A Sequential flow process of CO<sub>2</sub> capture and conversion using cost-effective porous organic polymers

Zhongqi Wu<sup>1#</sup>, Zhong Li<sup>1#</sup>, Lei Hu<sup>1</sup>, Samson Afewerki<sup>2</sup>, Maria Strømme<sup>2</sup>, Qian-Feng Zhang<sup>1</sup>, Chao Xu\*<sup>1,2</sup>

<sup>1</sup>Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, 243002 (P. R. China)

<sup>2</sup>Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, 75121 Uppsala (Sweden)

<sup>#</sup>These authors contributed equally to this work

E-mail: chao.xu@angstrom.uu.se

# **Experimental section**

# Materials

2,6-diaminopyridine (2,6-DAP) was purchased from Alfa Aesar, 3,5-diaminopyridine (3,5-DAP), 4,4biphenyldicarboxaldehyde (BDA) were purchased from Tensus Biotech, terephthalaldehyde (TPA), isophthalaldehyde (IPA), 2-phenylethylamine, 4-methoxybenzylamine, propargylic bromide, sodium bicarbonate, anhydrous sodium carbonate, 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), were purchased from McLean Chemical Reagent, methanol, ethanol, acetone, ether, THF, DMF, acetonitrile, dichloromethane, petroleum ether, ethyl acetate, acetic acid, were purchased from Sinopharm-Group, *N*-methylpropargylamine was purchased from Leyan Reagent, aniline, benzylamine, were purchased from Rhawn Reagent, tert-butylthiol (<sup>'</sup>BuSH) and triethylamine were purchased from Aladdin Scientific, silver trifluoroacetate (CF<sub>3</sub>COOAg) was purchased from Bide Pharm, and silver nitrate (AgNO<sub>3</sub>) was purchased from Sinopharm-Group. All of the chemicals were used without further purification.

# Synthesis

# Synthesis of 3,5-DAP-TPA POP

TPA (0.5 mmol, 67 mg) was mixed with 2.5 mL of ethanol in an autoclave, followed by adding 2 mL aqueous acetic acid solution (9 M). The mixture was stirred at room temperature for 20 min. Separately, 3,5-DAP (54.5 mg, 0.5 mmol) was dissolved in 2.5 mL of ethanol and the solution was added into the TPA solution. The mixture was stirred at room temperature for additional 30 min. Subsequently, the mixture was sealed in a stainless-steel autoclave and then heated in an oven at 120 °C for 72 h. After the end of the reaction, it was filtered through qualitative filter paper. The obtained solid was thoroughly washed by water, ethanol and acetone and extracted with ethanol for 12 h then dried at 70 °C for 24 h. The final product was a brownish yellow powder with a yield of 98%.

| Entry | Solvent | Time<br>(hour) | C <sub>(Monomer)</sub><br>(M) | Temperature<br>(°C) | C <sub>(AcOH)</sub><br>(M) | BET surface<br>area<br>(m²/g) | Yield<br>(%) |
|-------|---------|----------------|-------------------------------|---------------------|----------------------------|-------------------------------|--------------|
| 1     | EtOH    | 72             | 0.1                           | 60                  | 3                          | 149                           | 60           |
| 2     | EtOH    | 72             | 0.1                           | 60                  | 9                          | 276                           | 65           |
| 3     | EtOH    | 72             | 0.1                           | 120                 | 3                          | 482                           | 96           |
| 4     | EtOH    | 72             | 0.1                           | 120                 | 9                          | 540                           | 98           |
| 5     | EtOH    | 72             | 0.2                           | 120                 | 9                          | 489                           | 99           |
| 6     | EtOH    | 24             | 0.2                           | 120                 | 9                          | 379                           | 96           |
| 7     | EtOH    | 72             | 0.4                           | 120                 | 9                          | 449                           | 99           |

**Table S1** A summary of synthesis, yield and BET surface area of 3,5-DAP-TPA POP under differentsynthesis conditions

Note: Volume of EtOH is 5 mL and volume of aqueous acetic acid solution is 2 mL.

