Supporting Information

Opening pathways for the conversion of woody biomass into sustainable aviation fuel via catalytic fast pyrolysis and hydrotreating

Michael B. Griffin*a, Kristiina Iisaa, Abhijit Duttaa, Xiaolin Chena, Cody Wrasmana, Calvin Mukarakatea, Matthew M. Yunga, Mark R. Nimlosa, Luke Tuxworthb, Xavier Baucherelb, Steven M. Rowlanda, Susan E. Habasa

Table S1. Compositional analysis of the biomass feedstock	
C, wt%	49.4%
H, wt%	6.1%
N, wt%	0.2%
Ash, wt%	1.0%
H ₂ O, wt%	3.3%
O by difference, wt%	43.3%
O dry basis, wt%	41.8%

Table S2. Carbon yields of gases produced during CFP gC/gC in biomass x 100%		FP
	17-O CFP	20-O CFP
СО	11.9	12.8
CO ₂	4.9	4.6
CH ₄	2.8	2.4
Ethene	2.7	2.2
Propene	2.3	1.9
Butenes	0.7	0.8
Ethane	0.2	0.2
Propane	0.4	0.3
Total	25.8	25.1

Table S3. Compositional analysis of CFP-oils by GC-MS, wt%		
	17-O CFP	20-O CFP
Aromatic hydrocarbons	14.1	7.9
Phenols (monofunctional)	3.3	2.6
Benzenediols	0	0
Methoxyphenols	3.2	3.7
Naphthols/Indenols	0.8	0.6
Ketones	1.3	1.7
Aldehydes	0.4	1.1
Furans	0.3	0.6
Acids	0.2	0.4
Anhydrosugars	1.9	2.9
Total	25.5	21.6

Table S4. Characterization of Pre-Reaction, Post-Reaction, and Regenerated ZSM-5 Catalysts

	Surface Area,	Acid Site Density,
	m ² /g	μmol NH3/g
Pre-Reaction	340	765
Post-Reaction	85	516
Regenerated	336	722

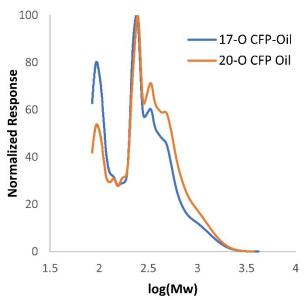


Figure S1. Gel permeation chromatography illustrating the comparatively low molecular weight distribution of the 17-O vs 20-O CFP-oils.

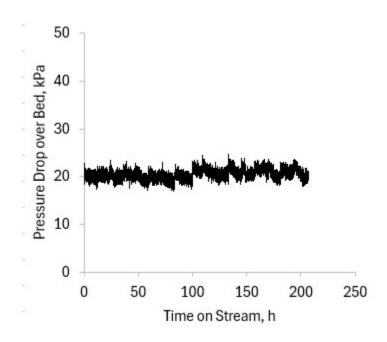
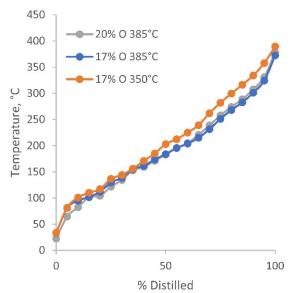



Figure S2. Measured pressure drop over the catalyst bed during hydrotreating of the 17-O CFP-oil

Table S5. Mass yields of gases produced during hydrotreating, g/g CFP-oil x 100%		
	17-O CFP	20-O CFP
CO	0	0
CO ₂	0	0
CH ₄	1.5	2.2
C_2	0.7	1.3
C ₃	1.1	2.4
C_4	0.3	0.5
C ₅	0.4	0.6

rigure 05. Omnument distinution (1511) 22007/0117 0 and 20 0 ci.?-oils hydrotreated at 385 and 350 °C.

Table S6. Unit prices of key inputs* for TEA			
	Unit	Value	Cost Year
Feedstock (50 wt% pine	\$/dry		
/50 wt% residues)	US ton	67	2016
CFP catalyst §	\$/lb	9.75	2011
Hydrotreating Catalyst	\$/lb	20	2011

^{*}Other than feedstock, all assumptions are maintained from 2015 design report: $https://www.nrel.gov/docs/fy15osti/62455.pdf\;.$

- \ddag As in our other work, PPI industry sub-sector data for Chemical Manufacturing was used to update prices to 2016 \$
- \S A different catalyst unit cost can be prorated in the cost contribution tables to evaluate sensitivity to catalyst costs .

