹H NMR (500 MHz, Chloroform-***d***)** δ 9.79 (s, 2H), 8.32 (d, J = 7.7 Hz, 2H), 7.72 (t, J = 7.7 Hz, 1H), 7.26 (s, 1H), 7.23 – 7.20 (m, 2H), 2.49 (s, 3H), 2.10 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.88, 148.05, 139.14, 136.59, 134.78, 132.55, 131.08, 130.63, 129.14, 128.31, 126.73, 21.18, 20.29. HRMS (ESI-TOF) (m/z): Calcd for C₁₆H₁₄NaO₂, ([M + Na]⁺), 261.0886; found 261.0887.

5'-fluoro-2'-methyl-[1,1'-biphenyl]-2,6-dicarbaldehyde

1s: light yellow solid; ¹**H NMR** (600 MHz, Chloroform-*d*) δ 9.72 (d, J = 0.9 Hz, 2H), 8.28 (d, J = 7.7 Hz, 2H), 7.70 (td, J = 7.8, 0.9 Hz, 1H), 7.33 (dd, J = 8.6, 5.6 Hz, 1H), 7.14 (td, J = 8.4, 2.7 Hz, 1H), 7.00 (dd, J = 8.6, 2.8 Hz, 1H), 2.01 (s, 3H).¹³**C NMR** (150 MHz, Chloroform-*d*) δ 190.30, 160.78 (J = 246.8 Hz), 146.30, 134.35, 134.98 (J = 7.1 Hz), 132.99, 132.65 (J = 4.3 Hz), 131.89 (J = 7.9 Hz), 128.95, 117.45 (J = 21.9 Hz), 116.29 (J = 20.7 Hz), 19.60. ¹⁹**F NMR** (565 MHz, Chloroform-*d*) δ -116.43 – 116.47. (m, 1F). **HRMS** (ESI-TOF) (m/z): Calcd for C₁₅H₁₁FNaO₂, ([M + Na]⁺), 265.0635; found 265.0635.

2',5'-dimethyl-[1,1'-biphenyl]-2,6-dicarbaldehyde

1t: light yellow solid; ¹**H NMR (600 MHz, Chloroform-***d***)** δ 9.71 (s, 2H), 8.26 (d, J = 7.7 Hz, 2H), 7.65 (t, J = 7.7 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.05 (s, 1H), 2.36 (s, 3H), 2.01 (s, 3H). ¹³**C NMR (150 MHz, Chloroform-***d***)** δ191.07, 148.27, 135.65, 134.57, 133.69, 132.56, 131.95, 131.30, 130.21, 130.07, 128.35, 20.87, 19.88. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₆H₁₄NaO₂, ([M + Na]⁺), 261.0886; found 261.0894.

2',4',5'-trimethyl-[1,1'-biphenyl]-2,6-dicarbaldehyde

1u: white solid; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.72 (d, J = 0.9 Hz, 2H), 8.24 (d, J = 7.7 Hz, 2H), 7.63 (t, J = 7.8 Hz, 1H), 7.11 (s, 1H), 6.98 (s, 1H), 2.32 (s, 3H), 2.26 (s, 3H), 1.98 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.29, 148.39, 137.78, 134.74, 134.24, 133.97, 132.48, 131.89, 131.56, 129.26, 128.19, 19.75, 19.49, 19.21. HRMS (ESI-TOF) (m/z): Calcd for C₁₇H₁₆NaO₂, ([M + Na]⁺), 275.1043; found 275.1038.

4'-ethoxy-2',5'-dimethyl-[1,1'-biphenyl]-2,6-dicarbaldehyde

1v: light green solid; ¹**H NMR (600 MHz, Chloroform**-*d*) δ 9.74 (d, J = 0.9 Hz, 2H), 8.23 (d, J = 7.7 Hz, 2H), 7.63 (dd, J = 8.2, 7.2 Hz, 1H), 6.98 (s, 1H), 6.76 (s, 1H), 4.10 (d, J = 7.0 Hz, 2H), 2.22 (s, 3H), 2.00 (s, 3H), 1.48 (t, J = 7.0 Hz, 3H). ¹³**C NMR (150 MHz, Chloroform**-*d*) δ191.45, 157.72, 148.40, 135.32, 135.05, 132.80, 132.47, 128.12, 124.59, 123.11, 112.50, 63.69, 20.45, 15.75, 14.92. **HRMS** (ESI-TOF) (m/z): Calcd for C₁₈H₁₈NaO₃, ([M + Na]⁺), 305.1148; found 305.1168.

4-fluoro-[1,1':2',1''-terphenyl]-2,6-dicarbaldehyde

1x: white solid; ¹**H NMR (500 MHz, Chloroform-***d***)** δ 9.78 (d, J = 3.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.63 (td, J = 7.6, 1.4 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.39 (dd, J = 7.6, 1.3 Hz, 1H), 7.19 – 7.17 (m, 3H), 6.95 (dd, J = 6.7, 2.9 Hz, 2H). ¹³**C NMR (150 MHz, Chloroform-***d***)** δ 189.23, 162.17 (J = 250.4 Hz), 143.36 (J = 3.5 Hz), 143.08, 139.39, 136.86 (J = 5.7 Hz), 132.04, 130.47, 130.24, 129.98, 129.33, 128.52, 127.55 (J = 13.8 Hz), 119.06, 118.91. ¹⁹**F NMR (565 MHz, Chloroform-***d***)** δ -110.76. (s,1F). **HRMS** (ESI-TOF) (m/z): Calcd for C₂₀H₁₃FNaO₂, ([M + Na]⁺), 327.0792; found 327.0788.

4-chloro-[1,1':2',1''-terphenyl]-2,6-dicarbaldehyde

1y: white solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 9.77 (s, 2H), 8.03 (s, 2H), 7.63 (td, J = 7.6, 1.4 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.38 – 7.36 (m, 1H), 7.19 – 7.18 (m, 3H), 6.97 – 6.95 (m, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ189.18, 145.44, 142.90, 139.30, 136.05, 135.32, 132.13, 131.85, 130.51, 130.09, 130.06, 129.33, 128.58, 127.62, 127.57. HRMS (ESI-TOF) (m/z): Calcd for C₂₀H₁₃ClNaO₂, ([M + Na]⁺), 343.0496; found 343.0498.

2'-(diphenylphosphanyl)-[1,1'-biphenyl]-2,6-dicarbaldehyde

1a': white solid; ¹H NMR (600 MHz, Chloroform-*d*) δ 9.50 (s, 2H), 8.08 (d, J = 7.8 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.33 – 7.26 (m, 7H), 7.18 – 7.13 (m, 5H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.07, 146.66 (d, J = 6.7 Hz), 139.38 (d, J = 14.0 Hz), 137.68 (d, J = 28.2 Hz), 134.37, 134.33 (d, J = 20.1 Hz), 134.14 (d, J = 10.3 Hz), 132.83, 132.12, 131.46 (d, J = 4.6 Hz), 129.41, 129.30, 128.72, 128.67, 128.62. ³¹P NMR (243 MHz, Chloroform-*d*) δ -11.63. HRMS (ESI-TOF) (m/z): Calcd for C₂₆H₁₉NaO₂P, ([M + Na]⁺), 417.1015; found 417.1005.

2.2 General Synthetic Procedure of 3.

Racemic Synthesis:

Preparation of *Rac*-NHC-1: (5a*R*, 10b*S*)-NHC-1 (100 mg) and (5a*S*, 10b*R*)-NHC-1 (100 mg) are completely dissolved in dry DCM and concentrated to remove DCM.

Representative Synthesis of Product (*Rac*)**-3aa.** In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with *Rac*-NHC-1 (10 mol%, 4.18 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), [1,1':2',1"-terphenyl]-2,6-dicarbaldehyde **1a** (0.1 mmol, 29 mg) and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (46.0 mg, 3.0 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 72 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the racemic product *Rac*-**3aa**.

Asymmetric Synthesis:

Representative Synthesis of Product *R***-3aa** (standard conditions A): In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with **(5aR, 10bS)-NHC-5** (20 mol%, 10.0 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), [1,1':2',1"-terphenyl]-2,6-dicarbaldehyde **1a** (0.1 mmol, 29 mg) and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (46.0 mg, 3.0 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 72 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product *R***-3aa**.

(*R*)-6-formyl-*N*-(phenylcarbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3aa)

The title compound **3aa** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10: 3). **3aa** was obtained as a light yellow solid (33.6 mg, 77%). ¹**H** NMR (500 MHz, Chloroform-*d*) δ 12.05 (s, 1H), 9.86 (s, 1H), 8.31 (s, 1H), 8.13 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.63 – 7.53 (m, 6H), 7.41 – 7.38 (m, 3H), 7.28 – 7.18 (m, 4H), 7.08 – 7.06 (m, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.98, 177.82, 167.31, 143.91, 142.04, 139.52, 137.63, 135.55, 134.31, 133.33, 132.33, 131.45, 131.40, 131.13, 130.36, 129.57, 129.05, 128.60, 128.49, 128.27, 127.80, 127.06, 124.14.

HRMS (ESI-TOF) (m/z): Calcd for $C_{27}H_{21}N_2O_2S$, ([M + H]⁺), 437.1318; found 437.1314. [α] \mathbf{b}^{20} = -77.3 (c = 1.7, CH₂Cl₂).

mV

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 14,42 min, t_R (minor) = 23.35 min, 99% ee.

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	14.194	М	0.9798	6451325	170382	52.3775
2	23.956	М	1.6375	5865661	90150	47.6225

mV 100 14.423 50 23.447 0-5 10 30 15 20 25 min Peak Pet Time Type Width(min) Area Hight Area%

 Peak
 Pet Time
 Type
 Width(min)
 Area
 Hight
 Area%

 1
 14.423
 M
 0.9629
 2721001
 70651
 99.2210

 2
 23.447
 M
 1.4515
 21363
 401
 0.7790

S10

(*R*)-6-formyl-4"-methyl-*N*-(phenylcarbamothioyl)-[1,1':2',1"-terphenyl]-2-carboxamide (3ba)

The title compound **3ba** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10: 3). **3ba** was obtained as a light yellow oil (38.3 mg, 85%). ¹**H NMR (500 MHz, Chloroform-d**) δ 12.02 (s, 1H), 9.87 (s, 1H), 8.17 (s, 1H), 8.14 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.79 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.63 – 7.51 (m, 6H), 7.41 – 7.35 (m, 3H), 7.28 – 7.25 (m, 1H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.94 (d, *J* = 8.1 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.12, 177.96, 167.32, 144.21, 141.88, 137.67, 137.65, 136.52, 135.64, 134.41, 133.06, 132.23, 131.57, 131.41, 131.07, 130.27, 129.46, 129.41, 129.03, 128.36, 127.95, 127.02, 124.17, 21.33.

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{23}N_2O_2S$, ([M + H]⁺), 451.1475; found 451.1469. [α] $p^{20} = -78.1$ (c = 1.9, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 13.77 min, t_R (minor) = 20.25 min, 99% ee.

(R)-6-formyl-2'-methyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3ca)

The title compound **3ca** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10: 3). **3ca** was obtained as a yellow oil (20.9 mg, 56%). ¹**H NMR (600 MHz, Chloroform-***d***)** δ 12.14 (s, 1H), 9.63 (s, 1H), 8.57 (s, 1H), 8.23 (dd, J = 7.8, 1.4 Hz, 1H), 8.14 (dd, J = 7.7, 1.4 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.61 – 7.59 (m, 2H), 7.45 (td, J = 7.5, 1.4 Hz, 1H), 7.42 (d, J = 7.3 Hz, 1H), 7.39 (td, J = 7.3, 1.4 Hz, 1H), 7.35 (t, J = 7.9 Hz, 2H), 7.27 – 7.25 (m, 1H), 7.23 (t, J = 7.4 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.01, 177.59, 167.19, 143.30, 137.56, 136.64, 134.94, 134.39, 133.90, 133.28, 131.39, 131.29, 130.19, 129.75, 128.96, 128.85, 127.13, 126.98, 124.03, 20.37.

HRMS (ESI-TOF) (m/z): Calcd for $C_{22}H_{19}N_2O_2S$, ([M + H]⁺), 375.1162; found 375.1151.

 $[\alpha]_D^{20} = -37.2 \ (c = 1.0, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak IC-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 19.18 min, t_R (minor) = 20.79 min, 95% ee.

1	15. 0 17. 5		. 5	20. 0	22.5	25.0 min
Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	19.178	М	0.7736	2225705	74734	97.2718
2	20.788	М	0.8701	62426	1936	2.7282

20.788

(R)-2'-ethyl-6-formyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3da)

The title compound **3da** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10: 3). **3da** was obtained as a yellow oil (27.6 mg, 71%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.17 (s, 1H), 9.64 (d, *J* = 0.9 Hz, 1H), 8.50 (s, 1H), 8.24 (dd, *J* = 7.7, 1.5 Hz, 1H), 8.17 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.70 (td, *J* = 7.8, 0.9 Hz, 1H), 7.61 – 7.59 (m, 2H), 7.54 – 7.48 (m, 2H), 7.41 (td, *J* = 7.3, 1.8 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.26 – 7.22 (m, 2H), 2.51 – 2.36 (m, 2H), 1.11 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.08, 177.52, 167.07, 143.09, 142.50, 137.58, 135.12, 134.63, 133.79, 132.56, 131.32, 130.53, 129.84, 129.79, 128.98, 128.89, 127.18, 126.97, 124.04, 26.51, 14.60.

HRMS (ESI-TOF) (m/z): Calcd for $C_{23}H_{21}N_2O_2S$, ([M + H]⁺), 389.1318; found 389.1318. [α] $p^{20} = -27.6$ (c = 1.4, CH₂Cl₂).

mV

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 16.83 min, t_R (major) = 19.46 min, 99% ee.

						min
Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	17.756	М	0.9061	8994700	228629	46.9218
2	20.292	М	1.0193	10174857	223670	53.0782

(R)-6-formyl-2'-isopropyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3ea)

The title compound **3ea** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10: 3). **3ea** was obtained as a light yellow oil (24.1 mg, 60%). ¹**H NMR (600 MHz, Chloroform-***d***)** δ 12.18 (s, 1H), 9.65 (s, 1H), 8.57 (s, 1H), 8.24 (dd, *J* = 7.9, 1.4 Hz, 1H), 8.17 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.69 (t, *J* = 7.8 Hz, 1H), 7.59 – 7.58 (m, 2H), 7.55 (d, *J* = 4.3 Hz, 2H), 7.42 – 7.38 (m, 1H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.25 – 7.22 (m, 2H), 2.65 – 2.58 (m, 1H), 1.23 (d, *J* = 6.9 Hz, 3H), 1.04 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR (150 MHz, Chloroform-***d***)** δ 191.00, 177.62, 167.07, 147.62, 143.26, 137.60, 135.37, 134.53, 133.83, 131.79, 131.36, 130.79, 129.75, 128.98, 128.81, 127.29, 127.02, 126.99, 124.13, 30.73, 24.39, 23.51.

HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₂₃N₂O₂S, ([M + H]⁺), 403.1475; found 403.1467. $[\alpha]_{D}^{20} = -68.8$ (c = 1.2, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 13.52 min, t_R (major) = 19.36 min, 97% ee.

