Promoted CO₂ photoreduction toward HCOOH generation

by nucleophilic effect in Co/Mg synergistic catalysis

Luyao Wang,^{a,b} Siqi You,^a Yaru Gong,^b Jianxia Gu,^c Jiangwei Zhang,^d Guogang Shan,*^a Bo Zhu,*^a Weiting Yang,^b Chunyi Sun,*^a Xinlong Wang^a and Zhongmin Su^{a,b}

^a National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun 130024, China

^b School of Chemistry and Chemical Engineering Hainan University, No. 58 Renmin Road, Haikou 570228, P. R. China

^c Department of Chemistry, Xinzhou Normal University, Xinzhou, China

^d Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China

1. Materials and Characterizations

The ligand H₄TCPP was synthesized by a documented method. All the chemicals were of analytical grade and purchased from commercial sources without any further purification. ICP spectroscopy was conducted on Agilent 7500a Inductively Coupled Plasma Mass Spectrometry (ICP-MS 7500). TEM images were recorded on a JEM-2010 transmission electron microscope at an accelerating voltage of 200 kV. XPS was performed using an Escalab 250 instrument. Powder X-ray diffraction (PXRD) patterns were collected on a Siemens D5005 diffractometer with Cu-K α radiation (λ =1.5418 Å) in the range of 5-40°at room temperature. Thermogravimetric analysis (TGA) was performed on a PerkinElmer TG-7 analyzer heated from 30-800 °C at the heating rate of 10 °C ·min⁻¹ under a dry nitrogen gas atmosphere.

2.Computational calculation method

The ground-state geometry optimizations, vibrational frequency calculations were performed on the CoMg-TCPP and Co-TCPP catalyzed HCOOH formation at the B3LYP/[6-31G(d,p)/LanL2DZ(Co,Mg)] level. All calculations were carried out with the Gaussian 16 program [1].

3. Synthesis

Synthesis of Mg-TCPP

 $Mg(NO_3)_2$ •6H₂O (60mg, 0.23 mmol) and H₄TCPP (10.0 mg, 0.017 mmol) were dissolved in the mixture of N, N'-dimethylacetamide (DMF 3 mL) and acetonitrile (1 mL) and nitric acid (60µL). The as-obtained mixture was transferred to a stainless steel Teflon-lined autoclave of 20 mL capacity. Stir at room temperature for 1 hour and place in a pre-heated oven at 130°Cfor 30h. Cool naturally to room temperature. The resulting colorless product was washed 3 times in DMF to remove other magazine ions from the solution [2].

Synthesis of Co-TCPP

Co (NO₃)₂·6H₂O (35 mg, 0.12 mmol) and H₄TCPP (10.0 mg, 0.017 mmol) were dissolved in the

mixture of N, N'-dimethylacetamide (DMF 3 mL) and acetonitrile (1 mL) and nitric acid (50μ L). The as-obtained mixture was transferred to a stainless steel Teflon-lined autoclave of 20 mL capacity. Stir at room temperature for 1 hour and place in a pre-heated oven at 130°C for 30h. Cool naturally to room temperature. The resulting mauve product was washed 3 times in DMF to remove other magazine ions from the solution [3].

4. Figures and Tables

Fig. S1. Crystal before and after ion exchange.

Fig. S2. PXRD of CoMg-TCPP after 48 h immersion in H₂O.

Fig. S3. The fully scanned spectrum of CoMg-TCPP.

Fig. S4. The coordination-environment of Mg-TCPP.

Fig. S5. Co K-edge XANES spectra of CoMg-TCPP.

Fig. S6. Magnitude of k²-weighed Fourier transforms of the Co K-edge EXAFS spectra of CoMg-TCPP.

Fig. S7. TGA curves of Co-TCPP.

Fig. S8. TGA curves of CoMg-TCPP.

Fig. S9. N_2 adsorption and desorption isotherms of CoMg-TCPP at 77 K (inset: pore size distribution).

Fig. S10. CO₂ adsorption and desorption isotherms of CoMg-TCPP at 298 K.