### Synthesis of 3,5-DAP-IPA POP

The synthesis followed the procedures for synthesizing conditions for 3,5-DAP-TPA and IPA (0.5 mmol, 67 mg) was used instead of TPA.A brownish yellow powder was obtained in 98% yield.

#### Synthesis of 3,5-DAP-BDA POP

BDA (1 mmol, 210 mg) was mixed with 2.5 mL of ethanol in an autoclave, followed by adding 2 mL aqueous acetic acid solution (17.5 M). The mixture was stirred at room temperature for 20 min. Separately, 3,5-DAP (109 mg, 1 mmol) was dissolved in 2.5 mL of ethanol and the solution was added into the TPA solution. The mixture was stirred at room temperature for additional 30 min. Subsequently, the mixture was sealed in a stainless-steel autoclave and then heated in an oven at 120 °C for 72 h. After the end of the reaction, it was filtered through qualitative filter paper. The obtained solid was thoroughly washed by water, ethanol and acetone and extracted with ethanol for 12 h then dried at 70 °C for 24 h. The final product was a brownish yellow powder with a yield of 93%.

**Table S2** A summary of synthesis, yield and BET surface area of 3,5-DAP-BDA POP under different synthesis conditions

| Entry | Solvent | Time<br>(hour) | C <sub>(Monomer)</sub><br>(M) | Temperature<br>(°C) | C <sub>(AcOH)</sub><br>(M) | BET surface<br>area<br>(m²/g) | Yield<br>(%) |
|-------|---------|----------------|-------------------------------|---------------------|----------------------------|-------------------------------|--------------|
| 1     | EtOH    | 72             | 0.1                           | 120                 | 9                          | 16                            | 73           |
| 2     | EtOH    | 72             | 0.2                           | 120                 | 9                          | 322                           | 91           |
| 3     | EtOH    | 72             | 0.2                           | 120                 | 17.5                       | 512                           | 93           |

Note: Volume of EtOH is 5 mL and volume of aqueous acetic acid solution is 2 mL.

# Synthesis of 2,6-DAP-TPA POP

TPA (2 mmol, 268 mg) was mixed with 2.5 mL of ethanol in an autoclave, followed by adding 2 mL aqueous acetic acid solution (9 M). The mixture was stirred at room temperature for 20 min. Separately, 2,6-DAP (2 mmol, 218 mg) was dissolved in 2.5 mL of ethanol and the solution was added into the TPA solution. The mixture was stirred at room temperature for additional 30 min. Subsequently, the mixture was sealed in a stainless-steel autoclave and then heated in an oven at the 120 °C for 24 h. After the end of the reaction, it was filtered through qualitative filter paper. The obtained solid was thoroughly washed by water, ethanol and acetone and extracted with ethanol for 12 h then dried at 70 °C for 24 h. The final product was a brownish yellow powder with a yield of ~100%.

| Entry | Solvent | Time<br>(hour) | C <sub>(Monomer)</sub><br>(M) | Temperature<br>(°C) | C <sub>(AcOH)</sub><br>(M) | $S_{BET}$<br>(m <sup>2</sup> /g) | Yield<br>(%) |
|-------|---------|----------------|-------------------------------|---------------------|----------------------------|----------------------------------|--------------|
| 1     | EtOH    | 72             | 0.2                           | 25                  | 3                          | 10                               | 60           |
| 2     | EtOH    | 72             | 0.1                           | 25                  | 9                          | _                                | 12           |
| 3     | EtOH    | 72             | 0.2                           | 25                  | 9                          | 23                               | 25           |
| 4     | EtOH    | 24             | 0.2                           | 60                  | 9                          | 118                              | 55           |
| 5     | EtOH    | 24             | 0.2                           | 80                  | 9                          | 314                              | 55           |
| 6     | EtOH    | 24             | 0.4                           | 80                  | 9                          | 333                              | 77           |
| 7     | EtOH    | 72             | 0.2                           | 80                  | 9                          | 422                              | 99           |
| 8     | EtOH    | 72             | 0.4                           | 80                  | 9                          | 454                              | 99           |
| 9     | EtOH    | 72             | 0.1                           | 120                 | 9                          | 332                              | 97           |
| 10    | EtOH    | 72             | 0.2                           | 120                 | 9                          | 419                              | >99          |
| 11    | EtOH    | 72             | 0.4                           | 120                 | 9                          | 572                              | >99          |
| 12    | EtOH    | 24             | 0.2                           | 120                 | 9                          | 584                              | >99          |
| 13    | EtOH    | 24             | 0.4                           | 120                 | 9                          | 587                              | >99          |