(R)-2'-bromo-6-formyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3fa)

The title compound **3fa** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10: 3). **3fa** was obtained as a yellow oil (20.6 mg, 47%). ¹**H NMR (600 MHz, Chloroform-***d***)** δ 12.03 (s, 1H), 9.68 (d, J = 0.8 Hz, 1H), 8.63 (s, 1H), 8.24 (dd, J = 7.8, 1.4 Hz, 1H), 8.04 (dd, J = 7.7, 1.4 Hz, 1H), 7.80 (dd, J = 8.1, 1.1 Hz, 1H), 7.73 (td, J = 7.7, 0.8 Hz, 1H), 7.61 – 7.60 (m, 2H), 7.51 (td, J = 7.5, 1.2 Hz, 1H), 7.41 (td, J = 7.8, 1.7 Hz, 1H), 7.38 – 7.35 (m, 3H), 7.26 – 7.23 (m, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.30, 177.58, 167.18, 142.34, 137.53, 135.23, 134.82, 134.47, 133.65, 133.54, 131.44, 131.39, 131.32, 129.50, 129.02, 128.36, 127.08, 124.08, 123.94. HRMS (ESI-TOF) (m/z): Calcd for C₂₁H₁₆BrN₂O₂S, ([M + H]⁺), 439.0110; found 439.0108. [*a*] $p^{20} = -7.0$ (c = 1.0, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak IC-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 22.30 min, t_R (major) = 25.11 min, 99% ee.

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	22.756	М	0.8898	8416453	247943	49.4297
2	24.663	М	1.0335	8610652	217373	50.5703

mV

mV

(*R*)-6-formyl-2'-(methoxymethyl)-*N*-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3ha)

The title compound **3ha** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10: 3). **3ha** was obtained as a yellow oil (29.9 mg, 74%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.21 (s, 1H), 10.17 (s, 1H), 9.65 (s, 1H), 8.18 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.97 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.68 (t, *J* = 7.7 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 2H), 7.52 – 7.46 (m, 3H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.26 (t, *J* = 4.3 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 4.37 (d, *J* = 10.4 Hz, 1H), 4.28 (d, *J* = 10.4 Hz, 1H), 3.10 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.01, 178.10, 168.78, 141.47, 137.79, 136.19, 135.74, 134.48, 134.08, 133.41, 130.54, 130.08, 130.04, 129.81, 129.62, 128.89, 128.83, 126.70, 124.06, 74.04, 58.89.

HRMS (ESI-TOF) (m/z): Calcd for $C_{23}H_{21}N_2O_3S$, ([M + H]⁺), 405.1267; found 405.1272.

 $[\alpha]_{D^{20}} = 107.6 \ (c = 1.5, CH_2Cl_2).$

33.650

Μ

1.8154

2

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 30.19 min, t_R (minor) = 34.55 min, 97% ee.

13987507

187129

49.2963

methyl (R)-2'-formyl-6'-((phenylcarbamothioyl)carbamoyl)-[1,1'-biphenyl]-2-carboxylate (3ia)

The title compound **3ia** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 2:1). **3ia** was obtained as a yellow oil (25.5 mg, 61%). ¹H NMR (**500 MHz**, **Chloroform-***d*) δ 12.00 (s, 1H), 9.62 (s, 1H), 9.56 (d, J = 0.8 Hz, 1H), 8.15 (dd, J = 7.8, 1.4 Hz, 1H), 8.11 (dd, J = 7.7, 1.4 Hz, 1H), 7.94 (dd, J = 7.7, 1.4 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.59 (td, J = 7.7, 1.5 Hz, 3H), 7.34 (t, J = 7.9 Hz, 2H), 7.27 (dd, J = 7.5, 1.4 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 3.83 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.21, 177.57, 168.60, 168.29, 142.65, 137.62, 135.66, 135.21, 134.13, 133.15, 132.88, 131.13, 131.04, 130.89, 129.95, 129.76, 128.96, 128.73, 126.86, 123.93, 53.30. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₁₉N₂O₄S, ([M + H]⁺), 419.1060; found 419.1051. [*a*] $p^{20} = -29.6$ (c = 1.3, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 20.32 min, t_R (major) = 26.58 min, 93% ee. mV

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	20.075	М	1.2343	6532051	130809	50.2963
2	25.943	М	1.4966	6455087	109983	49.7037

mV 300-26.576 200-100-20.316 0 $\frac{1}{5}$ 15 30 10 20 2535 40 Ó min

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	20.316	М	1.3084	373144	7320	3.5409
2	26.576	М	1.6881	10165059	151439	96.4591

(R)-6-formyl-N-(phenylcarbamothioyl)-2'-(trifluoromethyl)-[1,1'-biphenyl]-2-carboxamide (3ja)

The title compound **3ja** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ja** was obtained as a yellow oil (26.9 mg, 63%). ¹H NMR (600 MHz, Chloroform-*d*) δ 11.98 (s, 1H), 9.59 (s, 1H), 8.63 (s, 1H), 8.24 (dd, *J* = 7.8, 1.4 Hz, 1H), 8.05 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.89 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.68 – 7.65 (m, 1H), 7.59 – 7.57 (m, 2H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.37 – 7.34 (m, 2H), 7.25 – 7.23 (m, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 189.82, 177.67, 166.80, 140.48, 137.53, 135.40, 134.25, 133.08, 132.97, 132.36, 131.95, 131.40, 129.92, 129.63, 129.31 (q, *J* = 29.9 Hz), 129.01, 127.13 (q, *J* = 5.2 Hz), 127.10, 124.13, 123.87 (q, *J* = 272.2 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -58.78 (s, 1CF₃).

HRMS (ESI-TOF) (m/z): Calcd for $C_{22}H_{15}F_3N_2NaO_2S$, ([M + Na]⁺), 451.0699; found 451.0699. [α] $p^{20} = -28.0$ (c = 1.3, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 20.17 min, t_R (major) = 27.74 min, 92% ee.

(*R*)-6-formyl-*N*-(phenylcarbamothioyl)-2'-vinyl-[1,1'-biphenyl]-2-carboxamide (3ka)

The title compound **3ka** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ka** was obtained as a yellow oil (27.0 mg, 70%). ¹**H NMR (600 MHz, Chloroform-d)** δ 12.08 (s, 1H), 9.65 (d, J = 0.8 Hz, 1H), 8.46 (s, 1H), 8.24 (dd, J = 7.8, 1.4 Hz, 1H), 8.09 (dd, J = 7.7, 1.5 Hz, 1H), 7.76 (dd, J = 7.7, 1.3 Hz, 1H), 7.70 (td, J = 7.8, 0.8 Hz, 1H), 7.60 – 7.58 (m, 2H), 7.54 (td, J = 7.7, 1.3 Hz, 1H), 7.46 (td, J = 7.5, 1.3 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.28 (dd, J = 7.5, 1.4 Hz, 1H), 7.25 – 7.22 (m, 1H), 6.38 (dd, J = 17.4, 11.0 Hz, 1H), 5.75 (dd, J = 17.3, 0.8 Hz, 1H), 5.29 (dd, J = 11.0, 0.8 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.87, 177.61, 167.29, 142.37, 137.58, 137.48, 135.19, 134.59, 134.18, 133.65, 132.07, 131.26, 130.40, 130.26, 129.08, 128.99, 128.81, 127.01, 126.86, 124.08, 118.74.

HRMS (ESI-TOF) (m/z): Calcd for $C_{23}H_{18}N_2NaO_2S$, ([M + Na]⁺), 409.0981; found 409.0980.

 $[\alpha]_D^{20} = -18.8 \ (c = 1.4, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 22.56 min, t_R (major) = 27.40 min, 95% ee.

(R)-6-formyl-N-(phenylcarbamothioyl)-2'-(prop-1-en-2-yl)-[1,1'-biphenyl]-2-carboxamide (3la)

The title compound **31a** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **31a** was obtained as a yellow oil (24.0 mg, 60%). ¹H NMR (**500 MHz**, **Chloroform-d**) δ 12.16 (s, 1H), 9.72 (d, J = 0.9 Hz, 1H), 8.47 (s, 1H), 8.22 (dd, J = 7.8, 1.4 Hz, 1H), 8.08 (dd, J = 7.7, 1.4 Hz, 1H), 7.67 (td, J = 7.8, 0.9 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.54 – 7.46 (m, 3H), 7.39 – 7.35 (m, 2H), 7.29 (dd, J = 7.3, 1.4 Hz, 1H), 7.26 – 7.23 (m, 1H), 5.09 (p, J = 1.5 Hz, 1H), 4.88 (t, J = 1.3 Hz, 1H), 1.68 (t, J = 1.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.95, 177.77, 167.42, 144.22, 143.91, 143.61, 137.64, 135.14, 134.24, 133.91, 131.44, 131.14, 130.63, 130.41, 129.90, 129.02, 128.80, 128.38, 127.02, 124.11, 118.84, 23.20.

HRMS (ESI-TOF) (m/z): Calcd for C₂₄H₂₀N₂NaO₂S, ([M + Na]⁺), 423.1138; found 423.1131. $[\alpha]_{D}^{20} = -36.0$ (c = 1.2, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 15.89 min, t_R (major) = 21.94 min, 96% ee.

I Cak	I et Time	Type	widdh(iiiii)	Inca	mgm	1 Hea / 0
1	15.784	М	0.5762	15850315	707353	46.2565
2	21.866	М	0.8027	18415841	591568	53.7435

(R)-3'-fluoro-6-formyl-2'-methyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3ma)

The title compound **3ma** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ma** was obtained as a yellow oil (27.4 mg, 70%). ¹**H** NMR (600 MHz, Chloroform-*d*) δ 12.06 (s, 1H), 9.66 (d, *J* = 0.8 Hz, 1H), 8.57 (s, 1H), 8.24 (dd, *J* = 7.9, 1.4 Hz, 1H), 8.09 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.72 (td, *J* = 7.7, 0.8 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.38 – 7.34 (m, 3H), 7.26 – 7.23 (m, 1H), 7.21 (td, *J* = 8.3, 1.1 Hz, 1H), 7.06 (dd, *J* = 7.5, 1.1 Hz, 1H), 2.06 (d, *J* = 2.2 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.51, 177.50, 167.00, 161.92 (d, *J* = 246.5 Hz), 141.86 (d, *J* = 2.7 Hz), 137.49, 135.76 (d, *J* = 4.4 Hz), 135.00, 134.23, 133.92, 131.39, 129.24, 129.03, 128.20 (d, *J* = 9.1 Hz), 127.10, 125.43 (d, *J* = 3.5 Hz), 124.71 (d, *J* = 17.3 Hz), 124.05, 116.76 (d, *J* = 22.5 Hz), 12.49 (d, *J* = 4.5 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -113.48 – -113.50 (m, 1F). HRMS (ESI-TOF) (m/z): Calcd for C₂₂H₁₇FN₂NaO₂S, ([M + Na]⁺), 415.0887; found 415.0896. [*a*]p²⁰ = -26.7 (c = 1.4, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 15.52 min, t_R (major) = 21.31 min, 90% ee. mV

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	15.400	М	0.5759	12475223	556329	46.9402
2	21.041	М	0.7670	14101601	470739	53.0598

(R)-6-formyl-2',3'-dimethyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3na)

The title compound **3na** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3na** was obtained as a yellow oil (27.9 mg, 72%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.16 (s, 1H), 9.63 (d, J = 0.8 Hz, 1H), 8.50 (s, 1H), 8.22 (dd, J = 7.8, 1.4 Hz, 1H), 8.18 (dd, J = 7.8, 1.4 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.37 – 7.33 (m, 3H), 7.29 (t, J = 7.5 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.08 (d, J = 7.4 Hz, 1H), 2.39 (s, 3H), 2.07 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.18, 177.50, 167.03, 143.95, 139.17, 137.62, 135.04, 135.03, 134.77, 133.74, 133.24, 131.79, 131.26, 128.97, 128.74, 127.59, 126.93, 126.91, 123.97, 20.70, 17.16. HRMS (ESI-TOF) (m/z): Calcd for C₂₃H₂₀N₂NaO₂S, ([M + Na]⁺), 411.1138; found 411.1125.

 $[\alpha]_{D}^{20} = -26.2 (c = 1.4, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 17.36 min, t_R (major) = 19.91 min, 99% ee. mV

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	17.540	М	0.9257	12618520	335821	47.3899
2	20.088	М	1.0401	14008523	329812	52.6101

mV 19.909 500 250 17.359 0-5 10 1520 25 30 Ó min Peak Pet Time Type Width(min) Hight Area% Area 1 17.359 М 0.8973 135989 3481 0.5942 2 19.909 Μ 1.0109 22749575 490968 99.4058

S22

(R)-3'-chloro-6-formyl-2'-methyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (30a)

The title compound **30a** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **30a** was obtained as a yellow oil (27.3 mg, 67%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.02 (s, 1H), 9.65 (d, J = 0.9 Hz, 1H), 8.58 (s, 1H), 8.23 (dd, J = 7.8, 1.4 Hz, 1H), 8.07 (dd, J = 7.7, 1.4 Hz, 1H), 7.71 (td, J = 7.8, 0.9 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.54 (dd, J = 8.2, 1.2 Hz, 1H), 7.39 – 7.36 (m, 2H), 7.31 (t, J = 7.8 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.15 (dd, J = 7.7, 1.2 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.45, 177.51, 166.96, 142.70, 137.50, 136.54, 135.44, 135.30, 134.99, 134.25, 133.70, 131.37, 130.83, 129.21, 129.02, 128.23, 127.61, 127.10, 124.07, 18.10.

HRMS (ESI-TOF) (m/z): Calcd for $C_{22}H_{18}ClN_2O_2S$, ([M + H]⁺), 409.0772; found 409.0763. [α] $p^{20} = -32.4$ (c = 1.3, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 15.98 min, t_R (major) = 19.98 min, 96% ee.

(*R*)-4'-fluoro-6-formyl-2'-methyl-*N*-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3pa)

The title compound **3pa** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3pa** was obtained as a yellow oil (27.4 mg, 70%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.08 (s, 1H), 9.65 (d, J = 0.8 Hz, 1H), 8.57 (s, 1H), 8.23 (dd, J = 7.8, 1.4 Hz, 1H), 8.09 (dd, J = 7.7, 1.4 Hz, 1H), 7.70 (td, J = 7.8, 0.9 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.37 (t, J = 7.9 Hz, 2H), 7.27 – 7.21 (m, 2H), 7.13 (dd, J = 9.4, 2.6 Hz, 1H), 7.08 (td, J = 8.2, 2.7 Hz, 1H), 2.13 (s, 3H). ¹³C **NMR (150 MHz, Chloroform-***d***)** δ 190.72, 177.53, 167.11, 163.40 (d, J = 248.1 Hz), 142.38, 139.52 (d, J = 8.2 Hz), 137.46, 135.20, 134.40, 133.94, 131.41, 131.33 (d, J = 8.6 Hz), 129.28 (d, J = 3.3 Hz), 129.11, 129.03, 127.10, 124.04, 118.11 (d, J = 21.5 Hz), 114.14 (d, J = 21.6 Hz), 20.62. ¹⁹F NMR (565 MHz, Chloroform-*d***)** δ -111.45 – -111.50 (m, 1F).

 $\label{eq:HRMS} \text{(ESI-TOF)} \ (\text{m/z}): Calcd \ for \ C_{22}H_{18}FN_2O_2S, \ ([M+H]^+), \ 393.1068; \ found \ 393.1052.$

 $[\alpha]_D^{20} = -20.4 \ (c = 1.3, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 20.28 min, t_R (major) = 22.33 min, 97% ee.