Fig. S11. PXRD of CoMg-TCPP before and after 2 h photocatalytic reaction.

Fig. S12. HRTEM and EDS mapping images of CoMg-TCPP after photocatalytic reaction.

Fig. S13. Schematic of the CO₂ photocatalytic system

Fig. S14. Time-course profiles of H_2 catalyzed by Co-TCPP.

Fig. S15. Time-course profiles of H₂ catalyzed by CoMg-TCPP.

Fig. S16. The Kohn-Sham orbitals of Co-TPPP.

Fig. S17. The Kohn-Sham orbitals of CoMg-TPPP.

MOFs	Quantity	Light	Time	СО	H_2	Ref
		[nm]	[h]	[µmol]	[µmol]	
Co-TCPP	1 mg	$\lambda \geqslant 420$	1	12.71	9.21	This work
CoMg-TCPP	1 mg	$\lambda \geqslant 420$	1	14.34	7.36	This work
MOF-Co	0.5 mg	$\lambda \geqslant 420$	5	22.8	25.3	
MOF-Ni	0.5 mg	$\lambda \geqslant 420$	12	22.3	0.52	[4]
MOF-Cu	0.5 mg	$\lambda \geqslant 420$	5	1.7	5.8	
Co-ZIF-9	0.8 µmol	$\lambda \geqslant 420$	0.5	41.8	29.9	
Co-MOF-74	0.8 µmol	$\lambda \geqslant 420$	0.5	11.7	14.6	[5]
Mn-MOF-74	0.8 µmol	$\lambda \geqslant 420$	0.5	1.5	1.8	
Co ₆ -MOF	0.005 mmol	$\lambda \geqslant 420$	0.5	3.73	2.81	[6]
Co-UiO-67	1 mg	400-800	4	13.2	49	[7]
Zr-DMBD	0.1 mg	$\lambda = 450$	10	3.33	0.041	[8]

Table S1 Compared to other MOF-based photocatalytic CO_2 reduction of CO.

MOFs	Time	НСООН	Ref
	[h]	[µmol]	
CoMg-TCPP	1	940	This work
NH ₂ -UiO-66(Zr)	1	13.2	[9]
TFZS	3	1693	[10]
Ni _{0.75} Mg _{0.25} -MOF-74	1	638	[11]
Cu ₂ O-Pt/SiC/IrOx	1	896.7	[12]
UiO67-Ir-Cou 6/Cu	1	480.7	[13]
P@U	1	146	[14]
NH ₂ -C@Cu ₂ O	1	22.5	[15]
PCN-222	1	30	[16]
Co/NH ₂ -MIL-125(Ti)	1	38.4	[17]

Table S2 Compared to other MOF-based photocatalytic CO₂ reduction of HCOOH.

Table S3 The research of reaction conditions of Co-TCPP.

	Co-TCPP	
Entry	CO [µmol]	H_2 [µmol]
1 ^a	12.71	9.21
2 ^b	n.d. ^c	n.d.
3 ^d	n.d.	n.d.
4 ^e	0.25	0.51
5 ^f	n.d.	0.77
6 ^g	n.d.	n.d.

^a Reaction conditions: $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (6 mg), Co-TCPP (1 mg) acetonitrile (MeCN, 4 mL), H₂O (1 mL), TEOA (1 mL), 30 °C, 1 h. ^b In the dark. ^c Not detectable. ^d Without $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$. ^c Without the Co-TCPP. ^f Using Ar to replace CO₂. ^g Without TEOA.

 Table S4 The research of reaction conditions of CoMg-TCPP.

CoMg-TCPP		
Entry	CO [µmol]	H ₂ [µmol]
1 ^a	14.34	7.36
2 ^b	n.d. ^c	n.d.
3 ^d	n.d.	n.d.
4 e	0.25	0.51
5 ^f	n.d.	0.63
6 ^g	n.d.	n.d.
7 ^h	7.46	23.57

^aReaction conditions: $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (6 mg), CoMg-TCPP (1 mg) acetonitrile (MeCN, 4 mL), H₂O (1 mL), TEOA (1 mL), 30 °C, 1 h. ^b In the dark. ^c Not detectable. ^d Without $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$. ^e Without the CoMg-TCPP. ^f Using Ar to replace CO₂. ^g Without TEOA. ^hUsing CH₃OH to replace MeCN.

