Electronic Supplementary Material (ESI) for

Degradation of polycarbonate waste to recover bisphenol A and dimethyl carbonate using urea as a green cheap catalyst

Nan Hu,^{a,b,c} Lijuan Su,^{a,b,c} Hongyan Li,^{a,b,c} Ning Zhang,^{a,b,c} Yongqin Qi,^{a,b,c} Hongliang Wang,^d Xiaojing Cui,*^e Xianglin Hou,*^{a,b,c} and Tiansheng Deng,*^{a,b,c}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, People's Republic of China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China

^c CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, 030001, People's Republic of China.

^d Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China

^e Institute of Interface Chemistry and Engineering, Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, Shanxi, 030008, People's Republic of China.

*E-mail: dts117@sxicc.ac.cn; cxjtyut@126.com; houxianglin@sxicc.ac.cn

Green metrics analysis

Environmental impact factor (abbreviated as E-factor, EF), introduced by R. A. Sheldon, has been extensively used as a metric to quantify the sustainability of a process.^{1, 2} A traditional E-factor is calculated by the total amount of waste generated including 10% of solvent losses but excluding water divided by the mass of product (eqn 1). Besides, for comparison, two new metrics simple E-factor (sE-factor, sEF) and complete E-factor (cE-factor, cEF) are also proposed. Based on the definition of E-factor, the sEF does not consider solvents and water (eqn 2), while the cEF sums all solvents (eqn 3). The amount of waste generated in recycling a certain amount of PC was calculated by the eqn 4. A lower E-factor means less waste production and is more positive to the environment. Process Mass Intensity (PMI) introduced by the EPA and ACS GCI, assesses efficiency by considering all materials as well as water used in a process (eqn 5).³ A lower PMI means greater efficiency and economy. Here we provide details of the green metrics analysis for the recycling of PC in two modes: 1) a single degradation; 2) 10 cycles of degradation (Table S5 and S6).

$$EF = \frac{\sum m(raw \ materials) + \sum m(catalysts) + \sum m(solvents) * 10\% - m(products)}{m(products)}$$
(1)

$$cEF = \frac{\sum m(raw \ materials) + \sum m(catalysts) + \sum m(solvents) - m(products)}{m(products)}$$
(2)

$$sEF = \frac{\sum m(raw \ materials) + \sum m(catalysts) - m(products)}{m(products)}$$
(3)

$$Waste\ amount\ = \frac{EF * m(products)}{m(PC)} \tag{4}$$

$$PMI = cEF + 1 = \frac{\sum m(input \ materials \ incl. \ process \ water)}{m(products)}$$
(5)

Fig. S1 PC degradation solutions catalyzed by NaOH (A–D) and urea (a–d). From A(a) to D(d), the depolymerizing reagents are H₂O, MeOH, EtOH, and MeOH-50 wt.% H₂O, respectively (0.2 g PC, 4 g depolymerizing reagent, 0.2 g catalyst, 140 °C, 3 h).

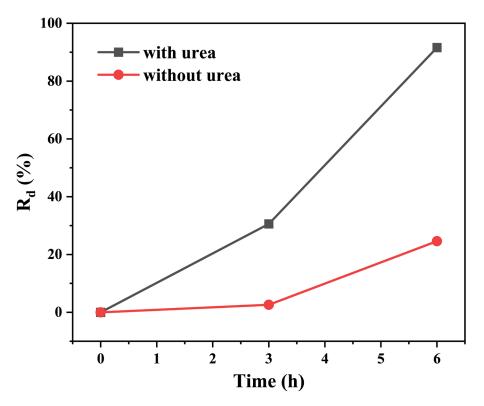


Fig. S2 PC methanolysis with or without urea.

Reaction condition: 0.2 g PC, 4 g methanol, with or without 0.02 g urea (42 mol% to PC), 140 °C.