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	19.989	М	1.0480	7643918	183898	46.2648
2	22.051	М	1.1942	8878198	180498	53.7352

40 min

mV

mV

						m1n
Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	20.279	М	1.0758	330440	7366	1.3482
2	22.333	М	1.1871	24178834	451210	98.6518

(R)-6-formyl-2',4'-dimethyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3qa)

The title compound **3qa** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3qa** was obtained as a yellow oil (33.0 mg, 85%). ¹H NMR (500 MHz, Chloroform-*d*) δ 12.20 (s, 1H), 9.65 (d, *J* = 0.9 Hz, 1H), 8.51 (s, 1H), 8.22 (dd, *J* = 7.8, 1.5 Hz, 1H), 8.17 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.67 (td, *J* = 7.8, 0.9 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.38 – 7.35 (m, 2H), 7.25 – 7.20 (m, 3H), 7.14 (d, *J* = 7.7 Hz, 1H), 2.41 (s, 3H), 2.09 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.22, 177.63, 167.16, 143.49, 140.34, 137.63, 136.33, 135.13, 134.69, 133.84, 132.27, 131.36, 130.06, 129.68, 128.97, 128.74, 128.01, 126.94, 124.02, 21.47, 20.28.

HRMS (ESI-TOF) (m/z): Calcd for $C_{23}H_{21}N_2O_2S$, ([M + H]⁺), 389.1318; found 389.1311.

 $[\alpha]_D^{20} = -25.2 \ (c = 1.6, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 15.70 min, t_R (major) = 18.07 min, 97% ee.

Peak	Pet Time	Type	Width(min)	Area	Hight	Area%
1	15.768	М	0.8241	7805998	224141	47.0985
2	18.135	М	0.9375	8767757	217332	52.9015

mV 500-18.072 250 15.7040 5 10 1520 2530 0 min Pet Time Width(min) Peak Type Area Hight Area% 15.704 0.9044 215221 1 M 5648 1.6971 2 18.072 0.9508 M 12466214 295934 98.3029

(R)-6-formyl-4'-methoxy-2'-methyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3ra)

The title compound **3ra** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ra** was obtained as a yellow oil (32.7 mg, 81%). ¹H NMR (**500 MHz**, **Chloroform-d**) δ 12.20 (s, 1H), 9.67 (s, 1H), 8.54 (s, 1H), 8.21 (dd, J = 7.7, 1.5 Hz, 1H), 8.16 (dd, J = 7.8, 1.5 Hz, 1H), 7.67 (t, J = 7.8 Hz, 1H), 7.64 – 7.62 (m, 2H), 7.38 – 7.35 (m, 2H), 7.25 – 7.22 (m, 1H), 7.17 (d, J = 8.3 Hz, 1H), 6.96 – 6.92 (m, 2H), 3.87 (s, 3H), 2.11 (s, 3H). ¹³C NMR (150 MHz, **Chloroform-d**) δ 191.29, 177.62, 167.20, 160.92, 143.17, 138.20, 137.64, 135.46, 134.65, 134.13, 131.37, 130.99, 128.98, 128.75, 126.95, 125.07, 124.00, 117.06, 112.84, 55.63, 20.67.

HRMS (ESI-TOF) (m/z): Calcd for $C_{23}H_{21}N_2O_3S$, ([M + H]⁺), 405.1267; found 405.1261.

 $[\alpha]_D^{20} = -32.0 \ (c = 1.6, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 16.89 min, t_R (minor) = 22.06 min, 99% ee.

(R)-5'-fluoro-6-formyl-2'-methyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3sa)

The title compound **3sa** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3sa** was obtained as a yellow oil (29.4 mg, 75%). ¹**H** NMR (**500 MHz**, **Chloroform-***d*) δ 12.07 (s, 1H), 9.65 (s, 1H), 8.64 (s, 1H), 8.23 (dd, J = 7.9, 1.5 Hz, 1H), 8.10 (dd, J = 7.8, 1.5 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H), 7.62 – 7.60 (m, 2H), 7.39 – 7.35 (m, 3H), 7.26 – 7.23 (m, 1H), 7.14 (td, J = 8.4, 2.8 Hz, 1H), 7.00 (dd, J = 8.5, 2.8 Hz, 1H), 2.10 (s, 3H). ¹³**C** NMR (**150 MHz**, **Chloroform-***d*) δ 190.49, 177.57, 166.90, 161.32 (d, J = 246.4 Hz), 142.12, 137.51, 135.05 (d, J = 7.3 Hz), 134.83, 134.02, 133.97, 132.76 (d, J = 8.1 Hz), 132.49 (d, J = 3.4 Hz), 131.43, 129.26, 129.02, 127.09, 124.08, 116.97 (d, J = 20.5 Hz), 116.71 (d, J = 22.1 Hz), 19.61. ¹⁹**F** NMR (**565 MHz**, **Chloroform-***d*) δ -115.41 – -115.45 (m, 1F).

HRMS (ESI-TOF) (m/z): Calcd for $C_{22}H_{18}FN_2O_2S$, ([M + H]⁺), 393.1068; found 393.1062.

 $[\alpha]_D^{20} = -35.6 \ (c = 1.5, CH_2Cl_2).$

2

24.477

MM

0.5497

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 20.24 min, t_R (minor) = 24.48 min, 99% ee.

Peak	Pet Time	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	20.158	MM	0.8023	2.21882e4	460.91681	52.0782
2	24.866	MM	1.0098	2.04174e4	316.40860	47.9218

35.91503

1.08898

0.1045

(R)-6-formyl-2',5'-dimethyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3ta)

The title compound **3ta** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ta** was obtained as a yellow oil (27.9 mg, 72%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.19 (s, 1H), 9.64 (s, 1H), 8.56 (s, 1H), 8.23 (dd, *J* = 7.8, 1.5 Hz, 1H), 8.17 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.68 (t, *J* = 7.8 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.38 – 7.35 (m, 2H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.09 (d, *J* = 1.8 Hz, 1H), 2.40 (s, 3H), 2.07 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.14, 177.51, 167.05, 143.44, 137.66, 137.16, 134.94, 134.73, 133.69, 133.42, 133.03, 131.46, 131.29, 131.10, 130.18, 128.95, 128.77, 126.89, 123.94, 21.14, 19.80.

HRMS (ESI-TOF) (m/z): Calcd for $C_{23}H_{21}N_2O_2S$, ([M + H]⁺), 389.1318; found 389.1308.

 $[\alpha]_D^{20} = -6.3 \ (c = 1.4, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 11.92 min, t_R (major) = 14.96 min, 99% ee.

U	2.5	5	7.5 10	12.5 15	17.5 20	22.5 min
Peak	Pet Time	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	11.773	MM	0.4072	2.59456e4	969.48193	47.8652
2	14.708	MM	0.5217	2.82599e4	813.44824	52.1348

(R)-6-formyl-2',4',5'-trimethyl-N-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3ua)

The title compound **3ua** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ua** was obtained as a yellow oil (33.4 mg, 83%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.24 (s, 1H), 9.68 (s, 1H), 8.21 (td, *J* = 8.2, 1.5 Hz, 2H), 7.66 (t, *J* = 7.8 Hz, 1H), 7.64 – 7.62 (m, 2H), 7.38 – 7.35 (m, 2H), 7.25 – 7.21 (m, 1H), 7.19 (s, 1H), 7.03 (s, 1H), 2.31 (s, 3H), 2.29 (s, 3H), 2.04 (s, 3H). ¹³**C NMR (150 MHz, Chloroform-***d***)** δ 191.19, 177.44, 166.87, 143.42, 138.93, 137.56, 135.80, 134.92, 134.86, 133.49, 133.45, 132.73, 131.18, 130.49, 130.06, 128.79, 128.48, 126.69, 123.77, 19.58, 19.51, 19.33.

HRMS (ESI-TOF) (m/z): Calcd for $C_{24}H_{23}N_2O_2S$, ([M + H]⁺), 403.1475; found 403.1465.

 $[\alpha]_D^{20} = -6.2 \ (c = 1.6, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 14.81 min, t_R (minor) = 19.03 min, 99% ee.

0	2.5	5	7.5 10	12.5 15	17.5 20	22.3
Peak	Pet Time	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	14.436	MM	0.4975	3.13043e4	969.98309	48.0089
2	18.577	MM	0.7035	3.39009e4	803.19098	51.9911

(*R*)-4'-ethoxy-6-formyl-2',5'-dimethyl-*N*-(phenylcarbamothioyl)-[1,1'-biphenyl]-2-carboxamide (3va)

The title compound **3va** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3va** was obtained as a yellow oil (32.0 mg, 74%). ¹**H NMR (500 MHz, Chloroform-***d*) δ 12.27 (s, 1H), 9.68 (s, 1H), 8.58 (s, 1H), 8.23 – 8.20 (m, 2H), 7.67 – 7.63 (m, 3H), 7.38 – 7.35 (m, 2H), 7.25 – 7.21 (m, 1H), 7.01 (s, 1H), 6.84 (s, 1H), 4.10 (q, *J* = 7.0 Hz, 2H), 2.24 (s, 3H), 2.08 (s, 3H), 1.45 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR (150 MHz, Chloroform-***d*) δ 191.51, 177.62, 167.06, 158.57, 143.54, 137.77, 135.45, 135.10, 135.07, 133.74, 131.68, 131.36, 128.95, 128.57, 126.83, 126.55, 123.98, 123.92, 114.09, 64.03, 20.35, 16.04, 15.08.

HRMS (ESI-TOF) (m/z): Calcd for $C_{25}H_{25}N_2NaO_3S$, ([M + H]⁺), 433.1580; found 433.1577.

 $[\alpha]_D^{20} = -25.8 \ (c = 1.6, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 13.13 min, t_R (major) = 15.35 min, 99% ee.

геак	ret mile	туре	widui(iiiiii)	Alea(IIIAU-S)	Hight(IIIAU)	Alea 70
1	13.215	MM	0.4890	2.38458e4	745.89032	48.1684
2	15.482	MM	0.6877	2.56593e4	621.87701	51.8316

0	2	4	6 8	10 12	14 16	18 mir
Peak	Pet Time	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	13.127	MM	0.3574	86.04757	3.81119	0.1683
2	15.345	MM	0.5556	5.10477e4	1420.08655	99.8317

(R)-3-formyl-2-(naphthalen-1-yl)-N-(phenylcarbamothioyl)benzamide (3wa)

The title compound **3wa** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3wa** was obtained as a yellow oil (25.8 mg, 63%). ¹**H** NMR (500 MHz, **Chloroform-***d*) δ 11.88 (s, 1H), 9.49 (d, J = 0.9 Hz, 1H), 8.40 (s, 1H), 8.31 (dd, J = 7.8, 1.4 Hz, 1H), 8.16 (dd, J = 7.7, 1.5 Hz, 1H), 8.04 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.78 (td, J = 7.8, 0.9 Hz, 1H), 7.65 (dd, J = 8.3, 7.0 Hz, 1H), 7.59 – 7.56 (m, 1H), 7.53 – 7.50 (m, 2H), 7.47 – 7.45 (m, 2H), 7.38 (d, J = 8.4 Hz, 1H), 7.31 – 7.28 (m, 2H), 7.20 – 7.17 (m, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.88, 177.29, 167.25, 141.93, 137.45, 135.92, 135.22, 134.24, 133.93, 132.62, 131.22, 131.17, 130.54, 129.25, 129.23, 128.90, 128.57, 128.16, 127.18, 126.92, 125.63, 124.91, 123.99. HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₁₉N₂NaO₂S, ([M + H]⁺), 411.1162; found 411.1166.

 $[\alpha]_D^{20} = -35.8 (c = 1.3, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 22.79 min, t_R (minor) = 30.94 min, 87% ee.

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	23.940	М	1.5878	768796	12086	51.3949
2	32.634	М	3.0195	727064	6402	48.6051

mV

mV

789

22.

(
	20		25	30	35	40 min		
Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%		
1	22.789	М	1.4288	9515843	158969	93.3491		
2	30.942	М	2.4342	677982	6984	6.6509		

30.942

The title compound **3xa** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3xa** was obtained as a yellow oil (19.5 mg, 43%). ¹H NMR (**500 MHz**, **Chloroform-d**) δ 11.96 (s, 1H), 9.81 (d, J = 3.0 Hz, 1H), 8.26 (s, 1H), 7.81 (dd, J = 8.0, 2.8 Hz, 1H), 7.66 – 7.56 (m, 6H), 7.41 – 7.38(m, 3H), 7.29 – 7.20 (m, 4H), 7.06 – 7.04 (m, 2H). ¹³C NMR (**150 MHz**, **Chloroform-d**) δ 189.68, 177.45, 165.63 (d, J = 2.0 Hz), 161.88 (d, J = 251.2 Hz), 142.32, 139.63 (d, J = 3.8 Hz), 139.28, 137.59 (d, J = 6.2 Hz), 137.55, 136.18 (d, J = 6.0 Hz), 131.55, 131.43, 131.27, 130.77, 129.54, 129.09, 128.74, 128.55, 127.93, 127.14, 124.07, 121.10 (d, J = 23.8 Hz), 117.91 (d, J = 21.8 Hz). ¹⁹F NMR (**565 MHz, CDCl**₃) δ -110.22 – -110.25 (m, 1F).

HRMS (ESI-TOF) (m/z): Calcd for $C_{27}H_{19}FN_2NaO_2S$, ([M + Na]⁺), 477.1043; found 477.1050.

 $[\alpha]_{D}^{20} = -138.9 \ (c = 1.0, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 14.14 min, t_R (minor) = 19.96 min, 99% ee.

Peak	Pet Time	Type	Width(min)	Area	Hight	Area%
1	14.176	M	1.2359	13096587	267900	53.1803
2	19.034	М	1.8606	11530162	157003	46.8197

(R)-4-chloro-6-formyl-N-(phenylcarbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3ya)

The title compound **3ya** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ya** was obtained as a yellow oil (21.6 mg, 46%). ¹H NMR (500 MHz, **Chloroform-***d*) δ 11.94 (s, 1H), 9.81 (s, 1H), 8.26 (s, 1H), 8.08 (d, J = 2.4 Hz, 1H), 7.80 (d, J = 2.4 Hz, 1H), 7.65 – 7.55 (m, 5H), 7.41 – 7.35 (m, 3H), 7.29 – 7.21 (m, 4H), 7.07 – 7.05j (m, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 189.63, 177.49, 165.78, 142.13, 141.93, 139.22, 137.53, 136.77, 135.81, 135.18, 133.29, 131.40, 131.37, 131.22, 131.20, 130.76, 129.55, 129.10, 128.80, 128.49, 128.00, 127.16, 124.10.

HRMS (ESI-TOF) (m/z): Calcd for $C_{27}H_{19}ClN_2NaO_2S$, ([M + Na]⁺), 493.0748; found 493.0751. [α] $_{\mathbf{D}}^{20} = -121.9$ (c = 1.2, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 12.58 min, t_R (minor) = 18.38 min, 99% ee.

The title compound **3za** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3za** was obtained as a yellow oil (30.8 mg, 66%). ¹H NMR (**500 MHz**, **Chloroform-***d*) δ 12.03 (s, 1H), 9.83 (s, 1H), 8.28 (s, 1H), 7.63 – 7.52 (m, 6H), 7.41 – 7.35 (m, 4H), 7.28 – 7.20 (m, 4H), 7.08 – 7.06 (m, 2H), 3.90 (s, 3H). ¹³C NMR (**150 MHz, Chloroform-***d*) δ 190.97, 177.75, 166.90, 159.21, 142.33, 139.68, 137.65, 136.74, 136.17, 135.46, 132.07, 131.90, 131.16, 130.20, 129.58, 129.04, 128.62, 128.25, 127.70, 127.02, 124.09, 120.64, 114.54, 56.07..

