Electronic Supporting Information (ESI)

Sustainable pretreatment of blood samples using hydrophobic eutectic solvents to improve the detection of bisphenol A

Cariny Polesca^a, Helena Passos^{a,b,c}, Ana C. A. Sousa^{d,e,*}, Nguyen Minh Tue^e, João A. P. Coutinho^a, Tatsuya Kunisue^e, Mara G. Freire^{a,*}

¹ CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

² LSRE-LCM – Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Porto, Portugal

³ ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

⁴ Comprehensive Health Research Centre (CHRC), Department of Biology, School of Science and Technology, University of Évora, 7006-554 Évora, Portugal

⁵ Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Ehime, Japan

*e-mail of the corresponding author: maragfreire@ua.pt and acsousa@uevora.pt

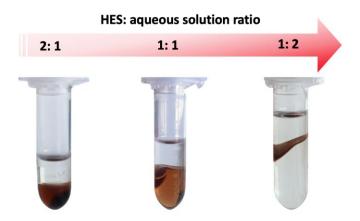
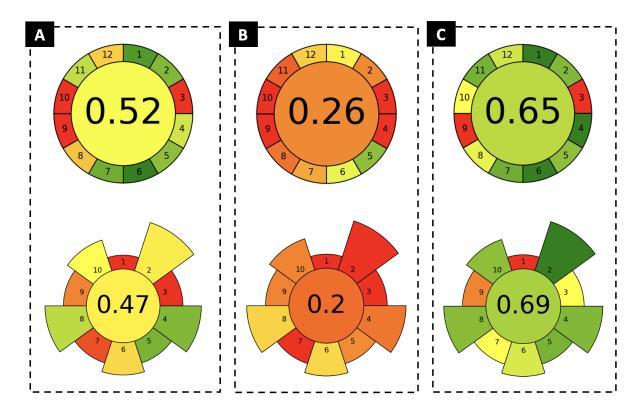



Figure S1. Influence of HES: aqueous solution ratio on blood precipitation.

Figure S2. Diagrams obtained in the greenness assessment of representative reported methods for determining BPA using AGREE and AGREEprep metrics: (A) [36], (B) [13] and (C) the developed HES-TPP system considering a decrease in sample size.

Compound	Water solubility (g·L ⁻¹) [35]	Hydrophobicity (Log Kow) [23]
Thymol (TH)	0.8	3.28
L-menthol (M)	0.4	3.19
Benzyl alcohol (BE)	40	1.10
Cyclohexanol (C)	37.6	1.23
Decanoic acid (DE)	0.06	4.09
Trioctylphosphine oxide (T)	Insoluble	9.76

Table S1. Compounds used in this work for HES preparation, water solubility, and hydrophobicity.

Table S2. Percentage extraction efficiencies of BPA (E_{BPA} %) using different HES and HES mole ratios.

HES	HES mole ratios	Ebpa (%)
TH:M	0.2:0.8	88 ± 2
	0.3:0.7	87 ± 1
	0.5:0.5	88 ± 2
	0.65:0.35	55 ± 3
BE:C	0.2:0.8	88 ± 2
	0.3:0.7	90 ± 3
	0.5:0.5	91 ± 4
	0.65:0.35	89 ± 3
DE:T	0.5:0.5	74 ± 4

Table S3. Percentage extraction efficiencies of BPA (E_{BPA} %) using different HES:aqueous solution ratios as obtained with UV measurement.

HES	HES:aq sol ratio (w/w)	Евра (%)
	1:2	68 ± 4
TH:M	1:1	88 ± 2
	2:1	88 ± 1
BE:C	1:2	37 ± 4
	1:1	91 ± 4
	2:1	82 ± 3
DE:T	1:2	53 ± 2
	1:1	74 ± 4
	2:1	92 ± 3

Time (min)	Ebpa (%)
2	7 ± 1
5	26 ± 2
10	29 ± 4
15	54 ± 4
20	54 ± 1

Table S4. Percentage extraction efficiencies of BPA (E_{BPA} %) using BE:C (0.5: 0.5 mol/mol) at different times.

Table S5. Percentage extraction efficiencies of BPA (E_{BPA} %) using different HES types as obtained with UV measurement.

HES	E _{BPA} (%)	
пер	Blood 1*	Blood 2*
TH:M	76 ± 2	76 ± 3
BE:C	54 ± 4	57 ± 2
DE:T	69 ± 2	63 ± 7

* The results were obtained with different blood samples, with the aim of confirming the reproducibility of the process.

Table S6. Percentage extraction efficiencies of BPA (E_{BPA} %) from water and blood as obtained by LC-MS/MS analysis.

HES	Blood	Евра (%)
TH:M	No	96 ± 2
	Yes	84 ± 1
BE:C	No	98 ± 3
	Yes	99 ± 3

References (ESI)

- [13] T. Geens, H. Neels, A. Covaci, *Chemosphere*, 2012, 87, 796–802.
- [23] ChemSpider, (2023). https://www.chemspider.com/ (accessed November 3, 2023).
- [35] Merk, Sigma-Aldrich, (2023).https://www.sigmaaldrich.com/PT/en/product/aldrich/w266590,

(accessed 2 April 2024).

[36] I.A. Wiraagni, M.A. Mohd, R. bin A. Rashid, D.E. bin Mohamad Haron, *PLoS One* 2019, 14.