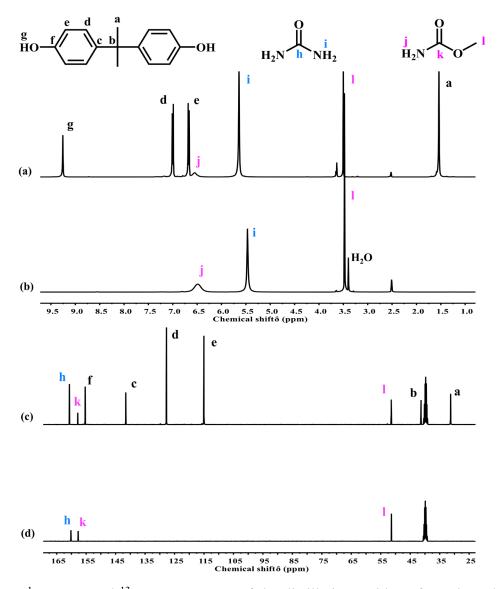


Fig. S3 ¹H NMR and ¹³C NMR spectra of the distillation residue of PC degradation solution (a and c) and the reaction solution of methanol and urea (b and d). Reaction conditions: (a and c) 0.2 g PC, 4 g methanol, 5 wt.% urea, 140 °C, 3 h. (b and d) 4 g methanol, 5 wt.% urea, 140 °C, 3 h.

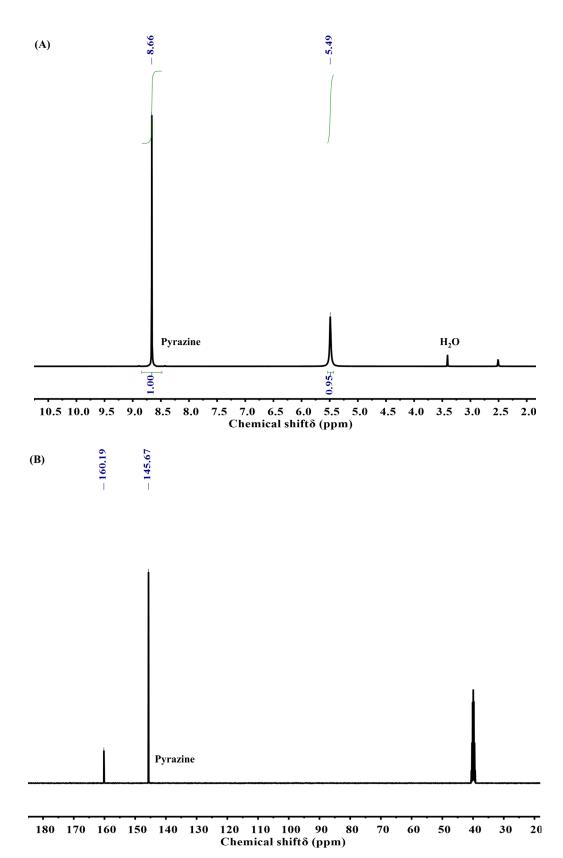


Fig. S4 ¹H NMR (A) and ¹³C NMR (B) spectra of the isolated urea (Internal standard: pyrazine). Reaction condition: 0.2 g PC, 4 g methanol, 10 wt.% urea, 140 °C, 3 h.

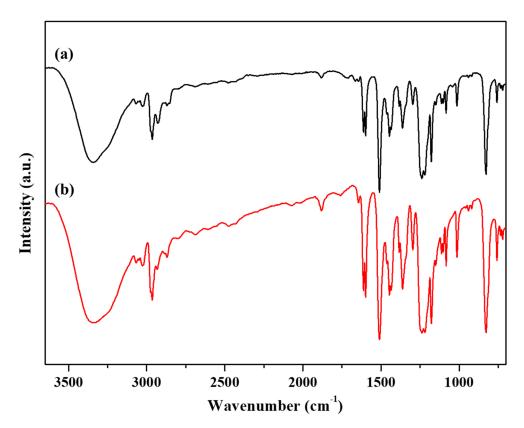


Fig. S5 IR spectra of (a) the degradation product BPA and (b) BPA standard. Reaction condition: 0.2 g PC, 4 g methanol, 10 wt.% urea, 140 $^{\circ}$ C, 3 h.