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{22}N_2NaO_3S$, ([M + Na]⁺), 489.1243; found 489.1244. [α] $\mathbf{p}^{20} = -87.7$ (c = 1.5, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 17.28 min, t_R (minor) = 31.85 min, 99% ee.

геак	ret mile	Type	widun(inini)	Alea	Hight	Alea 70
1	17.465	MM R	0.9873	2.04694e4	345.56125	52.7558
2	29.789	MM R	2.0340	1.83309e4	150.20439	47.2442

(*R*)-6-formyl-*N*-(p-tolylcarbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3ab)

The title compound **3ab** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ab** was obtained as a yellow oil (19.8 mg, 44%). ¹H NMR (**500 MHz**, **Chloroform-***d*) δ 11.93 (s, 1H), 9.87 (s, 1H), 8.22 (s, 1H), 8.13 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.81 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.59 – 7.54 (m, 3H), 7.49 – 7.47 (m, 2H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.23 – 7.18 (m, 5H), 7.08 – 7.06 (m, 2H), 2.36 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.04, 177.92, 167.22, 143.96, 142.02, 139.53, 137.06, 135.58, 135.08, 134.39, 133.26, 132.33, 131.45, 131.43, 131.14, 130.37, 129.65, 129.59, 128.62, 128.50, 128.27, 127.81, 124.21, 21.29.

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{23}N_2O_2S$, ([M + Na]⁺), 451.1475; found 451.1479.

 $[\alpha]_{D}^{20} = -30.0 \ (c = 1.0, CH_2Cl_2).$

2

16.010

Μ

1.1254

HPLC analysis: Daicel Chiralpak OD-3 column (90:10 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 10.02 min, t_R (minor) = 16.01 min, 95% ee.

Peak	Pet Time	Type	Width(min)	Area	Hight	Area%
1	10.583	М	0.7406	2554940	85925	52.5428
2	16.443	М	1.0529	2307644	55304	47.4572

mV 1000-10.017 500-16.010 0 $\frac{1}{5}$ 2025 10 15 ò min Peak Pet Time Type Width(min) Hight Area% Area 1 10.017 М 0.6340 18008463 713853 97.4931

463066

10718

2.5069

S35

(R)-N-((4-fluorophenyl)carbamothioyl)-6-formyl-[1,1':2',1''-terphenyl]-2-carboxamide (3ac)

The title compound **3ac** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ac** was obtained as a yellow oil (20.4 mg, 45%). ¹H NMR (500 MHz, Chloroform-*d*) δ 11.97 (s, 1H), 9.87 (s, 1H), 8.26 (s, 1H), 8.14 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.82 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.64 – 7.61 (m, 1H), 7.59 – 7.55 (m, 5H), 7.39 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.23 – 7.18 (m, 3H), 7.10 – 7.05 (m, 4H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.96, 178.36, 167.33, 161.13 (d, *J* = 245.5 Hz), 143.93, 142.01, 139.50, 135.60, 134.19, 133.62 (d, *J* = 3.1 Hz), 133.31, 132.29, 131.57, 131.41, 131.17, 130.42, 129.56, 128.62, 128.5, 128.30, 127.83, 126.24 (d, *J* = 8.2 Hz), 115.94 (d, *J* = 22.8 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -114.19 – -114.23 (m, 1F). HRMS (ESI-TOF) (m/z): Calcd for C₂₇H₁₉FN₂NaO₂S, ([M + Na]⁺), 477.1043; found 477.1088. [*a*] p^{20} = -32.7 (c = 1.0, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (90:10 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 10.00 min, t_R (minor) = 16.68 min, 97% ee.

ethyl (R)-4-(3-(6-formyl-[1,1':2',1''-terphenyl]-2-carbonyl)thioureido)benzoate (3ad)

The title compound **3ad** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 2:1). **3ad** was obtained as a yellow oil (33.5 mg, 66%). ¹**H NMR** (**500 MHz**, **Chloroform-d**) δ 12.30 (s, 1H), 9.86 (s, 1H), 8.31 (s, 1H), 8.14 (dd, *J* = 8.1, 1.5 Hz, 1H), 8.07 – 8.06 (m, 2H), 7.84 – 7.79 (m, 3H), 7.64 – 7.61 (m, 1H), 7.59 – 7.54 (m, 3H), 7.39 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.23 – 7.17 (m, 3H), 7.06 – 7.04 (m, 2H), 4.38 (q, *J* = 7.2 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (**150 MHz, Chloroform-d**) δ 190.88, 177.45, 167.32, 165.93, 143.83, 142.02, 141.55, 139.44, 135.59, 134.06, 133.43, 132.19, 131.62, 131.38, 131.22, 130.53, 130.51, 130.46, 129.54, 128.60, 128.54, 128.34, 127.83, 122.96, 61.23, 14.49.

HRMS (ESI-TOF) (m/z): Calcd for $C_{30}H_{24}N_2NaO_4S$, ([M + Na]⁺), 531.1349; found 531.1389. [α] $p^{20} = -107.6$ (c = 1.7, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (90:10 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 14.69 min, t_R (minor) = 24.47 min, 98% ee.

10322503

145809

49.3364

mV

2

24.809

Μ

1.8173

(*R*)-6-formyl-*N*-((4-(trifluoromethoxy)phenyl)carbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3ae)

The title compound **3ae** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 2:1). **3ae** was obtained as a white solid (32.2 mg, 62%). ¹**H** NMR (**500 MHz**, **Chloroform-d**) δ 12.12 (s, 1H), 9.87 (s, 1H), 8.29 (s, 1H), 8.14 (dd, J = 7.8, 1.4 Hz, 1H), 7.82 (dd, J = 7.7, 1.4 Hz, 1H), 7.71 – 7.69 (m, 2H), 7.63 (td, J = 7.5, 1.4 Hz, 1H), 7.59 – 7.54 (m, 3H), 7.39 (dd, J = 7.5, 1.4 Hz, 1H), 7.26 – 7.18 (m, 5H), 7.06 – 7.05 (m, 2H). ¹³C NMR (150 MHz, Chloroform-d) δ 190.90, 177.99, 167.36, 147.32, 143.86, 142.02, 139.47, 136.15, 135.62, 134.09, 133.39, 132.23, 131.63, 131.40, 131.21, 130.46, 129.54, 128.61, 128.55, 128.33, 127.84, 125.36, 121.53, 120.59 (q, J = 255.9 Hz). ¹⁹F NMR (565 MHz, Chloroform-d) δ -57.95 (s, 1CF₃).

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{19}F_3N_2NaO_3S$, ([M + Na]⁺), 543.0961; found 543.0944.

 $[\alpha]_{D}^{20} = -108.1 \ (c = 1.6, CH_2Cl_2).$

2

15.130

Μ

HPLC analysis: Daicel Chiralpak OD-3 column (90:10 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 9.53 min, t_R (minor) = 15.13 min, 99% ee.

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	9.706	М	0.5964	2695880	114280	53.0997
2	15.127	М	0.9431	2381139	65262	46.9003

mV 527 1000 6 500 15.130 0 15 5 10 20 25 min Peak Pet Time Width(min) Hight Area% Type Area 9.527 0.5715 18644442 824229 99.5868 1 М

77357

2243

0.4132

0.8633

(R)-N-((3-fluorophenyl)carbamothioyl)-6-formyl-[1,1':2',1''-terphenyl]-2-carboxamide (3af)

The title compound **3af** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3af** was obtained as a light yellow oil (36.3 mg, 80%). ¹H NMR (600 MHz, Chloroform-*d*) δ 12.16 (s, 1H), 9.87 (s, 1H), 8.26 (s, 1H), 8.14 (d, *J* = 7.7 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.68 – 7.65 (m, 1H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.58 – 7.54 (m, 3H), 7.38 (d, *J* = 7.4 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.23 – 7.17 (m, 3H), 7.06 – 7.04 (m, 2H), 6.96 (td, *J* = 8.2, 2.4 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.79, 177.47, 167.16, 162.53 (d, *J* = 244.6 Hz), 143.71, 141.84, 139.28, 138.91 (d, *J* = 10.4 Hz), 135.42, 133.93, 133.23, 132.03, 131.45, 131.25, 131.04, 130.29, 130.00 (d, *J* = 9.1 Hz), 129.39, 128.46, 128.38, 128.17, 127.68, 119.20 (d, *J* = 3.2 Hz), 113.61 (d, *J* = 21.2 Hz), 111.04 (d, *J* = 25.7 Hz). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -110.95 – -110.99 (m, 1F).

HRMS (ESI-TOF) (m/z): Calcd for $C_{27}H_{19}FN_2NaO_2S$, ([M + Na]⁺), 477.1043; found 477.1041.

 $[\alpha]_D^{20} = -106.9 \ (c = 1.8, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 13.38 min, t_R (minor) = 24.99 min, 99% ee. mV

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	13.384	М	0.8601	16034501	465231	53.1187
2	24.987	М	1.7424	14151686	210107	46.8813

(*R*)-*N*-((3-chlorophenyl)carbamothioyl)-6-formyl-[1,1':2',1''-terphenyl]-2-carboxamide (3ag)

The title compound **3ag**was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 2:1). **3ag** was obtained as a yellow oil (23.5 mg, 50%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.11 (s, 1H), 9.87 (d, *J* = 0.8 Hz, 1H), 8.28 (s, 1H), 8.14 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.81 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.77 (t, *J* = 2.1 Hz, 1H), 7.63 (td, *J* = 7.5, 1.4 Hz, 1H), 7.59 – 7.54 (m, 3H), 7.51 – 7.49 (m, 1H), 7.38 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.24 – 7.18 (m, 4H), 7.06 – 7.04 (m, 2H). ¹³**C NMR (150 MHz, Chloroform-***d***)** δ 190.95, 177.85, 167.34, 143.90, 141.98, 139.45, 138.73, 135.57, 134.59, 134.09, 133.36, 132.20, 131.60, 131.40, 131.19, 130.44, 129.99, 129.54, 128.61, 128.53, 128.31, 127.82, 127.04, 124.05, 122.11.

HRMS (ESI-TOF) (m/z): Calcd for C₂₇H₂₀ClN₂O₂S, ([M + Na]⁺), 471.0929; found 471.0944. $[\alpha]_{D}^{20} = -14.8$ (c = 1.2, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (90:10 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 9.07 min, t_R (minor) = 14.77 min, 99% ee.

тсак	I et Time	турс	widui(iiiii)	Alca	mgm	Alca/0
1	9.249	М	0.5007	4696410	213954	49.5399
2	14.711	М	0.8378	4783646	117950	50.4601

mV

068 2000-1000-14.765 0 $\frac{1}{5}$ 10 1520 25 Ó min Width(min) Pet Time Peak Type Area Hight Area% 1 9.068 М 0.4604 38555800 2173537 99.3083 2 9925 14.765 0.7406 268543 0.6917 М

(*R*)-*N*-((3-bromophenyl)carbamothioyl)-6-formyl-[1,1':2',1''-terphenyl]-2-carboxamide (3ah)

The title compound **3ah** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ah** was obtained as a white solid (34.4 mg, 67%). ¹**H NMR (500 MHz, Chloroform-***d*) δ 12.10 (s, 1H), 9.86 (s, 1H), 8.29 (s, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.90 (s, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.64 – 7.54 (m, 5H), 7.38 (d, *J* = 7.6 Hz, 2H), 7.26 – 7.18 (m, 4H), 7.05 (d, *J* = 7.1 Hz, 2H). ¹³**C NMR (150 MHz, Chloroform-***d*) δ 190.95, 177.88, 167.46, 143.94, 141.97, 139.45, 138.78, 135.50, 134.06, 133.38, 132.23, 131.56, 131.38, 131.13, 130.39, 130.26, 129.98, 129.54, 128.61, 128.48, 128.28, 127.81, 126.93, 122.65, 122.40.

HRMS (ESI-TOF) (m/z): Calcd for $C_{27}H_{19}BrN_2NaO_2S$, ([M + Na]⁺), 537.0243; found 537.0236. [α] \mathbf{p}^{20} = -35.5 (c = 1.7, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 16.37 min, t_R (minor) = 30.38 min, 99% ee.

	0 5	1	0 15	20 25	30	35 40 min
Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	16.367	М	1.1291	21555107	480854	99.2874
2	30.380	М	1.9296	154712	1633	0.7126

(R)-6-formyl-N-((3-(trifluoromethyl)phenyl)carbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (**3ai**)

The title compound **3ai** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). 3ai was obtained as a white solid (33.8 mg, 67%). ¹H NMR (500 MHz, **Chloroform-***d*) δ 12.22 (s, 1H), 9.87 (s, 1H), 8.31 (s, 1H), 8.15 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.96 (s, 1H), 7.88 – 7.86 (m, 1H), 7.83 (dd, J = 7.7, 1.5 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.60 – 7.55 (m, 3H), 7.52 – 7.51 (m, 2H), 7.39 (dd, J = 7.5, 1.4 Hz, 1H), 7.23 – 7.18 (m, 3H), 7.07 – 7.05 (m, 2H). ¹³C NMR (150 MHz, Chloroform-d) δ 190.89, 178.08, 167.42, 143.88, 142.01, 139.46, 138.20, 135.61, 134.02, 133.41, 132.21, 131.66, 131.53 (q, *J* = 32.6 Hz), 131.38, 131.23, 130.48, 129.55, 129.54, 128.62, 128.56, 128.35, 127.85, 127.18, 123.81 (q, J = 270.7 Hz), 123.51 (q, J = 3.9 Hz), 120.86 (q, J = 4.0 Hz). ¹⁹F NMR (565 **MHz, Chloroform-***d***)** δ -62.74 (s, 1CF₃).

HRMS (ESI-TOF) (m/z): Calcd for C₂₈H₂₀F₃N₂O₂S, ([M + Na]⁺), 505.1192; found 505.1206. $[\alpha]_{D}^{20} = -89.4$ (c = 1.7, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 12.84 min, t_R (minor) = 22.22 min, 99% ee. mV

	0 5	1	0 15	20 25	30	35 40
						min
Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	12.657	М	0.7572	13252027	439482	52.1832
2	21.183	М	1.4552	12143173	215242	47.8168

25

35

mV

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	12.836	М	0.7858	32526443	1046406	99.4622
2	22.219	М	1.6746	175876	2876	0.5378

(*R*)-6-formyl-*N*-(m-tolylcarbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3aj)

The title compound **3aj** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3aj** was obtained as a yellow solid (32.9 mg, 73%). ¹H NMR (**500 MHz**, **Chloroform-d**) δ 12.00 (s, 1H), 9.86 (s, 1H), 8.28 (s, 1H), 8.12 (dd, J = 7.8, 1.4 Hz, 1H), 7.81 (dd, J = 7.7, 1.4 Hz, 1H), 7.61 (td, J = 7.5, 1.4 Hz, 1H), 7.58 – 7.53 (m, 3H), 7.46 (dd, J = 8.1, 2.1 Hz, 1H), 7.41 (s, 1H), 7.38 (dd, J = 7.5, 1.3 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.22 – 7.18 (m, 3H), 7.08 – 7.06 (m, 3H), 2.37 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.96, 177.66, 167.22, 143.88, 142.02, 139.52, 139.03, 137.53, 135.52, 134.36, 133.25, 132.32, 131.38, 131.36, 131.10, 130.31, 129.55, 128.83, 128.58, 128.46, 128.23, 127.82, 127.76, 124.60, 121.15, 21.54.

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{22}N_2NaO_2S$, ([M + Na]⁺), 473.1294; found 473.1296.

 $[\alpha]_D^{20} = -135.4 \ (c = 1.6, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 12.96 min, t_R (minor) = 21.17 min, 99% ee.