**Table S3** A summary of synthesis, yield and BET surface area of 2,6-DAP-TPA POP under different synthesis conditions

Note: Volume of EtOH is 5 mL and volume of aqueous acetic acid solution is 2 mL.

#### Synthesis of 2,6-DAP-IPA POP

The synthesis was followed the procedures for synthesizing conditions for 2,6-DAP-TPA and IPA (0.2 mmol, 268 mg) was used instead of TPA. A brownish yellow powder was obtained in ~100% yield.

#### Synthesis of 2,6- DAP-BDA POP

The synthesis was followed the procedures for synthesizing conditions for 2,6-DAP-TPA and BDA (2 mmol, 420 mg) was used instead of TPA. A brownish yellow powder was obtained in 99% yield.

#### Large scale synthesis of 2,6-DAP-TPA POP

TPA (100 mmol, 13.4 g) was mixed with 250 mL of ethanol in 1 L polypropylene plastic drum, followed by adding 2 mL aqueous acetic acid solution (9 M). The mixture was stirred at room temperature for 20 min. Separately, 2,6-DAP (100 mmol, 10.9 g) was dissolved in 250 mL of ethanol and the solution was added into the TPA solution. The mixture was stirred at room temperature for additional 30 min. Subsequently, the mixture was heated in an oven at 80 °C for 3 days. After the end of the reaction, it was filtered through qualitative filter paper. The obtained solid was thoroughly washed by water, ethanol and acetone and extracted with ethanol for 12 h then dried at 70 °C for 24 h. The final product was a brownish yellow powder with a yield of 98%. The product was named LSS-2,6-DAP-TPA POP. (LSS: large scale synthesis).

| Entry | Solvent<br>(mL) | Time<br>(hour) | C <sub>(Monomer)</sub><br>(M) | Temperature<br>(°C) | V <sub>(AcOH)</sub><br>(mL) | $S_{BET}$ $(m^2/g)$ | Yield<br>(%) |
|-------|-----------------|----------------|-------------------------------|---------------------|-----------------------------|---------------------|--------------|
| 1     | EtOH<br>(500)   | 72             | 0.1                           | 60                  | 200                         | 339                 | 31           |
| 2     | EtOH<br>(50)    | 72             | 0.2                           | 80                  | 20                          | 458                 | 93           |
| 3     | EtOH<br>(250)   | 72             | 0.2                           | 80                  | 100                         | 486                 | 93           |
| 4     | EtOH<br>(500)   | 72             | 0.2                           | 80                  | 200                         | 745                 | 98           |

**Table S4** A summary of synthesis, yield, and BET surface area of LSS-2,6-DAP-TPA POP at a large scale under different synthesis conditions.