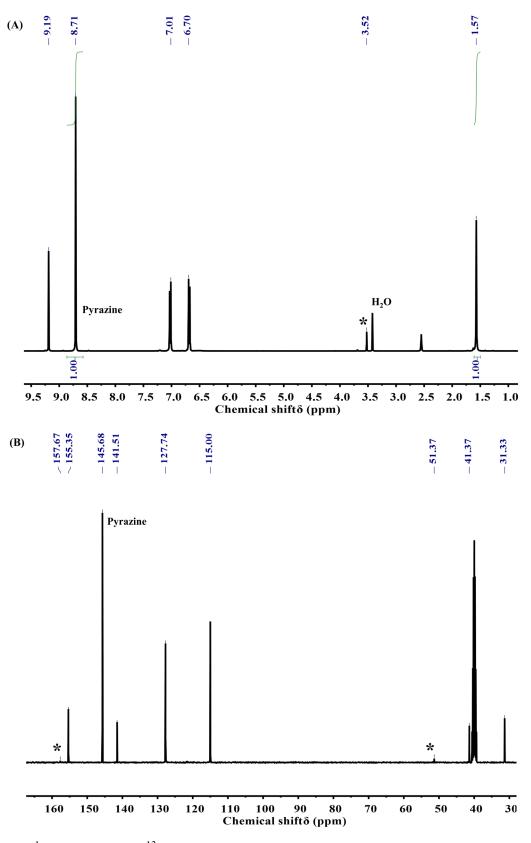


Fig. S6 ¹H NMR (A) and ¹³C NMR (B) spectra of the degradation product BPA (Internal standard: pyrazine; \star : methyl carbamate). Reaction condition: 0.2 g PC, 4 g methanol, 10 wt.% urea, 140 °C, 3 h.

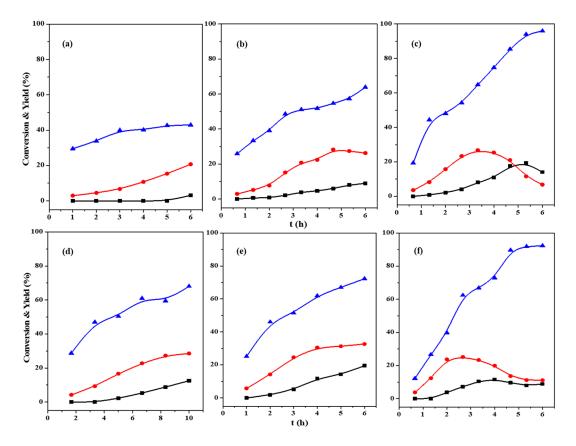


Fig. S7 DEC conversion (--), EMC yield (--) and DMC yield (--) as a function of time at different temperatures at urea concentration of 10 wt.% (a, b and c at 140 °C, 160 °C, 180 °C, respectively) and 30 wt.% (d, e and f at 120 °C, 140 °C, 160 °C, respectively) (0.46 g DEC, 2.52 g MeOH (molar ratio is 1:20)).

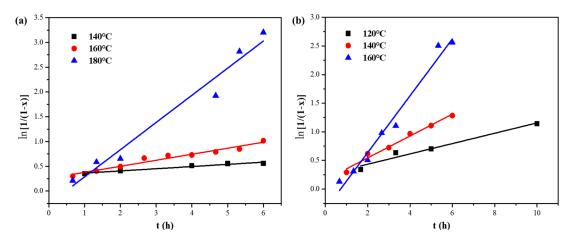
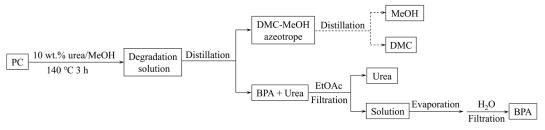



Fig. S8 $\ln[1/(1-x)]$ as a function of reaction time for the transesterification reaction between DEC and MeOH at different temperatures at urea concentration of (a) 10 wt.% and (b) 30 wt.% (x is the conversion of DEC).

Fig. S9 Arrhenius plots for the transesterification reaction between DEC and MeOH at urea concentration of (a) 10 wt.% and (b) 30 wt.%.

Scheme S1 The flow chart of the recycling of PC.

Temp./°C Pressure/MPa Urea concen./wt.%	130	140	150	160	180
0	0.69	0.93	1.25	1.60	2.54
5	0.66	0.90	1.19	1.55	2.45
10	0.64	0.88	1.15	1.48	2.36
30	0.59	0.80	1.03	1.32	2.12

Table S1 The pressures of the urea/methanol solutions at different concentrations and temperatures^a

^a Reaction condition: Teflon-lined stainless autoclave.

Table S2 PC methanolysis catalyzed by urea or MC^a

Entry	Catalyst	Time/h	Degraded or not
1	Urea	4	Yes
2	MC	18	No

^a PC: 0.2 g, MeOH: 4 g, catalyst: 3.3×10^{-3} mol, reaction temperature: 140 °C; MC: methyl carbamate.