959 1000-2 500-21.170 0 10 $\frac{1}{5}$ 35 15 25 20 30 40 min Pet Time Width(min) Peak Type Area Hight Area% 12.959 926084 1 Μ 0.9001 34177444 99.8347 2 21.170 1.5465 56590 891 0.1653 М

S43

(R)-6-formyl-N-((3-methoxyphenyl)carbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3ak)

The title compound **3ak** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ak** was obtained as a light yellow oil (23.8 mg, 51%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.07 (s, 1H), 9.87 (d, J = 0.9 Hz, 1H), 8.19 (s, 1H), 8.14 (dd, J = 7.8, 1.5 Hz, 1H), 7.82 (dd, J = 7.7, 1.4 Hz, 1H), 7.64 – 7.61 (m, 1H), 7.59 – 7.54 (m, 3H), 7.42 – 7.38 (m, 2H), 7.29 (t, J = 8.2 Hz, 1H), 7.24 – 7.18 (m, 3H), 7.14 (dd, J = 8.0, 1.8 Hz, 1H), 7.07 – 7.05 (m, 2H), 6.82 – 6.80 (m, 1H), 3.82 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 190.99, 177.46, 167.20, 160.11, 143.89, 142.05, 139.51, 138.77, 135.63, 134.31, 133.34, 132.28, 131.52, 131.44, 131.21, 130.43, 129.75, 129.59, 128.63, 128.54, 128.32, 127.83, 116.12, 112.83, 109.54, 55.64.

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{22}N_2NaO_3S$, ([M + Na]⁺), 489.1243; found 489.1228. [α] $p^{20} = -68.3$ (c = 1.2, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 21.36 min, t_R (minor) = 41.20 min, 97% ee.

Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	21.721	М	1.6724	2857627	43698	52.7018
2	38.892	М	3.1575	2564627	20438	47.2982

mV

mV

(R)-N-((2-fluorophenyl)carbamothioyl)-6-formyl-[1,1':2',1''-terphenyl]-2-carboxamide (3al)

The title compound **3al** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3al** was obtained as a yellow oil (29.5 mg, 65%). ¹H NMR (**500 MHz**, **Chloroform-d**) δ 12.03 (s, 1H), 9.91 (s, 1H), 8.27 (s, 1H), 8.18 – 8.15 (m, 2H), 7.83 (dd, J = 7.7, 1.5 Hz, 1H), 7.64 – 7.54 (m, 4H), 7.40 (d, J = 7.4 Hz, 1H), 7.27 – 7.14 (m, 6H), 7.06 – 7.05 (m, 2H). ¹³C NMR (**150 MHz, Chloroform-d**) δ 191.04, 178.48, 167.10, 155.44 (d, J = 247.2 Hz), 143.82, 142.11, 139.43, 135.62, 134.10, 133.61, 132.17, 131.54 (d, J = 13.2 Hz), 131.26, 130.48, 129.59, 128.64, 128.50, 128.32, 128.13 (d, J = 7.8 Hz), 127.79, 126.06, 125.93 (d, J = 10.9 Hz), 124.19 (d, J = 3.6 Hz), 115.88 (d, J = 19.5 Hz). ¹⁹F NMR (**565 MHz, Chloroform-d**) δ -124.11 – -124.15 (m, 1F).

HRMS (ESI-TOF) (m/z): Calcd for $C_{27}H_{20}FN_2O_2S$, ([M + H]⁺), 455.1224; found 455.1220. [α] $p^{20} = -95.2$ (c = 1.5, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 15.45 min, t_R (minor) = 28.22 min, 92% ee.

(*R*)-6-formyl-*N*-((2-(trifluoromethoxy)phenyl)carbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3am)

The title compound **3am** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3am** was obtained as a light yellow oil (27.0 mg, 52%). ¹H NMR (**500 MHz, Chloroform-d**) δ 12.35 (s, 1H), 9.93 (s, 1H), 8.48 (dd, J = 8.1, 1.8 Hz, 1H), 8.26 (s, 1H), 8.15 (dd, J = 7.8, 1.5 Hz, 1H), 7.84 (dd, J = 7.8, 1.4 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.58 – 7.53 (m, 3H), 7.40 (dd, J = 7.5, 1.5 Hz, 1H), 7.36 – 7.32 (m, 2H), 7.30 – 7.26 (m, 1H), 7.22 – 7.16 (m, 3H), 7.05 – 7.03 (m, 2H). ¹³C NMR (**150 MHz, Chloroform-d**) δ 191.06, 178.08, 167.10, 143.91, 142.08, 141.40, 139.52, 135.57, 134.17, 133.57, 132.21, 131.48, 131.34, 131.20, 130.76, 130.39, 129.50, 128.60, 128.49, 128.27, 127.72, 127.41, 127.01, 125.65, 121.20, 120.6 (q, J = 257.9 Hz). ¹⁹F NMR (**565 MHz, Chloroform-d**) δ -57.75 (s, 10CF₃).

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{20}F_3N_2O_3S$, ([M + Na]⁺), 521.1141; found 521.1133. [α] $_{D}^{20}$ = -84.0 (c = 1.4, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 9.69 min, t_R (minor) = 16.38 min, 95% ee.

3573225

92472

46.9158

0.9953

	т	
m	1	I
ш		

2

16.287

Μ

(R)-6-formyl-N-(o-tolylcarbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3an)

The title compound **3an** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3an** was obtained as a yellow solid (25.2 mg, 56%). ¹H NMR (**500 MHz**, **Chloroform-d**) δ 11.72 (s, 1H), 9.90 (d, J = 0.9 Hz, 1H), 8.33 (s, 1H), 8.14 (dd, J = 7.8, 1.4 Hz, 1H), 7.83 (dd, J = 7.7, 1.5 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.59 – 7.54 (m, 3H), 7.40 (dd, J = 7.6, 1.4 Hz, 1H), 7.27 – 7.18 (m, 6H), 7.09 – 7.07 (m, 2H), 2.27 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 191.00, 178.87, 167.31, 143.87, 142.04, 139.55, 136.39, 135.55, 134.42, 133.37, 133.29, 132.38, 131.40, 131.34, 131.12, 130.94, 130.37, 129.56, 128.60, 128.50, 128.23, 127.84, 127.78, 126.64, 126.22, 18.10. HRMS (ESI-TOF) (m/z): Calcd for C₂₈H₂₂N₂NaO₂S, ([M + Na]⁺), 473.1294; found 473.1302. [**a**] $\mathbf{p}^{20} = -95.3$ (c = 1.3, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 14.42 min, t_R (minor) = 26.37 min, 97% ee.

(R)-6-formyl-N-((2-methoxyphenyl)carbamothioyl)-[1,1':2',1''-terphenyl]-2-carboxamide (3ao)

The title compound **3ao** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ao** was obtained as a yellow oil (29.4 mg, 63%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.22 (s, 1H), 9.84 (d, *J* = 0.8 Hz, 1H), 8.50 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.12 (s, 1H), 8.07 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.77 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.57 – 7.54 (m, 1H), 7.51 – 7.46 (m, 3H), 7.34 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.16 – 7.10 (m, 4H), 7.01 – 6.99 (m, 2H), 6.93 (td, *J* = 7.8, 1.3 Hz, 1H), 6.87 (dd, *J* = 8.2, 1.3 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.10, 176.48, 166.59, 151.04, 143.71, 142.16, 139.54, 135.50, 134.52, 133.55, 132.33, 131.47, 131.28, 131.17, 130.29, 129.61, 128.56, 128.45, 128.28, 127.68, 127.22, 127.05, 123.49, 120.39, 110.87, 56.08.

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{22}N_2NaO_3S$, ([M + Na]⁺), 489.1243; found 489.1246. [α] $p^{20} = -108.8$ (c = 1.5, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 24.49 min, t_R (minor) = 29.18 min, 99% ee.

-	-					
Peak	Pet Time	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	24.044	MM	0.5657	1.39214e4	379.76120	47.5584
2	28.351	MM	0.6598	1.53508e4	356.90024	52.4416

min

Peak	Pet Time	Type	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	24.492	MM	0.6261	360.05847	8.64218	0.7473
2	29.181	MM	0.7237	4.78238e4	1018.71906	99.2527

(*R*)-*N*-((5-chloro-2-methoxyphenyl)carbamothioyl)-6-formyl-[1,1':2',1''-terphenyl]-2-carboxamide (3ap)

The title compound **3ap** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). **3ap** was obtained as a yellow oil (39.5 mg, 79%). ¹**H NMR (500 MHz, Chloroform-***d***)** δ 12.38 (s, 1H), 9.89 (s, 1H), 8.78 (d, *J* = 2.5 Hz, 1H), 8.20 (s, 1H), 8.13 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.83 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.58 – 7.53 (m, 3H), 7.40 (d, *J* = 7.4 Hz, 1H), 7.22 – 7.13 (m, 4H), 7.04 – 7.03 (m, 2H), 6.84 (d, *J* = 8.8 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 191.01, 176.37, 166.63, 149.37, 143.63, 142.12, 139.46, 135.50, 134.27, 133.64, 132.23, 131.44, 131.41, 131.21, 130.35, 129.56, 128.55, 128.47, 128.32, 128.18, 127.68, 126.28, 125.33, 122.78, 111.60, 56.40.

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{21}ClN_2NaO_3S$, ([M + Na]⁺), 523.0854; found 523.0847. [α] $p^{20} = -96.5$ (c = 1.9, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 20.76 min, t_R (minor) = 38.23 min, 99% ee.

(R)-N-((3,5-bis(trifluoromethyl)phenyl)carbamothioyl)-6-formyl-[1,1':2',1''-terphenyl]-2carboxamide (3aq)

The title compound **3aq** was prepared under the optimized conditions A and purified by preparative TLC (hexane: ethyl acetate = 10:3). 3aq was obtained as a white solid (23.5 mg, 41%). ¹H NMR (500 MHz, **Chloroform-***d*) δ 12.44 (s, 1H), 9.88 (s, 1H), 8.32 (s, 1H), 8.22 (s, 2H), 8.17 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.85 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.75 (s, 1H), 7.67 – 7.64 (m, 1H), 7.61 – 7.57 (m, 3H), 7.41 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.24 – 7.18 (m, 3H), 7.05 (dd, J = 8.1, 1.6 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-d) δ 190.81, 178.23, 167.58, 143.87, 142.02, 139.39, 139.16, 135.72, 133.71, 133.56, 132.46 (q, J = 33.5 Hz), 132.10, 131.93, 131.38, 131.37, 130.64, 129.53, 128.68, 128.67, 128.47, 127.95, 123.75 (q, J = 3.9 Hz), 123.09 (q, J = 271.1 Hz), 120.15 (p, J = 3.8 Hz). ¹⁹F NMR (565 MHz, Chloroform-d) δ -63.00 (s, 2CF₃).

HRMS (ESI-TOF) (m/z): Calcd for C₂₉H₁₈F₆N₂NaO₂S, ([M + Na]⁺), 595.0885; found 595.0879. $[\alpha]_{D}^{20} = -77.5 \ (c = 1.2, CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (major) = 8.99 min, t_R (minor) = 12.90 min, 96% ee. mV

12.895

						min
Peak	Pet Time	Туре	Width(min)	Area	Hight	Area%
1	9.160	М	0.5397	3238625	154375	51.3867
2	12.395	М	0.8273	3063828	93682	48.6133

20

11386

2.1799

25

388582

0.8762

III Synthetic Applications

In a nitrogen-filled glovebox, a flame-dried 100 mL Schlenk reaction tube equipped with a magnetic stir bar was charged with (**5aS,10bR)-C5** (20 mol%, 0.298 g), Cs_2CO_3 (1.466g, 4.5 mmol), [1,1':2',1"-terphenyl]-2,6-dicarbaldehyde **1a** (0.858 g, 3 mmol) and anhydrous chloroform (30.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (1.368 g, 3.0 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (1.469 g, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 72 h. The mixture was concentrated under reduced pressure and purified by *via* column chromatography on silica gel (hexanes/EtOAc = 10:3) to afford 0.69 g product **3aa** in 53% yield with 98% ee.

3.2 Synthetic Transformation

3.2.1,

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with **3aa** (0.1 mmol, 43.6 mg) and anhydrous tetrahydrofuran (1.0 mL) was added. Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. 1 mol/L PhMgBr in THF (110 μ L, 1.1 equiv) was added dropwise and stirring at 0 °C for 48 h, until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with water, extracted with CH₂Cl₂ (3×5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified by silica gel column chromatography (PE : EA = 10:3) to afford the desired product **6a** as a colorless oil. (yield: 62%, 97% ee). ¹H NMR (**600 MHz, Chloroform-d**) δ 12.13 (s, 1H), 8.63 (s, 1H), 7.62 – 7.58 (m, 5H), 7.52 (td, *J* = 7.4, 1.4 Hz, 1H), 7.42 – 7.33 (m, 6H), 7.29 – 7.26 (m, 3H), 7.24 – 7.21 (m, 3H), 7.20 – 7.17 (m, 1H), 7.10 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.04 – 7.03 (m, 2H), 5.57 (d, *J* = 2.6 Hz, 1H), 1.31 (d, *J* = 3.2 Hz, 1H). ¹³C NMR (**150 MHz, Chloroform-d**) δ 178.06, 168.91, 143.87, 142.89, 140.80, 140.26, 138.65, 137.52, 135.26, 133.73, 131.78, 130.53, 130.37, 129.52, 129.24, 128.82, 128.48, 128.44, 128.34, 128.10, 127.55, 127.38, 127.00, 126.83, 126.07, 124.12, 71.52. **HRMS** (ESI-TOF) (m/z): Calcd for C₃₃H₂₆N₂NaO₂S, ([M + Na]⁺), 537.1607; found 537.1615. **[a**] \mathbf{p}^{19} = -14.4 (c = 1.6, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 210 nm); t_R (major) = 18.23 min, t_R (minor) = 21.35 min, 98% ee.

3.2.2,

2

21.350

М

1701.69006

33.67229

1.2100

0.8423

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with **3aa** (0.1 mmol, 43.6 mg), NaBH₄ (0.1 mmol, 3.8 mg) and dry THF/CH₃OH = 3:1 (1.0 mL) was added. Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. Reaction mixture was stirred at 0 °C for 12 h, until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with water, extracted with CH₂Cl₂ (3×5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified by silica gel column chromatography (PE : EA = 1:1) to give the desired product **6b** as a colorless oil. (yield: 66%, 97% ee). **¹H NMR (600 MHz, Chloroform-d)** δ 12.12 (s, 1H), 8.39 – 8.36 (m, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 2H), 7.55 – 7.53 (m, 3H), 7.51 – 7.48 (m, 1H), 7.45 – 7.42 (m, 1H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.20 – 7.19 (m, 3H), 7.13 – 7.12 (m, 2H), 4.47 (d, *J* = 13.5 Hz, 1H), 4.38 (d, *J* = 13.5 Hz, 1H), 1.59 (s, 1H). ¹³C **NMR (150 MHz, Chloroform-d)** δ 178.09, 168.46, 140.89, 140.58, 139.93, 138.77, 137.56, 134.86, 133.34, 131.70, 130.79, 129.85, 129.35, 129.19, 128.84, 128.25, 128.17, 128.07, 127.41, 127.14, 126.81, 124.12, 62.66.

