Supporting Information

Catalytic synthesis of renewable lubricant base oils with methyl oleate and aromatics

Binbin Zhou¹, Nan Wang¹, Sibao Liu²*, Guozhu Liu^{1,3}*

¹Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
²Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resources, Fujian Normal University, Fuzhou, Fujian, 350007, China
³Haihe Lab of Sustainable Chemical Transformations, Tianjin, 300192, China

*Corresponding authors: liusibao@fjnu.edu.cn (Sibao Liu), gliu@tju.edu.cn (Guozhu Liu)

Strategy 3

Strategy 4

Strategy 5

Strategy 12 (This work)

Scheme S1 The strategies for the synthesis of alkane-based lubricant base oils from biomass

Strategy	The number of steps	Reagents	Reaction conditions	Overall yield / %	References
1	4	acetone and furfural	Step 1: 40 °C, 5 h, Yield: 97%; Step 2: 130 °C, 5 h, 5 MPa H ₂ , Yield: 72.8%; Step 3: 50 °C, 20 h, Yield: 83.8%; Step 4: 175 °C, 24 h, 5 MPa H ₂ , Yield: 75.5%.	44.7	M. Gu, Q. Xia, X. Liu, Y. Guo and Y. Wang, <i>ChemSusChem</i> , 2017, 10 , 4102-4108.
2	2	methyl ketones	Step 1: 160 °C, 3 h, Yield: 98%; Step 2: 160 °C, 6 h, 3.5 MPa H ₂ , Yield: 98%.	96	M. Balakrishnan, G. E. Arab, O. B. Kunbargi, A. A. Gokhale, A. M. Grippo, F. D. Toste and A. T. Bell, <i>Green Chem.</i> , 2016, 18 , 3577-3581.
3	2	furfural and 12- tricosanone	Step 1: 80 °C, 8 h, Yield: 94.3%; Step 2: 180 °C, 18 h, 5 MPa H ₂ , Yield: 61.4%.	57.9	A. M. Norton, S. Liu, B. Saha and D. G. Vlachos, <i>ChemSusChem</i> , 2019, 12 , 4780-4785.
4	2	2-pentylfuran and lauraldehyde	Step 1: 65 °C, 6 h, Yield: 90%; Step 2: 170 °C, 12 h, 5 MPa H ₂ , Yield: 92%.	82.8	S. Liu, B. Saha1 and D. G. Vlachos, <i>Sci. Adv.</i> , 2019, 5 , eaav5487.
5	2	2-pentylfuran and crotanaldehyde	Step 1: 65 °C, 2 h, Yield: 72%; Step 2: 180 °C, 18 h, 5 MPa H ₂ Yield: 88%.	63.4	S. Liu, B. Saha and D. G. Vlachos, <i>Green Chem.</i> , 2019, 21 , 3606-3614.
6	2	furan, furfural, and aliphatic aldehyde	Step 1: 100 °C, 12 h, Yield: 82%; Step 2: 230 °C, 3 h, Yield: 80%.	65.6	Y. Liu, S. Chen, Z. Gao, J. Tian, B. Ma and C. Zhao, <i>ACS Sustain. Chem. Eng.</i> , 2024, 12 , 3167-3174.

 Table S1 The comparisons of the synthesis of alkane-based lubricant base oils from biomass with different strategies (Scheme S1)

12	2	methyl oleate and bio-aromatics	Step 1: 60 °C, 1 h, Yield: 99%; Step 2: 180 °C, 12 h, 4 MPa H ₂ , Yield: 96.3%.	96.3	This Work
11	2	guaiacol and lauryl aldehyde	Step 1: 150 °C, 12 h, Yield: 76%; Step 2: 200 °C, 12 h, 5MPa H ₂ , Yield: 82%.	62.3	E. O. Ebikade, S. Sadula, S. Liu and D. G. Vlachos, <i>Green Chem.</i> , 2021, 23 , 10090-10100.
10	4	lipids	Step 1: 300 °C, 6 h, 5 MPa H ₂ , Yield: 99%; Step 2: 300 °C, 6 h, Yield: 90%; Step 3: 120 °C, 4 h, Yield: 95%; Step 4: 250 °C, 3 h, 4 MPa H ₂ , Yield: 100%.	84.6	S. Chen, T. Wu and C. Zhao, <i>Green Chem.</i> , 2020, 22 , 7348-7354.
9	4	fatty acid methyl esters	Step 1: 240 °C, 4 h, Yield: 82%; Step 2: 50 °C, 3 h, Yield: 99%; Step 3: 0 °C, 5 h, Yield: 82.1%; Step 4: 250 °C, 3 h, 1 MPa H ₂ , Yield: 100%.	67.3	S. Chen, T. Wu, Y. Fang and C. Zhao, <i>Renew. Energy</i> , 2022, 186 , 280-287.
8	6	oleic acid	Step 1: 50 °C, 8 h, Yield _{nonanoic acid} : 81%, Yield _{azelaic acid} : 96%; Step 2: 120 °C, 3 h, Yield: 100%; Step 3: 250 °C, 3 h, 4 MPa H ₂ , Yield: 96.9%; Step 4: 0 °C, 2h, 25 °C, 4h, Yield: 75.3%; Step 5: 250 °C, 3 h, 4 MPa H ₂ , Yield: 85%; Step 6: 250 °C, 3 h, 4 MPa H ₂ , Yield: 75%.	37.7	S. Chen, T. Wu and C. Zhao, <i>ChemSusChem</i> , 2020, 13 , 5516-5522.
7	4	hexanoic acid, furoic acid and HMF	Step 1: 260 °C, 6 h, Yield: 82.2%; Step 2: 220 °C, 3 h, 2 MPa H ₂ , Yield: 96.5%; Step 3: 60 °C, 12 h, Yield: 91-93%; Step 4: 260 °C, 10 h, 5 MPa H ₂ , Yield: 98%.	70.7	S. Chen and C. Zhao, <i>ACS Sustain. Chem. Eng.</i> , 2021, 9 , 10818-10826.