Table S3 Element analysis results of BPA samples

BPA sample	C (%)	H (%)	O (%)	N (%)
Isolated product	78.29	6.97	14.56	0.18
Standard	78.89	6.95	14.12	0.04

Cycle	Degradation rate (%)	Cumulative yield (%)
0	100	—
1	100	_
2	100	_
3	100	_
4	100	_
5	100	_
6	100	_
7	100	_
8	100	_
9	100	—
10	100	BPA: 97.7, DMC: 33

Table S4 The reusability of the PC degradation system^a

^a Reaction condition: 0.17 g PC, 3.38 g methanol, 0.34 g urea, 140 $^{\circ}$ C, 3 h. The degradation solution was reused directly by simply adding 0.17 g fresh PC at the end of each run.

Mode	Input	put Input		Input	Output	Yield/%	
Mode	material	type	material	weight/g	weight/g	r leid/%	
	PC	Raw		0.2075			
		material					
a single	MeOH	Solvent		4.0078			
degradation	Urea	Catalyst		0.4021			
			DMC		0.0549	74.7	
			BPA		0.1740	93.4	
	PC	Raw		1.8406 ^c			
		material					
10 cycles of	MeOH	Solvent		3.3872			
degradation ^b	Urea	Catalyst		0.3432			
		-	DMC		0.2150	33 ^d	
			BPA		1.6144	97.7 ^d	

Table S5 Material input-output table for the recycling of PC in two modes^a

^a m_{PC}: m_{MeOH} =1: 20, 10 wt.% urea, 140 °C 3 h. ^b The degradation solution was reused directly by simply adding 0.17 g fresh PC at the end of each run. ^c Total PC input. ^d Cumulative yield.

Mode	sEF (kg/kg)	cEF (kg/kg)	EF (kg/kg)	Waste amount (kg/kg PC)	PMI (kg/kg)
a single degradation	1.66	19.17	3.41	3.76	20.17
10 cycles of degradation ^a	0.19	2.04	0.38	0.38	3.04

Table S6 Green metrics for the recycling of PC in two modes

^a The degradation solution was reused directly for the next reaction.

Entry	Catalyst	Solvent	Y_{BPA} /%	Y_{DMC}	Reusability	Ref.	Notes
1	[EmimOH]Cl-2Urea	_	98	_	4	4	The catalyst or solvent has certain toxicity;
2	[Ch]3[PO4]	2-Me-THF	68	—	5	5	no recovering DMC
3	NaOH	THF	96.7	91.2	—	6	Use toxic solvents
4	NBu4Cl/ZnO-NPs	THF	98	99	5	7	
5	Zn(2)Et ^a	2-Me-THF	96	86	—	8	
6	DBU	_	99	99	7	9	DBU is corrosive and irritating.
7	[Bmim][Cl]	—	95.8	96.5	8	10	The catalyst has certain toxicity; the
							preparation of ILs is cumbersome and
							costly.
8	Urea	—	93.4	74.7	10	This	Urea is green, cheap, mass produced, and
						work	readily available; recover both BPA and
							DMC; no additional solvents

Table S7 Comparison of representative catalytic systems for the methanolysis of PC

^a A Zn^{II}-complex.

References

1. R.A. Sheldon, Green Chem., 2007, 9, 1273-1283.

2. R.A. Sheldon, Green Chem., 2017, 19, 18-43.

3. F. Roschangar, R. A. Sheldon and C. H. Senanayake, Green Chem., 2015, 17, 752-768.

4. W. Huang, H. Wang, W. Hu, D. Yang, S. Yu, F. Liu and X. Song, RSC Adv., 2021, 11, 1595-1604.

5. F. D'Anna, M. Sbacchi, G. Infurna, N. T. Dintcheva and S. Marullo, *Green Chem.*, 2021, 23, 9957-9967.

6. C. S. Bhogle and A. B. Pandit, Ultrason. Sonochem., 2019, 58, 104667.

7. F. Iannone, M. Casiello, A. Monopoli, P. Cotugno, M. C. Sportelli, R. A. Picca, N. Cioffi, M. M.

Dell'Anna and A. Nacci, J. Mol. Catal. A-Chem., 2017, 426, 107-116.

8. J. M. Payne, M. Kamran, M. G. Davidson and M. D. Jones, ChemSusChem, 2022, 15, e202200255.

9. E. Quaranta, D. Sgherza and G. Tartaro, Green Chem., 2017, 19, 5422-5434.

10. F. Liu, Z. Li, S. Yu, X. Cui and X. Ge, J. Hazard. Mater., 2010, 174, 872-875.