HRMS (ESI-TOF) (m/z): Calcd for $C_{27}H_{22}N_2NaO_2S$, ([M + Na]⁺), 461.1294; found 461.1297. [α] $p^{19} = +61.2$ (c = 1.4, CH₂Cl₂).

mAU 500	14.096					
300					.426	
200					30	
100				/	/ \	
0	15		20	25 3	0 35	mir
Peak	PetTime	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	14.096	М	0.4496	1.36684e4	454.95319	49.5241
2	30.426	М	0.9998	1.39311e4	208.95663	50.4759
mAU 777777777777777777777777777777777777	13.889			29.328		

HPLC analysis: Daicel Chiralpak OD-3 column (90:10 hexane: 2-propanol, 1.0 mL/min, 25 °C, 210 nm); t_R (minor) = 13.89 min, t_R (major) = 29.33 min, 97% ee.

0 10	15	1 1 1	20	25 3	30 35	mir
Peak	PetTime	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	13.889	М	0.4609	1650.64404	54.11298	1.4733
2	29.328	М	1.0359	1.10384e5	1603.98682	98.5267

3.2.3,

To a solution of **3aa** (0.1 mmol, 43.6 mg) in 1.0 mL MeOH was added K₂CO₃ (0.2 mmol, 27.6 mg), P-(1-diazo-2-oxopropyl)-dimethylester (0.15 mmol, 22.5 µL) is slowly added. the reaction mixture was stirred at rt for 3 h, until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with water, extracted with CH₂Cl₂ (3×5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified by silica gel column chromatography (PE : EA = 10 : 3) to give the desired **6c** (yield: 93%, 93% ee). ¹**H NMR (600 MHz, Chloroform-d)** δ 7.70 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.60 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.45 (t, *J* = 7.1 Hz, 1H), 7.41 – 7.38 (m, 2H), 7.28 – 7.24 (m, 2H), 7.14 (s, 5H), 3.55 (s, 3H), 2.94 (s, 1H). ¹³**C NMR (150 MHz, Chloroform-d)** δ 167.25, 145.14, 141.13, 140.98, 137.82, 135.94, 131.90, 130.00, 129.75, 129.54, 129.45, 127.98, 127.52, 126.93, 126.72, 126.57, 124.07, 82.15, 81.49, 52.01.

HRMS (ESI-TOF) (m/z): Calcd for $C_{22}H_{16}NaO_2$, ([M + Na]⁺), 335.1043; found 335.1041. [α] $p^{19} = -46.2$ (c = 1.3, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 210 nm); t_R (minor) = 8.05 min, t_R (major) = 9.69 min, 93% ee.

3.2.4,

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with methyltriphenylphosphonium bromide (0.11 mmol, 39.3 mg), anhydrous tetrahydrofuran (0.5 mL) and nBuLi of 2.5 mol/L in hexane (0.11 mmol, 45 μ L) was added. Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The mixture was stirred at 0 °C for 30 minutes, followed by tetrahydrofuran solution (0.5 mL) dissolved in **3aa** (0.1 mmol, 43.6 mg) was added dropwise and stirring at 0 °C for 12 h, until the reaction was complete as indicated by TLC. The reaction mixture was then quenched with water, extracted with CH₂Cl₂ (3×5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified by silica gel column chromatography (PE : EA = 10:3) to give the desired **6d** (yield: 60 %, 99% ee). ¹**H NMR (600 MHz, Chloroform-d)** δ 12.11 (s, 1H), 8.08 (s, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.55 – 7.50 (m, 3H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 3H), 7.34 – 7.31 (m, 1H), 7.25 (t, *J* = 7.6 Hz, 1H), 7.21 – 7.16 (m, 3H), 7.05 – 7.03 (m, 2H), 6.61 (dd, *J* = 17.4, 11.0 Hz, 1H), 5.71 (d, *J* = 17.4 Hz, 1H), 5.26 (d, *J* = 10.9 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 177.99, 168.26, 141.32, 139.98, 138.73, 138.54, 137.64, 135.09, 134.74, 133.55, 131.07, 130.75, 129.37, 129.26, 128.83, 128.11, 127.88, 127.49, 127.25, 126.73, 124.05, 116.71.

HRMS (ESI-TOF) (m/z): Calcd for $C_{28}H_{22}N_2NaOS$, ([M + Na]⁺), 457.1345; found 457.1344. [α] $p^{19} = -26.7$ (c = 1.4, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 210 nm); t_R (major) = 10.21 min, t_R (minor) = 12.24 min, 99% ee.

3.2.5,

A 10 mL vial containing a magnetic stir bar, was added (*S*)-**3aa** (43.6 mg, 0.1 mmol, 1.0 equiv), diphenyl phosphate (2.5 mg, 0.01 mmol, 0.1 equiv), Diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (HD1) (25.4 mg, 0.01 mmol, 1.0 equiv), 3,5-dimethoxyaniline (15.2 mg, 0.1 mmol, 1.0 equiv) and 7.5 ml dry Et₂O. After stirring at the 25 °C for 2 h, the reaction mixture concentrated in vacuo to give a residue, which was purified by flash chromatography to give the desired **6e** (yield: 72%, 99% ee). $R_{\rm f}$ =0.30 (hexanes/EtOAc = 10:3). ¹H NMR (**600 MHz, Chloroform-d**) δ 12.14 (s, 1H), 8.47 (s, 1H), 7.62 – 7.51 (m, 6H), 7.48 (td, *J* = 7.3, 1.9 Hz, 1H), 7.39 – 7.36 (m, 3H), 7.32 (d, *J* = 7.4 Hz, 1H), 7.24 – 7.17 (m, 6H), 5.85 (s, 1H), 5.56 (d, *J* = 2.1 Hz, 2H), 4.03 (d, *J* = 15.7 Hz, 1H), 3.83 (d, *J* = 15.7 Hz, 1H), 3.69 (s, 6H), 1.57 (s, 1H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 178.08, 168.60, 161.71, 149.56, 140.97, 140.16, 139.47, 139.17, 137.58, 135.18, 133.73, 131.79, 130.82, 129.65, 129.30, 129.18, 128.82, 128.24, 128.15, 128.12, 127.36, 126.79, 126.73, 124.10, 91.85, 89.96, 55.16, 45.90.

HRMS (ESI-TOF) (m/z): Calcd for C₃₅H₃₁N₃NaO₃S, ([M + Na]⁺), 596.1978; found 596.1968.

 $[\alpha]_D{}^{19} = +64.8 \ (c = 1.5, \ CH_2Cl_2).$

HPLC analysis: Daicel Chiralpak IC-3 column (80:20 hexane: 2-propanol, 1.0 mL/min, 25 °C, 210 nm); t_R (major) = 20.81 min, t_R (minor) = 25.49 min, 99% ee.

3.2.6,

In a nitrogen-filled glovebox, a flame-dried 100 mL Schlenk reaction tube equipped with a magnetic stir bar was charged with (**5a***R*,**10b***S*)-**C5** (20 mol%, 0.298 g), Cs₂CO₃ (1.466g, 4.5 mmol), 2'-vinyl-[1,1'biphenyl]-2,6-dicarbaldehyde **1k** (0.708 g, 3 mmol) and anhydrous CHCl₃ (20.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (1.368 g, 3.0 equiv) and 3,3',5,5'tetra-*tert*-butyldiphenoquinone (1.469 g, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 72 h. The mixture was concentrated under reduced pressure and purified by *via* column chromatography on silica gel (hexanes/EtOAc = 10:3) to afford 0.59 g product (*R*)-**3ka** in 51% yield with 93% ee.

HPLC analysis: Dateel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm);
t_R (minor) = 21.76 min, t_R (major) = 26.29 min, 93% ee.
mV

500 0 1	5.0.17	5 20	0 22 5	25.0 27.5	30.0	32 5 35 0
Peak	PetTime	Туре	Width(min)	Area	Hight	min Area%
1	21.814	M	0.7757	17580171	580416	47.8992
2	26.451	М	0.9397	19122252	522116	52.1008
mV 20 10			21. 763	26. 288		
15. 0 17. 5 20. 0 22. 5 25. 0 27. 5 30. 0 32. 5 35. 0 min						
Peak	PetTime	Туре	Width(min)	Area	Hight	Area%
1	21.763	М	0.8225	20744	566	3.7030
2	26.288	М	1.1892	539444	11817	96.2970

Titanium chloride (143 µL, 1.3 mmol) was added to a mixture of (*R*)-**3ka** (0.49 g, 1.3 mmol) and 1,2ethanedithiol (327 µL, 3.9 mmol) in 5.0 mL CH₂Cl₂ at 0 °C. The mixture was stirred at room temperature for 12 h, then poured into water. The organic layer was washed with water and brine, dried, and concentrated in vacuo. The residue was purification by column chromatography (Petroleum ether/EtOAc = 10:3) gave pure product **7** (white solid, 372 mg, yield: 62%, 90% ee). ¹H NMR (600 MHz, Chloroform-*d*) δ 12.11 (s, 1H), 8.40 (s, 1H), 8.21 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.72 (td, *J* = 8.7, 1.4 Hz, 2H), 7.58 – 7.55 (m, 3H), 7.48 (td, *J* = 7.6, 1.5 Hz, 1H), 7.44 (td, *J* = 7.5, 1.5 Hz, 1H), 7.35 – 7.33 (m, 2H), 7.24 – 7.20 (m, 2H), 6.38 (dd, *J* = 17.4, 11.0 Hz, 1H), 5.75 (d, *J* = 17.4 Hz, 1H), 5.30 (s, 1H), 5.28 (d, *J* = 11.1 Hz, 1H), 3.53 – 3.44 (m, 2H), 3.28 – 3.20 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 177.72, 168.15, 141.09, 137.66, 137.55, 136.72, 134.42, 133.84, 133.55, 133.00, 129.70, 129.59, 128.90, 128.75, 128.65, 128.21, 126.68, 126.51, 123.96, 117.79, 52.07, 40.64, 40.42.

HRMS (ESI-TOF) (m/z): Calcd for C₂₅H₂₂N₂NaOS₃, ([M + Na]⁺), 485.0786; found 485.0786. $[\alpha]p^{19} = 13.7$ (c = 1.0, CH₂Cl₂).

HPLC analysis: Daicel Chiralpak AD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 23.54 min, t_R (major) = 26.92 min, 90% ee.

0 15. 0 17. 5 20. 0 22. 5 25. 0 27. 5 30. 0 32. 5 35. 0 min							
Peak	PetTime	Туре	Width(min)	Area	Hight	Area%	
1	23.540	М	0.8720	2043142	62104	4.9743	
2	26.918	М	1.0147	39031233	1002870	95.0257	

540

In a nitrogen-filled glovebox, a flame-dried 10 mL Schlenk reaction tube equipped with a magnetic stir bar was charged with **7** (0.370 g, 0.8 mmol), diphenylphosphine (1.4 mL, 10.0 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 85 °C for 48 h. The mixture was concentrated under reduced pressure and purified by *via* column chromatography on silica gel (hexanes/Et₂O = 2:1) to afford 0.316 g product **8** in 61% yield with 91% ee (white solid). [**8**: 98% ee (after recrystallization)]. ¹**H NMR (600 MHz, Chloroform-d)** δ 12.13 (s, 1H), 8.40 (s, 1H), 8.17 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.68 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.56 – 7.51 (m, 3H), 7.45 – 7.38 (m, 3H), 7.33 (t, *J* = 7.9 Hz, 2H), 7.31 – 7.28 (m, 2H), 7.27 – 7.20 (m, 10H), 5.19 (s, 1H), 3.53 – 3.49 (m, 1H), 3.46 – 3.42 (m, 1H), 3.26 – 3.17 (m, 2H), 2.49 – 2.45 (m, 2H), 2.21 – 2.18 (m, 2H). ¹³**C NMR (150 MHz, Chloroform-d)** δ 177.66, 167.78, 141.00 (d, *J* = 14.0 Hz), 140.91, 137.96, 137.52, 134.84, 133.46, 132.75 (d, *J* = 2.5 Hz), 132.63 (d, *J* = 2.3 Hz), 132.53, 130.33, 129.70 (d, *J* = 5.5 Hz), 128.74, 128.59 (d, *J* = 6.3 Hz), 128.55, 128.50, 128.45, 128.39, 128.35, 127.26, 126.66, 123.97, 52.24, 40.81, 40.41, 29.73 (d, *J* = 18.2 Hz), 29.23 (d, *J* = 12.5 Hz). ³¹**P NMR (243 MHz, Chloroform-d)** δ -14.95.

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 14.50 min, t_R (major) = 15.75 min, 91% ee.

HPLC of 8 after recrystallization

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 14.75 min, t_R (major) = 16.16 min, 98% ee.

To a mixture of chiral ligand **8** (0.01 mmol), $[Pd(\eta -C_3H_5)Cl]_2$ (0.005 mmol, 1.4 mg) and LiOAc (0.02 mmol, 1.3 mg) in diethyl ether (1 mL) were added BSA (0.75 mmol, 152.0 mg) and allylic ester (0.25 mmol, 63.0 mg) at 0 °C under argon atmosphere. After 1 h, malonate (0.75 mmol) was added. After 36 h, the reaction mixture was diluted with diethyl ether and water. The organic layer was washed with brine and dried over Na₂SO₄. The filtrate was concentrated and purified by column chromatography to afford the product **9**. ¹**H** NMR (**500 MHz, Chloroform-d**) δ 7.33 – 7.18 (m, 10H), 6.48 (d, *J* = 15.7 Hz, 1H), 6.33 (dd, *J* = 15.7, 8.6 Hz, 1H), 4.27 (dd, *J* = 10.9, 8.7 Hz, 1H), 3.95 (d, *J* = 10.9 Hz, 1H), 3.70 (s, 3H), 3.52 (s, 3H). ¹³**C** NMR (**150 MHz, Chloroform-d**) δ 168.20, 167.79, 140.18, 136.84, 131.85, 129.13, 128.73, 128.49, 127.88, 127.58, 127.18, 126.40, 57.67, 52.64, 52.46, 49.21.

HRMS (ESI-TOF) (m/z): Calcd for $C_{20}H_{20}NaO_4$, ([M + Na]⁺), 347.1254; found 347.1254.

HPLC analysis: Daicel Chiralpak AD-3 column (97:3 hexane: 2-propanol, 1.0 mL/min, 25 °C, 254 nm); t_R (minor) = 23.22 min, t_R (major) = 33.72 min, 54% ee.

2	20.0 22.	5 25.	0 27.5	30.0 32.5	35.0	37.5 40.0 min
Peak	PetTime	Туре	Width(min)	Area	Hight	Area%
1	23.215	М	1.2638	38689255	776750	76.9770
2	33.722	М	1.5234	11571554	199754	23.0230

¹H NMR (500 MHz, CDCl₃) spectrum of 9.

¹³C NMR (150 MHz, CDCl₃) spectrum of 9.

IV. Mechanistic Studies

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with C5 (20 mol%, 10.0 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), [1,1':2',1"-terphenyl]-2,6-dicarbaldehyde **1a** (0.1 mmol, 29 mg), anhydrous chloroform (1.0 mL), and D₂O (0.1 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **4a** (46.0 mg, 3.0 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 72 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product *R*-**3aa**.

¹H NMR (600 MHz, CDCl₃) spectrum of 3aa.

²H NMR (77 MHz, CDCl₃) spectrum of 3aa.

¹H NMR (600 MHz, CDCl₃) spectrum of *Recov.* 1a.

²H NMR (77 MHz, CDCl₃) spectrum of *Recov.* 1a.

4.2 Parallel Kinetic Isotope Effect Experiment

4.2.1 Procedure for synthesis of 1a-d2^[4]

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with aldehyde **s1** (0.5 mmol), IMes • HCl (17.0 mg, 0.05 mmol), Na₂CO₃ (11.0 mg, 0.1 mmol), CPME (0.5 mL) and D₂O (2.5 mL). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 120 °C for 48 h, and extracted with AcOEt, and the organic layers were dried over MgSO4, and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE : EA = 10:1), **s1-d₂** was obtained in 90% yield, with 98% D.

A flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with 2-bromoisophthalaldehyde **s1-***d*₂, 2-biphenylboronic acid **s2** (2.29 equiv), K₂CO₃ (6.89 equiv) and Pd(PPh₃)₄ (0.018 equiv) and was evacuated and charged with argon three times. Then degassed 1,4-dioxane : water = 7 : 1 were added and the reaction was heated at 95 °C for 3 days under argon atmosphere. After cooling to room temperature, the mixture was poured into water and extracted with DCM three times. The organic layer was washed with brine and dried over anhydrous MgSO₄. The solvent was removed under vacuum. The residue was purified by silica gel column chromatography (ethyl acetate : cyclohexane = 1:20 to 1:10) and washed with ethanol to give compound as a white solid (yield: 75 %). **¹H NMR (500 MHz, Chloroform-d**) δ 9.82 (d, *J* = 0.8 Hz, 0.04 H), 8.10 (d, *J* = 7.7 Hz, 2H), 7.60 (td, *J* = 7.6, 1.3 Hz, 1H), 7.55 – 7.49 (m, 3H), 7.39 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.15 – 7.13 (m, 3H), 6.97 – 6.95 (m, 2H).

8.103 8.038 8.088 8.088 8.088 8.088 8.088 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.5500 7.55000 7.5500 7.5500 7.5500 7.55000 7.55000 7.55000 7.55000 7.5500

¹H NMR (500 MHz, CDCl₃) spectrum of 1a-d₂.

4.2.2 Experiment Procedure for the Isotope Experiments

In a nitrogen-filled glovebox, two flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged C5 (20 mol%, 10 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), **1a or 1a**- d_2 (0.1 mmol, 29.0 mg), and anhydrous chloroform (1.0 mL) was added. The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (46.0 mg, 3.0 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 12 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product *R*-3aa, yield: 18%; *R*-3aa- d_1 , yield: 3%. The KIE was determined by ¹H NMR analysis to be 6.0.

¹H NMR (600 MHz, CDCl₃) using CH₂Br₂ (0.2 mmol, 14.0 μ L) as an internal standard of the reaction mixture (*R*-3aa)

¹H NMR (600 MHz, CDCl₃) using CH₂Br₂ (0.2 mmol, 14.0 μ L) as an internal standard of the reaction mixture (*R*-3aa-*d*₁)

4.3 Control experiment

4.3.1 Investigation on the ee of the initial formed product 3ca

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged **NHC-5** (10 mol%, 5.0 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), 2'-methyl-[1,1'biphenyl]-2,6-dicarbaldehyde **1c** (0.1 mmol, 22.4 mg) and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (46.0 mg, 3.0 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 2 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product (*R*)-**3ca** (yield: 6%; 88.7% ee).

HPLC analysis: Daicel Chiralpak IC-3 column (95:5 hexane: 2-propanol, 1 mL/min, 25 °C, 254 nm); t_R (major) = 20.11 min, t_R (minor) = 21.95 min, 88.7% ee.

4.3.2 Procedure for NHC-catalyzed Desymmetrization of Dialdehyde 1a with NHC-5.

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged **NHC-5** (20 mol%, 10.0 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), 2'-methyl-[1,1'-biphenyl]-2,6-dicarbaldehyde **1c** (0.1 mmol, 22.4 mg) and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (46.0 mg, 3.0 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (32 mg, 0.8 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 72 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product (*R*)-**3ca** (yield: 53%; 90% ee) and **Recov. 1c** (yield: 25%).

HPLC analysis: Daicel Chiralpak IC-3 column (95:5 hexane: 2-propanol, 1 mL/min, 25 °C, 254 nm); t_R (major) = 20.07 min, t_R (minor) = 21.65 min, 90% ee.

4.3.3 General procedure for for NHC-catalyzed kinetic resolution (KR) of (R)-3ca with N-Phenylthiourea and characterization data.

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged **NHC-5** (20 mol%, 5.3 mg), Cs_2CO_3 (26.0 mg, 1.5 equiv), (*R*)-**3ca** (0.053 mmol, 19.83 mg) and anhydrous chloroform (0.5 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (4.0 mg, 0.5 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (4.4 mg, 0.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 24 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product *Recov.* (*R*)-**3ca** (yield: 75%; 96% ee) and **3ca**' (yield: 4%).

HPLC analysis: Daicel Chiralpak IC-3 column (95:5 hexane: 2-propanol, 1 mL/min, 25 °C, 254 nm); t_R (major) = 19.80 min, t_R (minor) = 21.47 min, 96% ee.

2'-methyl-N², N⁶-bis(phenylcarbamothioyl)-[1,1'-biphenyl]-2,6-dicarboxamide 3ca'

3ca': ¹**H NMR** (**500 MHz**, **Chloroform**-*d*) δ 12.06 (s, 2H), 8.47 (s, 2H), 8.06 (d, J = 7.9 Hz, 2H), 7.70 (t, J = 7.8 Hz, 1H), 7.61 – 7.58 (m, 4H), 7.47 – 7.43 (m, 3H), 7.38 – 7.34 (m, 4H), 7.29 – 7.27 (m, 1H), 7.25 – 7.22 (m, 2H), 2.22 (s, 3H). ¹³**C NMR** (**150 MHz**, **Chloroform**-*d*) δ 177.28, 167.09, 138.19, 137.35, 136.12, 134.47, 134.11, 132.40, 132.04, 130.62, 128.90, 128.84, 128.44, 127.81, 126.88, 123.89, 20.01. **HRMS** (ESI-TOF) (m/z): Calcd for C₂₉H₂₄N₄NaO₂S₂, ([M + Na]⁺), 547.1233; found 547.1232.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ca'

4.3.4 Investigation on ee of the product 3ca by changing the amount of DQ

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged **NHC-5** (10 mol%, 5.0 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), 2'-methyl-[1,1'biphenyl]-2,6-dicarbaldehyde **1c** (0.1 mmol, 22.4 mg) and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (46.0 mg, 3.0 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (x equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 4 d. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product (*R*)-**3ca** (y% ee).

HPLC analysis: Daicel Chiralpak IC-3 column (95:5 hexane: 2-propanol, 1 mL/min, 25 °C, 254 nm).

Реак	PetTime	туре	width(min)	Area	Fight	Area%
1	20.326	М	1.1502	3787902	89213	49.9556
2	22.257	М	1.1755	3794636	86859	50.0444

тV

4.4 Competing experiment

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with C5 (10 mol%, 5.0 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), **1a** (0.1 mmol, 29 mg) or **1c** (0.1 mmol, 22.4 mg), and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (23.0 mg, 1.5 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 12 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product **3aa** (yield: 27%); **3ac** (yield: 47%).

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with C5 (10 mol%, 5.0 mg), Cs₂CO₃ (49.0 mg, 1.5 equiv), **1a** (0.1 mmol, 29 mg), **1c** (0.1 mmol, 22.4 mg), and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of N-Phenylthiourea **2a** (23.0 mg, 1.5 equiv) and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 12 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product **3aa** (yield: 11%); **3ac** (yield: 34%).

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with C5 (20 mol%, 10.0 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), **1a** (0.1 mmol, 29 mg), and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of 1-(p-tolyl)thiourea **2b** (25.0 mg, 1.5 equiv) or ethyl 4-thioureidobenzoate **2d** (34.0 mg, 1.5 equiv), and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 24 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product **3ab** (yield: 6%); **3ad** (yield: 28%).

In a nitrogen-filled glovebox, a flame-dried screw-cap reaction tube equipped with a Teflon-coated magnetic stir bar was charged with C5 (20 mol%, 10.0 mg), Cs_2CO_3 (49.0 mg, 1.5 equiv), **1a** (0.1 mmol, 29 mg), and anhydrous chloroform (1.0 mL). The mixture was stirred for 5 minutes, followed by the addition of 1-(p-tolyl)thiourea **2b** (25.0 mg, 1.5 equiv), ethyl 4-thioureidobenzoate **2d** (34.0 mg, 1.5 equiv), and 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (48 mg, 1.2 equiv). Then the tube was sealed with a Thermo Scientific PTFE screw cap equipped with a septum, removed from the glovebox. The reaction mixture was stirred at 0 °C for 24 h. After the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate 10:3 (v/v) to give the product **3ab** (n.d.); **3ad** (yield: 29%).

V Determination of Rotational Barrier and half-life for C-C Bond.^[5]

Following the procedure of Curran,^[5c] compound **3aa** (5 mg) was dissolved in toluene (5 mL) to make a 1 mg/mL solution in a sealed tube. The tube was kept in a pre-equilibrated metal bath maintained at 90 °C. At 60 min time intervals, the sealed tube was taken out briefly (1-2 min) from the metal bath and a 70 μ L aliquot was diluted with 'PrOH (0.5 mL) taken out via syringe and injected onto the analytical HPLC column to determine the er. This er was plotted against time, and the barrier to rotation was calculated from the plot. In the y-axis of the graph, "m" stands for the % of the minor enantiomer, and "M" denotes the % of the major enantiomer. All the data have been recorded at 363.15 K (90 °C). The rate value can be inserted into **Equation 2** to give $\Delta G^{\ddagger_{363.15 \text{ K}}}$ and into **Equation 1** to give the half-life to racemisation. $k_B = \text{Boltzmann's constant } [1.381 \times 10^{-23} \text{ J K}^{-1}],$

T = temperature in K,

 $h = Planck's constant [6.626 x 10^{-34} J s],$

R = gas constant [8.3145 J mol⁻¹].

Then the simplified equation for racemization is:

 $\ln [(M + m) / (M - m)] = k_{rac}t + c = 2k_{rot}t + c$

$$k_{rot} = (slope/2)$$

$$t_{\frac{1}{2}rac} = \ln(2)/k_{rac}$$
 Equation 1

Time	% of major % of minor		M+m M m	M	(M + m) /	$ln \left[\left(M + m \right) / \right]$
(min)	enantiomer (M)	enantiomer (m)	M + m $M - m$		(M - m)	(M - m)]
0	98.2154	1.7846	100	96.4308	1.03701	0.036342
60	97.0695	2.9305	100	94.1390	1.06226	0.060399
120	95.9186	4.0814	100	91.8372	1.08888	0.085150
180	94.8148	5.1852	100	89.6296	1.11570	0.109482
240	93.6251	6.3749	100	87.2502	1.14613	0.136391
300	92.6179	7.3821	100	85.2358	1.17322	0.159752
360	91.5662	8.4338	100	83.1324	1.20290	0.184735
420	90.6864	9.3136	100	81.3728	1.22891	0.206128
480	89.5789	10.4211	100	79.1578	1.26330	0.233727
540	88.2218	11.7782	100	76.4436	1.30815	0.268614
600	87.2411	12.7589	100	74.4822	1.34260	0.294608
660	86.2777	13.7223	100	72.5554	1.37826	0.320822
720	85.1850	14.8150	100	70.3700	1.42106	0.351403
780	84.1910	15.8090	100	68.3820	1.46237	0.380058
840	83.3540	16.6460	100	66.7080	1.49907	0.404845

The experimental d	lata is	shown	for	3aa	below:
--------------------	---------	-------	-----	-----	--------

Figure S2. Plot for the Determination of Rotational Barrier and Half-Life for C-C Bond in **3aa**. So, from plot, $k_{rot} = [(0.00736 \times 10^{-3})/2] = 3.68 \times 10^{-6} \text{ s}^{-1}$

 $k_{rot}^{\dagger} = [(k_{rot} \times h)/k_{B}T] = 0.486 \times 10^{-18}$ $\Delta G_{rot}^{\ddagger} = -RTlnk_{rot}^{\ddagger}$ Equation 2 = 127.323 kJ/mol = 30.4 kcal/mol $t_{y_{rac}} = \ln(2)/k_{rac} = 26.16 \text{ h}$

HPLC data for the Analysis of C-C Bond Rotational Barrier:

HPLC analysis: Daicel Chiralpak OD-3 column (95:5 hexane: 2-propanol, 1 mL/min, 25 °C, 254 nm) $_{\rm mV}$

2	25.706	BB	1.0469	497.71701	6.45283	6.3749
mAU						
250 -	300 mi	n	707			
200			.41			
150			Λ			
100					4	
50					25.6	
5	10		15	20 2	5 30	min
Peak	PetTime	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	14.707	BB	0.6210	6991.26270	169.23021	92.6179
2	25.614	BB	1.0437	557.23962	7.58856	7.3821
mAU -	260 m		~			
200	500 H	1111	14.533			
150 -			Ň			
100 -						
50					408	
0					25	
5	10		15	20 2	5 30	min
Peak	PetTime	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	14.533	BB	0.6048	7756.63428	191.00586	91.5662
2	25.408	BB	1.0515	714.43402	9.73142	8.4338
250	420 min					
200			732			
150			14. 			
100			$\langle \rangle$			
50					.664	
0			, <u>, , , , , , , , , , , , , , , , , , </u>		56	
5 De ele	10 D-4Time -	T	15	20 2 A man (ma A L 1*S)	5 30	min
Реак	14.722	Туре	0.6250	Area(mAU*S)	152 84164	Area%
2	25.664	BB	1.0275	659 09027	8 96764	90.0004
2	25.004	DD	1.0275	039.09027	0.90704	9.5150
mAU						
250	480 min	l	2			
200			14.65			
150			\wedge			
100						
50					25.387	
0						· · · · ·
ə Peak	10 PetTime	Type	Width(min)	20 Area(mAU*S)	Hight(mAID)	Area%
1	14 652	BB	0.6197	7060 84717	168 90300	89 5789

2	25.387	BB	1.0511	821.42194	11.14206	10.4211
mAU	540 min					
250	540 mm					
200			4.650			
150			Ň			
100 -					2	
50					25.59	
0	10		15	20 2	5 30	min
Peak	PetTime	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	14.650	BB	0.6318	6214.73340	145.35599	88.2218
2	25.592	BB	1.0148	829.70807	11.47188	11.7782
	201072	22	110110	027110001	11111100	1117702
mAU	600 min					
250	000 mm					
200			4.811			
150			Ň			
100						
50					5.574	
0			· · · · · ·			
5 Dools	10 DotTimo	Tuno	15 Width(min)	$\frac{20}{4 \operatorname{res}(m \Lambda U \ast S)}$	5 30	min
геак	14.011	DD		70(1.0(240	166 20501	Alea70
1	14.811	BB	0.6294	/061.96240	166.29501	87.2411
2	25.574	BB	1.0257	1032.80542	14.43577	12.7589
250	660 min					
200			1.698			
150			1			
100						
50 -					.593	
0					25	
5	10		15	20 2	5 30	min
Peak	PetTime	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	14.698	BB	0.6081	6860.38525	168.11638	86.2777
2	25.593	BB	1.0608	1091.13000	15.23152	13.7223
mAU	720 min					
250			208			
200			> 14.5			
150			(
100					ŝ	
50					25.33	
0	10		15	20 20	5 30	min
Peak	PetTime	Type	Width(min)	Area(mAU*S)	- Jona Hight(mAU)	Area%
1	14 598	BR	0.6030	7042 47168	173 32211	85 1850
	11.570	20	0.0050	, 512.17100	1, 5.52211	02.1050

2	25.333	BB	1.0673	1224.77905	17.06495	14.8150
mAU 250 -	780 min		718			
150 100 50			4		25.333	
0	10		15	20 2	5 30	, , , , min
Peak	PetTime	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	14.718	BB	0.6165	6761.50049	163.14734	84.1910
2	25.333	BB	1.0560	1269.64514	18.17545	15.8090
mAU 250 -	840 min		.195			
150 100 50			4	24.573		
0 +	10		15	20 2	5 30	min

5	10		15	20 2	5 30	mir
Peak	PetTime	Туре	Width(min)	Area(mAU*S)	Hight(mAU)	Area%
1	14.195	BB	0.6052	7086.54688	175.08601	83.3540
2	24.573	BB	1.0276	1415.20117	20.39286	16.6460

VI. X-Ray Crystallographic Data

A single crystal of **3ah** suitable for X-ray crystallography was obtained by crystallization *via* evaporation from its hexane/^{*i*}PrOH solution. And the crystal structure of compound **3ah** has been deposited at the Cambridge Crystallographic Data Centre (CCDC 2223845).