Note: the concentration of aqueous acetic acid solution is 9 M

**Table S5** Cost calculation for large scale synthesis of 2,6-DAP-TPA POP

|                        | Chemical                         | Price (USD/kg)            | Amount (kg)      | Cost (USD)         |
|------------------------|----------------------------------|---------------------------|------------------|--------------------|
|                        | 2,6-diaminopyridine <sup>a</sup> | 93.84                     | 0.545            | 51.14              |
| Lab-scale<br>synthesis | Terephthalaldehydeb              | 22.08                     | 0.67             | 14.79              |
|                        | Ethanol <sup>c</sup>             | 0.66                      | 12.5             | $0.825^{d}$        |
|                        | Glacial acetic acide             | 4.02                      | 10               | 4.02 <sup>d</sup>  |
| -                      | 2,6-DAP-TPA POP                  | <b>64.34</b> <sup>f</sup> | 1.1 <sup>f</sup> | 70.78              |
|                        |                                  |                           |                  |                    |
|                        | Chemical <sup>g</sup>            | Price (USD/ton)           | Amount (ton)     | Cost (USD)         |
|                        | 2,6-diaminopyridine              | 1104                      | 0.545            | 601.7              |
| Industrial-            | terephthalaldehyde               | 1311                      | 0.67             | 878.4              |
| scale                  | Ethanol <sup>c</sup>             | 593                       | 12.5             | 741.2 <sup>d</sup> |
| synthesis              | Glacial acetic acid              | 442                       | 10               | 442 <sup>d</sup>   |
| •                      | 2,6-DAP-TPA POP                  | 2421.2                    | $1.1^{ m f}$     | 2663.3             |

<sup>a</sup> Wuhan Lullaby Pharmaceutical Chemical, 99% purity; <sup>b</sup> Jiangsu Aikon, 98% purity; <sup>c</sup> 99% purity, prices are found via <u>http://www.zhengxingxincailiao.com/</u>.

<sup>d</sup> In industrial production, the solvent and catalyst can be recycled. It is assumed that 10% of the solvent and catalyst are lost during each batch reaction. Therefore, this 10% loss is accounted for in the cost estimation of the required solvent and catalyst.

<sup>e</sup> Sinopharm-Group, 99.5% purity.

f based on 98% yield.

<sup>g</sup> Industrial grade; prices are found via <u>https://www.100ppi.com/</u> and <u>https://china.guidechem.com/</u>

Note: The calculation is based only on the cost of chemicals, providing a preliminary estimation of the synthesis cost. However, the actual production cost would be much higher since it doesn't include other expenses such as equipment depreciation, transport, labor, energy, and waste treatment.

# Synthesis of Ag<sub>33</sub><sup>[1]</sup>

 $({}^{BuSAg})_n$  <sup>[2]</sup> (19.7 mg, 0.1 mmol) was added to a mixed solvent (1 mL of CH<sub>3</sub>CN/1 mL of MeOH). The mixture was subjected to ultrasonication for 5 min and a homogeneous suspension was formed. Subsequently, a solution of CF<sub>3</sub>COOAg (44.0 mg, 0.2 mmol) in 0.5 mL of CH<sub>3</sub>CN and 0.5 mL of MeOH was then added to this suspension, resulting in the immediate formation of a clear yellow solution. This solution was ultrasonicated for an additional 10 min. Slow evaporation of the solution in dark yielded the product as yellow crystals. Yield: 72.3%.

#### Synthesis of Ag<sub>33</sub>-POP

In a 50 mL round-bottom flask, 100 mg of grounded POP powder (3,5-DAP-TPA POP, 3,5-DAP-IPA POP, 3,5-DAP-BDA POP, 2,6-DAP-TPA POP, 2,6-DAP-IPA POP, 2,6-DAP-BDA POP) were mixed with 8 mL of a methanol solution containing 50 mg of Ag<sub>33</sub>. The mixture was stirred at 35 °C for 12 h. The resulting solid was then thoroughly washed with methanol, and acetone, and dried at 50 °C overnight. The final product was a brownish-yellow powder. The respective Ag<sub>33</sub>-POP variants (Ag<sub>33</sub>-3,5-DAP-TPA POP, Ag<sub>33</sub>-3,5-DAP-IPA POP, Ag<sub>33</sub>-3,5-DAP-BDA POP, Ag<sub>33</sub>-2,6-DAP-TPA POP, Ag<sub>33</sub>-2,6-DAP-TPA POP, Ag<sub>33</sub>-2,6-DAP-BDA POP) were obtained. The Ag contents, determined by ICP-OES, were 2.47 wt%, 1.05 wt%, 1.41 wt%, 1.76 wt%, 2.75 wt%, and 1.52 wt%, respectively.