Scheme S2 Approaches to the synthesis of methyl oleate via transesterification of lipids with methanol.

Scheme S3 Approaches to the synthesis of bio-aromatics from lignocellulosic, furan compounds and lignin monomer.

Scheme S4 Strategies for the synthesis of bio-lubricants with methyl oleate.

Strategy	The number of steps	Reagents	Reaction conditions	Overall yield / %	References
1	3	methyl oleate and 2-octanol	Step 1: 110 °C, 2h; Step 2: 100 °C, 2-12 h; Step 3: room temperature, overnight, 2-12 h.	68.4	JL. Dubois, JL. Couturier, S. J. Asadauskas, L. Labanauskas, D. Bražinskienė and R. Blaauw, <i>RSC Adv.</i> , 2021, 11 , 31030-31041.
2	2	methyl oleate and organic acids	Step 1: room temperature, 5 h; Step 2: 100 °C, 7 h.	80.0	K. M. Doll, B. K. Sharma and S. Z. Erhan, <i>Ind. Eng. Chem.</i> <i>Res.</i> , 2007, 46 , 3513-3519.
3	1	methyl oleate and trimethylolpropane	Step 1: 2 h, 130 °C.	79.7	M. S. Elmelawy, A. El-Meligy, H. A. Mawgoud, A. S. Morshedy, S. A. Hanafy and I. Et. El-sayed, <i>Biomass</i> <i>Convers. Biorefinery</i> , 2021, 13 , 1645-1657.
4	1	methyl oleate and isopropyl chloroformate	Step 1: 1 h, 15 °C.	71	U. Biermann and J. O. Metzger, J. Am. Chem. Soc., 2004, 126 , 10319-10330.
5	1	methyl oleate and bio-aromatics	Step 1: 60 °C, 1 h.	99	This Work
6	2	methyl oleate and bio-aromatics	Step 1: 60 °C, 1 h; Step 2: 180 °C, 12 h, 4 MPa H ₂ .	91.1	This Work

 Table S2 The comparisons of the synthesis of bio-lubricant base oils from methyl oleate with different strategies (Scheme S4)

Fig. S1 The observed isomers of methyl (methylphenyl) octadecanoate (MMPO) in the alkylation step

Entry	Time / h	Con. / %	Yield / %	C.B. / %
1	0.25	99.9	97.4	98.4
2	1	99.9	99.0	99.9
3	2	99.9	96.2	97.2
4	3	99.9	98.7	99.7
5	4	99.9	99.9	99.9

Table S3 Effects of reaction time on the alkylation of methyl oleate over AlCl₃.

Reaction condition: AlCl₃ (3.75 mmol), methyl oleate (3 mmol), toluene (48 mmol), 60 °C.

Fig. S2 The measurement of ¹³C-NMR of the products from time dependent experiments.

Fig. S3 Alkylation of methyl oleate with diverse aromatics at low conversion. Reaction conditions: AlCl₃ (1.5 mmol), methyl oleate (3 mmol), aromatic (48 mmol), T (60 °C), t (1 h).

Fig. S4 The appearance of C_{26} AEL-T (a), C_{27} AEL-PX (b), C_{28} AEL-PB (c), C_{25} CBAL-T (d), C_{26} CBAL-PX (e), C_{27} CBAL-PB (f).

Fig. S7 (a) ¹H-NMR, (b) ¹³C-NMR, and (c) Mass spectra of C_{27} AEL-EB.

(b)

(b)

90 80 f1 (ppm) -1

Fig. S9 (a) ¹H-NMR, (b) ¹³C-NMR, and (c) Mass spectra of C_{27} AEL-OX.

(b)

80 75

90 85

65

70

60

55 50 45 f1 (ppm) 40 35

30

25

20

15

10

5 0