OHC Ph	R-3ah		
Bond precision:	C-C = 0.0080	A	Wavelength = 1.54178
Cell:	a = 9.2241(8)	b = 10.399(1)	c = 25.056(2)
	alpha = 90	beta = 90	gamma = 90
Temperature:	287 K Cr	ystal system: orthorhomb	bic Radiation: CuK\a ($\lambda = 1.54178$)
Crystal size/mm ³ :	$0.30\times0.25\times$	0.25 Index ranges: -	$-10 \le h \le 9, -6 \le k \le 11, -29 \le l \le 29$
Independent reflecti	ions: 3816 [R _{in}	$R_{nt} = 0.0313, R_{sigma} = 0.039$	94]
		Calculated	Reported
Volume		2403.4(4)	2403.4(4)
Space group		P 21 21 21	P 21 21 21
Hall group		P 2ac 2ab	P 2ac 2ab
Moiety formula		$C_{27}H_{19}BrN_2O_2S$	$2(C_{27}H_{19}BrN_2O_2S)$
Sum formula		$C_{27}H_{19}BrN_2O_2S$	$C_{54}H_{38}Br_2N_4O_4S_2$
Mr		515.40	1030.82
Dx, g cm ⁻³		1.424	1.424
Ζ		4	2
Mu (mm-1)		3.356	3.356
F000		1048.0	1048.0
F000'		1049.09	
h, k, lmax		10, 12, 29	10, 11, 29
Nref		3979 [2290]	3816
Tmin, Tmax		0.420, 0.432	
Tmin'		0.318	

Correction method= Not given

Data completeness = 1.67/0.96 R(reflections) = 0.0436 (3609) S = 1.071

Flack parameter

Theta(max) = 63.862 wR2(reflections) = 0.1150 (3816) Npar = 298 0.092(10)

VII. References

[1] J. I. Urgel, M. D. Giovannantonio, K. Eimre, T. G. Lohr, J. Liu, S. Mishra, Q. Sun, A. Kinikar, R. Widmer, S. Stolz, M. Bommert, R. Berger, P. Ruffieux, C. A. Pignedoli, K. Mullen, X. Feng and R. Fasel, On-Surface Synthesis of Cumulene-Containing Polymers via Two-Step Dehalogenative Homocoupling of Dibromomethylene-Functionalized Tribenzoazulene, *Angew. Chem., Int. Ed.*, 2020, **59**,13281-13287.

[2] (a) T. Fukuzumi and J. W. Bode, A Reagent for the Convenient, Solid-Phase Synthesis of N-Terminal Peptide Hydroxylamines for Chemoselective Ligations, *J. Am. Chem. Soc.*, 2009, **131**, 3864-3865; (b) S. Staniland, B. Yuan, N. Gimnez-Agull, T. Marcelli, S. C. Willies, D. M. Grainger, N.

J. Turner and J. Clayden, Enzymatic Desymmetrising Redox Reactions for the Asymmetric Synthesis of Biaryl Atropisomers, *Chem. Eur. J.*, 2014, **20**, 13084-13088.

[3] C. Rodríguez-Franco, E. Roldán-Molina, A. Aguirre-Medina, R. Fernández, V. Hornillos and J. M. Lassaletta, Catalytic Atroposelective Synthesis of C–N Axially Chiral Aminophosphines via

Dynamic Kinetic Resolution, Angew. Chem., Int. Ed., 2024, 63, e202409524.

[4] Y. Sawama, Y. Miki and H. Sajiki, N-Heterocyclic Carbene Catalyzed Deuteration of Aldehydes in D₂O, *Synlett*, 2020, **31**, 699-702.

[5] (a) S. Staniland, R. W. Adams, J. J. W. McDouall, I. Maffucci, A. Contini, D. M. Grainger, N. J. Turner and J. Clayden, Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl N-Oxide Lewis Base Catalysts, *Angew. Chem., Int. Ed.*, 2016, **55**, 10755-10759; (b) S. Barik, S. Shee, S. Das, R. G. Gonnade, G. Jindal, S. Mukherjee and A. T. Biju, NHC-Catalyzed Desymmetrization of N-Aryl Maleimides Leading to the Atroposelective Synthesis of N-Aryl Succinimides, *Angew. Chem., Int. Ed.*, 2021, **60**, 12264-12268; (c) D. B. Guthrie and D. P. Curran, Asymmetric Radical and Anionic Cyclizations of Axially Chiral Carbamates, *Org. Lett.*, 2009, **11**, 249.

¹H NMR (500 MHz, CDCl₃) spectrum of 3aa.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3aa.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ba.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ca.

712.165
9.645
9.645
9.6445
9.6445
9.6445
9.6445
9.6445
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.6454
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7554
9.7544
9.7545
9.7544
9.7544
9.7545
9.7545
9.7545
9.7545
9.7545
9.7545
9.7546
9.7545
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546
9.7546

¹H NMR (500 MHz, CDCl₃) spectrum of 3da.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3da.

¹H NMR (600 MHz, CDCl₃) spectrum of 3ea.

- 12.185

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ea.

- 12.032 - 12.032 - 2.685 - 5.684 - 8.629 - 8.629 - 8.629 - 8.629 - 8.629 - 8.629 - 8.629 - 8.629 - 8.629 - 7.743 - 7.752 - 7.743 - 7.752 - 7.752 - 7.755 - 7.755 - 7.735 - 7.755 -

¹H NMR (600 MHz, CDCl₃) spectrum of 3fa.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3fa.

- 12.206 - 12.206 - 10.173 - 10.1

¹H NMR (500 MHz, CDCl₃) spectrum of 3ha.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ha.

¹H NMR (500 MHz, CDCl₃) spectrum of 3ia.

-11.998

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ia.

11.983
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 82.249
 83.055
 83.055
 83.055
 83.055
 83.056
 77.755
 77.755
 77.755
 77.755
 77.755
 77.755
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.555
 77.554
 77.554
 77.555
 77.555
 77.554
 77.554
 77.555
 77.554
 77.554
 77.555
 77.555
 77.554
 77.554
 77.555
 77.555
 77.555
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554
 77.554

¹H NMR (600 MHz, CDCl₃) spectrum of 3ja.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ja.

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2 fl (ppm)

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3ja.

(12,085) (12,08

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ka.

 12.155

 82.115

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.472

 82.483

 7.567

 7.567

 7.568

 7.567

 7.568

 7.568

 7.568

 7.568

 7.5615

 7.5616

 7.5616

 7.5616

 7.5616

 7.5616

 7.5616

 7.5616

 7.5617

 7.5618

 7.5618

 7.5618

 7.5618

 7.5618

 7.5618

 7.57300

 7.5730

 7.5730

 7.5730

 7.5730</t

¹³C NMR (150 MHz, CDCl₃) spectrum of 3la.

¹H NMR (600 MHz, CDCl₃) spectrum of 3ma.

3ma

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ma.

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3ma.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3na.

¹³C NMR (150 MHz, CDCl₃) spectrum of 30a.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3pa.

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2 fl (ppm)

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3pa.

¹H NMR (500 MHz, CDCl₃) spectrum of 3qa.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3qa.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ra.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3sa.

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3sa.

¹H NMR (500 MHz, CDCl₃) spectrum of 3ta.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ta.

¹H NMR (500 MHz, CDCl₃) spectrum of 3ua.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ua.

¹H NMR (500 MHz, CDCl₃) spectrum of 3va.

-12.266

¹³C NMR (150 MHz, CDCl₃) spectrum of 3va.

11.875 11.875 12.8335 12.8335 12.8335 12.8335 12.8335 12.8335 12.8335 12.8335 12.8335 12.8352 12.8352 12.5525 17.779 17.7795 17.7552 17.755

¹H NMR (500 MHz, CDCl₃) spectrum of 3wa.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3wa.

¹H NMR (500 MHz, CDCl₃) spectrum of 3xa.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3xa.

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3xa.

¹H NMR (500 MHz, CDCl₃) spectrum of 3ya.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ya.

-12.031 -2.829 -2.829 -2.829 -2.820 -2.820 -2.820 -2.820 -2.820 -2.820 -2.820 -2.820 -7.563

¹H NMR (500 MHz, CDCl₃) spectrum of 3za.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3za.

¹H NMR (500 MHz, CDCl₃) spectrum of 3ab.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ab.

- 11.969

¹H NMR (500 MHz, CDCl₃) spectrum of 3ac.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ac.

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2 fl (ppm)

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3ac.

(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)
(12.303)

¹H NMR (500 MHz, CDCl₃) spectrum of 3ad.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ad.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ae.

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3ae.

¹H NMR (600 MHz, CDCl₃) spectrum of 3af.

-12.160

- 9.866

¹³C NMR (150 MHz, CDCl₃) spectrum of 3af.

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3af.

 12.107

 92.870

 92.870

 92.870

 92.871

 92.871

 92.872

 92.873

 92.873

 92.873

 92.873

 92.874

 92.874

 92.875

 92.873

 92.874

 92.874

 92.874

 92.874

 92.627

 92.627

 92.627

 92.627

 92.627

 92.627

 92.627

 92.627

 92.627

 92.627

 92.626

 92.627

 92.626

 92.627

 92.641

 92.643

 92.644

 92.643

 92.643

 92.644

 92.644

 92.644

 92.644

 92.644

 92.644

 92.644

 92.644

 92.644

 7.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ag.

- 12.102

¹H NMR (500 MHz, CDCl₃) spectrum of 3ah.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ah.

¹H NMR (500 MHz, CDCl₃) spectrum of 3ai.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ai.

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2 fl (ppm)

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3ai.

- 11.995 - 9.860 - 9.860 - 9.860 - 9.860 - 9.860 - 9.860 - 1.981 - 1.127 - 8.113 - 8.113 - 8.127 - 8.113 - 7.8116 - 7.553 - 7.555 - 7.755 -

¹³C NMR (150 MHz, CDCl₃) spectrum of 3aj.

(12.0685)
 (12.0685)
 (12.0685)
 (12.0685)
 (12.0685)
 (12.0582)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12.051)
 (12

¹H NMR (500 MHz, CDCl₃) spectrum of 3ak.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ak.

- 12.029 - 12.029 - 12.029 - 12.029 - 12.029 - 12.029 - 12.029 - 12.029 - 12.029 - 12.029 - 12.029 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.582 - 17.559 - 7.759 - 7.

¹H NMR (500 MHz, CDCl₃) spectrum of 3al.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3al.

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3al.

¹H NMR (500 MHz, CDCl₃) spectrum of 3am.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3am.

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3am.

11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.716 11.755 11.75555 11.75555 11.75555 11.755555 11.75555 11.75555 11.7555555

¹³C NMR (150 MHz, CDCl₃) spectrum of 3an.

 $\begin{array}{c} -12.216\\ -12.216\\ -9.833\\ -9.833\\ -9.833\\ -9.8497\\ -9.8497\\ -8.8117\\ -8.8117\\ -8.8175\\ -8.8060\\ -8.8060\\ -8.8060\\ -8.8060\\ -7.755\\ -7.75\\$

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ao.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3ap.

200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) 80 70 60 50

40 30

20 10

0

¹H NMR (500 MHz, CDCl₃) spectrum of 3aq.

¹³C NMR (150 MHz, CDCl₃) spectrum of 3aq.

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2 fl (ppm)

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 3aq.

 7.2.12.12.7

 7.511

 7.512

 7.512

 7.512

 7.512

 7.523

 7.523

 7.523

 7.523

 7.523

 7.523

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.533

 7.335

 7.335

 7.335

 7.335

 7.335

 7.735

 7.735

 7.735

 7.735

 7.735

 7.735

 7.735

 7.735

 7.735

 7.735

 7.735

 7.735

 7.736

 7.736

 7.736

 7.736

 7

¹H NMR (600 MHz, CDCl₃) spectrum of 6a.

¹³C NMR (150 MHz, CDCl₃) spectrum of 6a.

¹H NMR (600 MHz, CDCl₃) spectrum of 6b.

¹³C NMR (150 MHz, CDCl₃) spectrum of 6b.

¹H NMR (600 MHz, CDCl₃) spectrum of 6c.

¹³C NMR (150 MHz, CDCl₃) spectrum of 6c.

¹H NMR (600 MHz, CDCl₃) spectrum of 6d.

¹³C NMR (150 MHz, CDCl₃) spectrum of 6d.

¹H NMR (600 MHz, CDCl₃) spectrum of 6e.

¹³C NMR (150 MHz, CDCl₃) spectrum of 6e.

(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1097)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12.1012)
(12

¹H NMR (600 MHz, CDCl₃) spectrum of 7.

¹³C NMR (125 MHz, CDCl₃) spectrum of 7.

[12] 12.126
[12] 12.126
[12] 12.126
[12] 12.126
[12] 12.126
[12] 12.126
[12] 12.126
[12] 12.126
[12] 12.126
[12] 12.127
[12] 12.127
[12] 12.127
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.128
[12] 12.12

¹H NMR (600 MHz, CDCl₃) spectrum of 8.

¹³C NMR (150 MHz, CDCl₃) spectrum of 8.

³¹P NMR (243 MHz, CDCl₃) spectrum of 8.

¹H NMR (600 MHz, CDCl₃) spectrum of 1d.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1d.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1h.

¹³C NMR (150 MHz, CDCl₃) spectrum of 11.

¹³C NMR (150 MHz, CDCl₃) spectrum of 10.

¹H NMR (600 MHz, CDCl₃) spectrum of 1n.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1n.

$\begin{array}{c} -9.791\\ -9.791\\ 8.329\\ 7.7738\\ 7.7777\\ 7.7222\\ 7.7222\\ 7.795\\ 7.2211\\ 7.2211\\ 7.2211\\ -2.487\\ -2.103\end{array}$

¹³C NMR (150 MHz, CDCl₃) spectrum of 1q.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1s.

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2 f1 (ppm)

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 1s.

¹H NMR (600 MHz, CDCl₃) spectrum of 1t.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1t.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1u.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1v.

¹H NMR (500 MHz, CDCl₃) spectrum of 1x.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1x.

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2 f1 (ppm)

¹⁹F NMR (565 MHz, CDCl₃) spectrum of 1x.

9,769 8,029 7,640 7,643 7,643 7,610 7,612 7,612 7,610 7,551 7,554 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,551 7,552 7,551 7,552 7,551 7,552 7,551 7,552 7,551 7,552

¹H NMR (500 MHz, CDCl₃) spectrum of 1y.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1y.

¹H NMR (600 MHz, CDCl₃) spectrum¹of 1a'.

¹³C NMR (150 MHz, CDCl₃) spectrum of 1a'.

³¹P NMR (243 MHz, Chloroform-d) spectrum of 1a'.