Direct capture of low-concentration CO₂ and selective hydrogenation

to CH₄ over Al₂O₃-supported Ni-La dual functional materials

Tomotaka Tatsumichi^a, Rei Okuno^a, Hideki Hashimoto^{a,b}, Norikazu Namiki^a, Zen Maeno^{a,*}

^aSchool of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, Hachioji, Tokyo, 192-0015, Japan

^bCenter for Basic Research on Materials, National Institute for Materials, Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan, PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan

*Corresponding author

Zen Maeno, E-mail: zmaeno@cc.kogakuin.ac.jp

Figure S1. Comparison of CO₂ profiles in blank tests with SiC (blue solid line) and without any material (black dashed line).

Figure S2 Schematic view of reactor setup of CCR including gas detector system.

Figure S3 Concentration profile of CO_2 and CH_4 in CO_2 capture in the presence of O_2 and hydrogenation using Ni-La(15)/Al₂O₃.

Figure S4 Different HAADF-STEM image and elemental mapping obtained by EDX spectroscopy for Ni-La(15)/Al₂O₃

Figure S5 TEM images of fresh and spent Ni-La(15)/Al₂O₃ (after 80 cycles of DAC and methanation)

Figure S6 Ni K-edge XANES spectra of Ni-La(15)/Al₂O₃ before CCR (as-calcined), after H₂ pretreatment (under H₂ flow), and during CO₂ capture from the mixture with O₂ (under CO₂+O₂ flow). The spectra of Ni-La(15)/Al₂O₃ were recorded at 350 C using an in situ quartz cell connecting to gas mixture systems (at BL14B2 in SPring-8) without exposure to air whereas two reference samples were measured at ambient temperature.

Figure S7 TPD profile of CO₂-preadsorbed Ni-La(15)/Al₂O₃. The H₂ prereduced DFMs were exposed to 1% CO₂+20% O₂/N₂ flow at 100 °C, followed by N₂ purge for 15 min and successive TPD measurement under N₂ flow with increasing the temperture to 600 °C (10 °C /min).

Figure S8 (a and b) Concentration profile of CO_2 (red) and CH_4 (blue) in ambient DAC and methanation using Ni-La(15)/Al₂O₃ in different cycles. (c) Comparison of CO_2 concentration profile with blank test (black dot line).

Figure S9 XRD patterns of fresh and spent Ni-La(15)/Al₂O₃.

Figure S10 Concentration profile of CO₂ and CH₄ in CCR with or without vapor co-feeding.

DFM	<i>Ad_{CO2}</i> ^[a]	Q _{CH4} ^[a]	C _{CH4_Max}	[b]	S _{CH4} ^[c] [%]	Conv _{adCO2}
	[mmol/g]	[mmol/g]	[ppm]			^[c] [%]
Ni-La(15)/Al ₂ O ₃	0.158	0.120	7	798	99	76
Ni-Ca(4)/Al ₂ O ₃	0.129	0.121	4	938	93	94
Ni-Na(3)/Al ₂ O ₃	0.219	0.173	9	006	94	82

Table S1 Results of CCR test over a series of Ni-based DFMs in the absence of O2

Reaction conditions: 0.1 g of catalyst, 350 °C, 100 mL/min of 1% CO_2/N_2 for 5 min, followed by 100 mL/min 20% H₂ /N₂ for 5 min. b Composition of the effluent gas at the outlet was quantitatively analysed using FTIR spectroscopy combined with a gas cell. c Based on the amount of CO and CH₄ generated during the reduction period.

Table S2 Comparison of CH_4 formation amount among reported DFMs under mild reaction conditions in the co-presence of O_2

DFM	Adsorption conditions	Hydrogenation conditions	CH ₄	Ref.
			formation	
			[mmol/g]	
Ni-La(15)/Al ₂ O ₃	1% CO ₂ +20% O ₂ /N ₂ ,	20% H ₂ /N ₂ ,	0.129	This
	350 °C, 5 min	350 °C, 5 min		work
5% Ru 10%	10% CO ₂ /Air,	5% H ₂ /N ₂ ,	0.50	[S1]
CaO/γ-Al ₂ O ₃	320 °C, 20 min	320 °C, 20 min		
15NiCa/Al ₂ O ₃	10% CO ₂ /Air,	10% H ₂ /Ar,	0.109	[S2]
	360 °C, 1 min	360 °C, 2 min		
Na ₂ O-Ni/Al ₂ O ₃	7.5% CO ₂ +4.5% O ₂ +	15% H ₂ /N ₂ ,	0	[S3]
	15% H ₂ O/N ₂ ,	320 °C, >20 min		
	320 °C, 20 min			

Reference [S1] *Appl. Catal. B*, **2015**, *168-169*, 370. [S2] *J. CO2 Util.*, **2019**, *34*, 576. [S3] *Chem. Eng. J.*, **2019**, *375*, 121953.

Table S3 Results of CCR over Ni-La(15)/Al₂O₃ with or without vapor co-feeding

Condition	Q _{CH4} ^[a] [mmol/g]	C _{CH4_Max} ^[b] [ppm]	S _{CH4} ^[c] [%]
With co-feeding (100 RH% at 25 °C)	0.076	66779	99
Without co-feeding	0.038	27429	99

Reaction conditions: 2 g of catalyst, 350 °C, 1000 mL/min of 0.8% $CO_2+20\% O_2/N_2$ or 0.8% $CO_2+20\% O_2+vapor$ (100 RH% at 25 °C)/N₂ for 3 min, followed by 100 mL/min H₂ for 3 min. b Composition of the effluent gas at the outlet was quantitatively analysed using FTIR spectroscopy combined with a gas cell. c Based on the amount of CO and CH₄ generated during the reduction period.