#### Characterizations

Infrared spectra were recorded using a Nicolet-6700 spectrometer. The samples were ground with potassium bromide and pressed into transparent pellets for measurement. Solid-state <sup>13</sup>C nuclear magnetic resonance (NMR) spectra of the POPs were recorded on a Bruker AVWBIII600 spectrometer. Approximately 200 mg of the POP powder sample was used for the solid-state NMR measurement. Liquid <sup>1</sup>H NMR spectra were recorded using a Bruker Avance 400 MHz spectrometer. Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku Ultima IV diffractometer. X-ray photoelectron spectra (XPS) were recorded on a Thermo Scientific K-Alpha X-ray Photoelectron Spectrometer. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were recorded using a Zeiss Leo Gemini 1530 SEM instrument and a JEOL JEM-2100 TEM instrument, respectively. Thermogravimetric analysis (TGA) curves were recorded on a Mettler Toledo TGA/SDTA851e thermogravimetric analyzer under a N<sub>2</sub> or air atmosphere (flow rate: 60 mL/min) at temperatures ranging from 25 to 800 °C with a heating rate of 5 °C/min.

Gas sorption isotherms were recorded using a Micromeritics ASAP 2020 surface area and porosity analyser. Before the measurements, the samples were degassed at 150 °C for 12 h under a kinetic vacuum ( $<10^{-5}$  mmHg). N<sub>2</sub> sorption isotherms were recorded at 77 K to analyze the porosity of the samples and the surface area was calculated from the N<sub>2</sub> adsorption isotherms using Brunauer–Emmett–Teller (BET) theory. Pore size distribution was analyzed using the adsorption isotherm based on the density functional theory model. CO<sub>2</sub> and N<sub>2</sub> sorption isotherms were recorded at 273, 293, and 298 K at the pressure range of 0–1 bar. In addition, a Kubo-X1000 surface area and porosity analyser was used to measure N<sub>2</sub> sorption isotherms of the POPs at 77 K for screening studies.

 $CO_2$ -over- $N_2$  selectivity was calculated from single component adsorption isotherm using deal Adsorbed Solution Theory (IAST).<sup>[3]</sup> A gas mixture component of 15v%  $CO_2/85v\%$   $N_2$  was used for the calculation. For the calculations, the measured  $CO_2$  and  $N_2$  adsorption isotherms were fitted by dual-site and single-site Langmuir equations respectively.

Dual-site Langmuir equation:

$$q = q_{sat, A} * b_A * p/(1 + b_A * p) + q_{sat, B} * b_B * p/(1 + b_B * p),$$

Single-site Langmuir equation:

$$q = q_{sat} * b * p/(1 + b * p)$$

where q is adsorption capacity (mmol/g),  $q_{sat}$  is saturation adsorption capacity (mmol/g), p is pressure (Pa), and b is Langmuir constant (Pa), A and B are distinct adsorption sites.

#### **Breakthrough measurements**

The breakthrough measurements were recorded using a breakthrough analyser (CT-41, Xuzhou Beifang Gaorui Electronic Equipment Co., Ltd.) coupled with a gas chromatography analyzer (GC-9860, Nanjing Hope Analytical Equipment Co., Ltd.) equipped with a thermal conductivity detector (TCD). The measurements were carried out at a pressure of 1 bar and a set temperature. A stainless-steel column with a length of 20 cm and an internal diameter of 0.6 cm ( $V_{column} = 0.30 \text{ cm} \times 0.30 \text{ cm} \times 3.14 \times 20.00 \text{ cm} = 5.652 \text{ cm}^3$ ) was packed with 1.0 g POPs sample. Different gas mixtures were used as the stock gas for separation. The gas mixture, consisting of CO<sub>2</sub> and N<sub>2</sub> at specific concentrations, was prepared by mixing pure CO<sub>2</sub> and N<sub>2</sub> gases. The concentration of each gas in the mixture was controlled by regulating the flow rate of each component using mass flow controllers (MFCs). To introduce moisture into the CO<sub>2</sub>/N<sub>2</sub> gas mixture, a third gas line with 100% relative humidity (RH) N<sub>2</sub>, generated by bubbling pure N<sub>2</sub> through water, was added to the CO<sub>2</sub> and N<sub>2</sub> mixture. The flow rate of this humidified N<sub>2</sub> was also regulated by a MFC to achieve the desired RH in the final gas mixture. To evaluate the performance of the POPs for practical CO<sub>2</sub> capture from flue gas, a pilot-scale breakthrough experiment