Process Area		Purchased Equip. Cost	Installed Cost
Area 100: Feed Handling & Drying		\$300,000	\$580,000
Area 200: Fast Pyrolysis & Vapor Upgrading		\$64,240,000	\$179,200,000
Area 300: Pyrolysis Vapor Quench		\$6,210,000	\$11,410,000
Area 400: Hydroprocessing and Separation		\$22,680,000	\$36,040,000
Area 500: Hydrogen Plant		\$24,760,000	\$50,060,000
Area 600: Steam System and Power Generation		\$40,820,000	\$73,760,000
Area 700: Cooling Water and Other Utilities		\$4,980,000	\$10,000,000
Area 800: Water Management		\$8,400,000	\$19,850,000
Totals		\$172,390,000	\$380,910,000
Total Purchased Equipment Cost (TPEC)			\$172,390,000
Installation Factor			2.210
Total Installed Cost (TIC)			\$380,910,000
Other Direct Costs			
Land (Not Depreciated)			\$1,610,000
Warehouse	4.0%	of ISBL	\$9,090,000
Site Development	10.0%	of ISBL	\$22,720,000
Additional Piping	4.5%	of ISBL	\$10,230,000
Total Direct Costs (TDC)			\$422,940,000
Indirect Costs		% of TDC	
Prorated Expenses		10.0%	\$42,290,000
Home Office & Construction Fees		20.0%	\$84,590,000
Field Expenses		10.0%	\$42,290,000
Project Contingency		10.0%	\$42,290,000
Other Costs (Start-Up & Permits)		10.0%	\$42,290,000
Total Indirect Costs		60.0%	\$253,770,000
Fixed Capital Investment (FCI)			\$676,710,000
Working Capital	5.0%	of FCI (ex Land)	\$33,840,000
Total Capital Investment (TCI)			\$710,550,000

Process Area		Purchased Equip. Cost	Installed Cost
Area 100: Feed Handling & Drying		\$340,000	\$650,000
Area 200: Fast Pyrolysis & Vapor Upgradi	ng	\$63,270,000	\$176,420,000
Area 300: Pyrolysis Vapor Quench		\$6,330,000	\$11,620,000
Area 400: Hydroprocessing and Separation	ı	\$25,290,000	\$40,200,000
Area 500: Hydrogen Plant		\$26,100,000	\$52,110,000
Area 600: Steam System and Power Genera	ation	\$38,560,000	\$70,040,000
Area 700: Cooling Water and Other Utilitie	es	\$4,890,000	\$9,900,000
Area 800: Water Management		\$12,190,000	\$28,670,000
Totals		\$176,960,000	\$389,610,000
Total Purchased Equipment Cost (TPEC	C)		\$176,960,000
Installation Factor			2.202
Total Installed Cost (TIC)			\$389,610,000
Other Direct Costs			
Land (Not Depreciated)			\$1,610,000
Warehouse	4.0%	of ISBL	\$9,160,000
Site Development	10.0%	of ISBL	\$22,890,000
Additional Piping	4.5%	of ISBL	\$10,300,000
Total Direct Costs (TDC)			\$431,960,000
Indirect Costs		% of TDC	
Prorated Expenses		10.0%	\$43,200,000
Home Office & Construction Fees		20.0%	\$86,390,000
Field Expenses		10.0%	\$43,200,000
Project Contingency		10.0%	\$43,200,000
Other Costs (Start-Up & Permits)		10.0%	\$43,200,000
Total Indirect Costs		60.0%	\$259,170,000
Fixed Capital Investment (FCI)			\$691,130,000
Working Capital	5.0%	of FCI (ex Land)	\$34,560,000
Total Capital Investment (TCI)			\$725,690,000

Feedstock	176.9
Natural Gas	0.1
Catalysts*	96.4
Sand	0.8
Other Raw Materials	9.5
Waste Disposal	3.6
Purchased Electricity	0.0
Fixed Costs	117.4
Refinery Coprocessing Cost	0.0
Electricity Coproduct Credit	-73.0
Capital Depreciation	124.3
Average Income Tax	26.1
Average Return on Investment	186.4
Total	668.6

*]	Modeled hydrotreating catalyst con	tribution = 27.2 cents/GGE

Table S10. Modeled Cost Contributions in 2016\$ (20-O base case)	cents/GGE
Feedstock	156.6
Natural Gas	0.2
Catalysts*	89.4
Sand	0.7
Other Raw Materials	8.5
Waste Disposal	3.3
Purchased Electricity	0.0
Fixed Costs	105.6
Refinery Coprocessing Cost	0.0
Electricity Coproduct Credit	-53.9
Capital Depreciation	112.4
Average Income Tax	23.5
Average Return on Investment	168.7
Total	615.0
* Modeled CFP catalyst contribution = 60.6 cents/GGE	
* Modeled hydrotreating catalyst contribution = 28.1 cents/GGE	

Operation	Emissions (g CO2e/MJ)
Forest residue processing	3.7
Forest residue transportation	2.8
Receiving handling and storage	0.3
Forest residue preprocessing	13.2
Pine collection	8.5
Pine processing	0.3
Pine transportation	1.6
Pine handling and storage	0.1
Pine preprocessing	15.5
Fuel production	-40.0
Fuel combustion	1.1
Total	7.0
Petroleum Jet Fuel (PJF) incumbent	88.7
GHG reduction compared to incumbent	92%

Table S12. Breakdown of GHG Emissions (20-O base case)	
Operation	Emissions (g CO2e/MJ)
Forest residue processing	3.3
Forest residue transportation	2.4
Receiving handling and storage	0.2
Forest residue preprocessing	11.7
Pine collection	7.5
Pine processing	0.3
Pine transportation	1.4
Pine handling and storage	0.1
Pine preprocessing	13.7
Fuel production	-28.4
Fuel combustion	1.1
Total	13.3
Petroleum Jet Fuel (PJF) incumbent	88.7
GHG reduction compared to incumbent	85%