Entry	HCOOH [µmol/g]	
1	940	
2 ^b	n.d. ^c	
3 ^d	n.d.	
4 ^e	n.d.	
6 ^f	n.d.	
8 g	n.d.	

Table S5 The research of reaction conditions of CoMg-TCPP.

^aReaction conditions: [Ru(bpy)₃]Cl₂·6H₂O (6 mg), CoMg-TCPP (1 mg) acetonitrile (MeCN, 4 mL), H₂O (1 mL), TEOA (1 mL), 30 °C, 1 h. ^b In the dark. ^c Not detectable. ^d Without [Ru(bpy)₃]Cl₂·6H₂O. ^e Without the CoMg-TCPP. ^f Using Ar to replace CO₂. ^g Without TEOA.

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. J.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, revision C. 01. Gaussian, Inc., Wallingford CT: 2019.
- L. Wang, W. Chen, W. Song, J. Tian, J. Sun, L. Wen, C. Sun, X. Wang, Z. Su and G. G. Shan, *Chin. Chem. Lett.*, 2023, 34, L. Wang, W. Chen, W. Song, J. Tian, J. Sun, L. Wen, C. Sun, X. Wang, Z. Su and G.-G. Shan, *Chin. Chem. Lett.*, 2023, 34, 107291.
- X. K. Wang, J. Liu, L. Zhang, L. Z. Dong, S. L. Li, Y. H. Kan, D. S. Li and Y. Q. Lan, ACS Catal., 2019, 9, 1726-1732.
- 4. S. Wang, W. Yao, J. Lin, Z. Ding and X. Wang, Angew. Chem. Int. Ed., 2013, 53, 1034-1038.
- J. Zhao, Q. Wang, C. Sun, T. Zheng, L. Yan, M. Li, K. Shao, X. Wang and Z. Su, *J. Mater. Chem.* A, 2017, 5, 12498-12505.
- X. Gao, B. Guo, C. Guo, Q. Meng, J. Liang and J. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 24059-24065.
- D. C. Liu, T. Ouyang, R. Xiao, W. J. Liu, D. C. Zhong, Z. Xu and T. B. Lu, *ChemSusChem*, 2019, 12, 2166-2170.
- D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu and Z. Li, *Chem. Eur. J.*, 2013, 19, 14279-14285.
- 9. E. Luévano-Hipólito and L. M. Torres-Martínez, *Mater Sci Semicond Process*, 2021, **134**, 106029.

- S. H. Guo, X. J. Qi, H. M. Zhou, J. Zhou, X. H. Wang, M. Dong, X. Zhao, C. Y. Sun, X. L. Wang and Z.-M. Su, *J. Mater. Chem. A*, 2020, 8, 11712-11718.
- Y. Wang, X. Shang, J. Shen, Z. Zhang, D. Wang, J. Lin, J. C. S. Wu, X. Fu, X. Wang and C. Li, *Nat. Commun.*, 2020, 11, 2041-1723.
- S. Guo, L. H. Kong, P. Wang, S. Yao, T. B. Lu and Z. M. Zhang, *Angew. Chem. Int. Ed.*, 2022, 61, e202206193.
- 13. H. B. Huang, Z. B. Fang, R. Wang, L. Li, M. Khanpour, T. F. Liu and R. Cao, *Small*, 2022, **18**, 2200407.
- Q. Zhu, Y. Cao, Y. Tao, T. Li, Y. Zhang, H. Shang, J. Song and G. Li, J. CO₂ Util., 2021, 54, 101781.
- 15. H. Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S. H. Yu and H. L. Jiang, *J. Am. Chem. Soc.*, 2015, **137**, 13440-13443.
- 16. Y. Fu, H. Yang, R. Du, G. Tu, C. Xu, F. Zhang, M. Fan and W. Zhu, *RSC Adv.*, 2017, 7, 42819-42825.