was conducted. The experiment utilized a stainless-steel column with a length of 20 cm and an internal diameter of 1.9 cm ( $V_{column} = 0.95$  cm  $\times 0.95$  cm  $\times 3.14 \times 20.00$  cm = 56.677 cm<sup>3</sup>), packed with 15 g of POP.

The gas mixture was passed through the POP column at a desired flow rate of 2-10 mL/min. The eluted gas at the outlet was analyzed using the GC analyzer, with the analysis performed every 1.2 minutes. Breakthrough curves were plotted based on the GC results.

### Continuous CO<sub>2</sub> capture from simulated flue gas

The CO<sub>2</sub> capture system consists of two stainless steel columns, each filled with 15 g of LSS-2,6-DAP-TPA POP, interconnected with three-way valves (Fig. 3k). The ends of the columns are connected to a 250 mL round-bottom flask, which collects the separated gas and is equipped with a pressure gauge to monitor pressure changes during gas collection. A gas mixture containing 15v%/85v% CO<sub>2</sub>/N<sub>2</sub>, simulating flue gas, is introduced into the columns at flow rates of either 2 or 10 mL/min for the CO<sub>2</sub> capture process.

The operational procedure is as follows: Initially, the entire system is vacuumed. Following this, the simulated flue gas is directed through POP bed 1, controlled by a MFC. This column adsorbs  $CO_2$  until it reaches saturation. During the adsorption process, the end of the column is connected to the atmosphere to allow the eluted N<sub>2</sub> to be released. Upon the saturation of POP bed 1, which is determined by breakthrough measurements at a given flow rate, Valve 1 is switched to direct the flue gas flow through POP bed 2. Simultaneously, the saturated POP bed 1 is connected to a round-bottom flask and the column is heated to 150 °C with a heating jacket. This heating facilitates the release of the adsorbed gas, which is then collected in the flask. The captured gas can either be compressed and stored or directly converted into fine chemicals. Once POP bed 1 has cooled and regenerated, it is ready for reuse in the flue gas separation process. Simultaneously, the saturated POP bed 2 is heated so that the adsorbed gas can be eluted and collected. By alternating between the two beds and repeating these steps, the system achieves continuous  $CO_2$  capture from simulated flue gas.



**Fig. S1** N<sub>2</sub> sorption isotherms of 2,6-DAP-TPA POP, 2,6-DAP-BDA POP and 2,6-DAP-IPA POP recorded at 77 K.



Fig. S2 Powder X-ray diffraction patterns of the POPs. The results indicate that the POPs are mainly amorphous.



**Fig. S3** Thermogravimetric curves of 3,5-DAP-TPA POP, 3,5-DAP-IPA POP, 3,5-DAP-BDA POP, LSS-2,6-DAP-TPA POP recorded under N<sub>2</sub> atmosphere. The results indicate that the POPs have high thermal stability with onset decomposition temperature of > 400 °C.



**Fig. S4** CO<sub>2</sub> adsorption isotherms of 3,5-DAP-TPA POP, 3,5-DAP-IPA POP, 3,5-DAP-BDA POP, LSS-2,6-DAP-TPA POP at different temperatures (273, 293 and 298 K).



**Fig. S5**  $CO_2$  and  $N_2$  adsorption isotherms of 3,5-DAP-TPA POP, 3,5-DAP-IPA POP, 3,5-DAP-BDA POP, LSS-2,6-DAP-TPA POP at 273 K. The red curves show the fitted results.  $CO_2$  adsorption isotherms were fitted by dual-site Langmuir model, while  $N_2$  adsorption isotherms were fitted by single site Langmuir model. The fitted results are presented in Table S6.



**Fig. S6** CO<sub>2</sub> and N<sub>2</sub> adsorption isotherms of (a) 3,5-DAP-TPA POP, (b) 3,5-DAP-IPA POP, (c) 3,5-DAP-BDA POP, (d) LSS-2,6-DAP-TPA POP at 293 K, and (e) the CO<sub>2</sub>-over-N<sub>2</sub> selectivities of the POPs at 293 K. The red curves represent the fitted results. The CO<sub>2</sub> adsorption isotherms were fitted using a dual-site Langmuir model, while the N<sub>2</sub> adsorption isotherms were fitted using a single-site Langmuir model. The fitted results are presented in Table S7.

|                 | Gas    | Q <sub>sat, A</sub><br>(mmol/g) | b <sub>A</sub><br>(Pa <sup>-1</sup> ) | Q <sub>sat, B</sub><br>(mmol/g) | b <sub>B</sub><br>(Pa <sup>-1</sup> ) | Adj. R <sup>2</sup> |
|-----------------|--------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------------|---------------------|
| 3,5-DAP-TPA     | $CO_2$ | 0.99                            | 1.07E-4                               | 4.87                            | 7.07E-6                               | 0.99998             |
|                 | $N_2$  | 1.58                            | 2.06E-6                               | -                               | -                                     | 0.99979             |
| 3,5-DAP-IPA     | $CO_2$ | 0.86                            | 1.37E-4                               | 3.85                            | 6.84E-6                               | 0.99995             |
|                 | $N_2$  | 1.08                            | 2.66E-6                               | -                               | -                                     | 0.99972             |
| 3.5-DAP.BDA     | $CO_2$ | 0.72                            | 7.27E-5                               | 4.33                            | 4.96E-6                               | 0.99999             |
| 3,3-DAF-DDA     | $N_2$  | 0.40                            | 5.39E-6                               | -                               | -                                     | 0.99972             |
|                 | $CO_2$ | 0.91                            | 1.11E-4                               | 5.06                            | 2.04E-5                               | 0.99998             |
| LSS-2,6-DAP-TPA | $N_2$  | 0.80                            | 3.41E-6                               | -                               | -                                     | 0.99949             |

Table S6 Fitted parameters for the CO<sub>2</sub> and N<sub>2</sub> adsorption data of POPs at 273 K

Note: The adsorption data was recorded at 273 K and 0-1 bar. The CO<sub>2</sub> and N<sub>2</sub> adsorption data were fitted by dual-site Langmuir and single-site Langmuir model, respectively.

|                                                       | Gas             | Q <sub>sat, A</sub><br>(mmol/g) | b <sub>A</sub><br>(Pa <sup>-1</sup> ) | Q <sub>sat</sub> , B<br>(mmol/g) | b <sub>в</sub><br>(Ра <sup>-1</sup> ) | Adj. R <sup>2</sup> |
|-------------------------------------------------------|-----------------|---------------------------------|---------------------------------------|----------------------------------|---------------------------------------|---------------------|
| 3,5-DAP-TPA POP                                       | $CO_2$          | 1.50                            | 3.10E-5                               | 10.21                            | 9.60E-7                               | 0.99991             |
|                                                       | $N_2$           | 0.28                            | 2.61E-6                               | -                                | -                                     | 0.99979             |
| 3,5-DAP-IPA POP                                       | $CO_2$          | 0.56                            | 7.45E-5                               | 3.55                             | 5.01E-6                               | 0.99998             |
|                                                       | $N_2$           | 0.29                            | 7.16E-6                               | -                                | -                                     | 0.99841             |
|                                                       | $CO_2$          | 0.46                            | 3.95E-5                               | 4.06                             | 3.41E-6                               | 0.99999             |
| <i>5,5-DI</i> <b>H</b> - <b>D</b> <i>D</i> <b>H H</b> | $N_2$           | 0.26                            | 5.97E-6                               | -                                | -                                     | 0.99964             |
| LSC-2,6-DAP-TPA                                       | $\mathrm{CO}_2$ | 0.71                            | 5.08E-5                               | 4.86                             | 3.91E-6                               | 0.99999             |
| POP                                                   | $N_2$           | 0.45                            | 4.15E-6                               | -                                | -                                     | 0.99971             |
| Ag <sub>33</sub> -3,5-DAP-TPA                         | $CO_2$          | 0.59                            | 6.31E-5                               | 4.14                             | 5.11E-6                               | 0.99999             |
| POP                                                   | $N_2$           | 0.90                            | 2.18E-6                               | -                                | -                                     | 0.99986             |

Table S7 Fitted parameters for the CO2 and N2 adsorption data of POPs at 293K

Note: The adsorption data was recorded at 293 K and 0-1 bar. The CO<sub>2</sub> and N<sub>2</sub> adsorption data were fitted by dual-site Langmuir and single-site Langmuir model, respectively

| Sample              | $\frac{S_{BET}}{(m^2/g)}$ | <i>T</i> (K) | CO <sub>2</sub> uptake<br>at 1 bar<br>(mmol/g) | Q <sub>st</sub><br>(kJ/mol) | CO <sub>2</sub> /N <sub>2</sub><br>selectivity | Ref.      |  |
|---------------------|---------------------------|--------------|------------------------------------------------|-----------------------------|------------------------------------------------|-----------|--|
|                     |                           | 273 K        | 2.95                                           | _                           | 48 <sup>a</sup>                                |           |  |
| 3,5-DAP-TPA POP     | 540                       | 293 K        | 2.04                                           | 29.4                        | 105 <sup>a</sup>                               |           |  |
|                     |                           | 298 K        | 1.85                                           |                             | _                                              |           |  |
|                     |                           | 273 k        | 2.39                                           |                             | 62 <sup>a</sup>                                |           |  |
| 3,5-DAP-IPA POP     | 340                       | 293 K        | 1.69                                           | 32.7                        | 96 <sup>a</sup>                                |           |  |
|                     |                           | 298 K        | 1.59                                           | _                           | _                                              |           |  |
|                     |                           | 273 K        | 2.09                                           | _                           | 94 <sup>a</sup>                                | This work |  |
| 3,5-DAP-BDA POP     | 512                       | 293 K        | 1.41                                           | 29.4                        | 48 <sup>a</sup>                                |           |  |
|                     |                           | 298 K        | 1.89                                           | _                           | _                                              |           |  |
|                     |                           | 273 K        | 2.92                                           | _                           | 94 <sup>a</sup>                                |           |  |
| LSS-2,6-DAP-TPA POP | 745                       | 293 K        | 1.98                                           | 32.5                        | 61 <sup>a</sup>                                |           |  |
| ,                   |                           | 298 K        | 1.80                                           |                             |                                                |           |  |
| POP-P               | 826                       | 273 K        | 2.61                                           | 36.1                        | 32.6ª                                          |           |  |
| POP-O               | 920                       | 273 K        | 2.52                                           | 28.3                        | 23.4 <sup>a</sup>                              | 4         |  |
| POP-M               | 1130                      | 273 K        | 3.02                                           | 25.9                        | 18.3 <sup>a</sup>                              |           |  |
| PDVB-VP-0.1         | 603                       | 273 K        | 2.19                                           | _                           | 104.4 <sup>a</sup>                             |           |  |
| PDVB-VP-0.25        | 489                       | 273 K        | 2.37                                           | _                           | 140.7 <sup>a</sup>                             | 5         |  |
| CTF-1               | 746                       | 273 K        | 2.47                                           | 27.5                        | 20 ª                                           |           |  |
| FCTF-1              | 662                       | 273 K        | 4.67                                           | 35.0                        | 31 <sup>a</sup>                                | 6         |  |
| HCP-MAAMs           | 298                       | 273 K        | 1.56                                           | _                           | 104 <sup>a</sup>                               | 7         |  |
| FC-POP              | 1540                      | 273 K        | 3.1                                            | 26.4                        | 12.62 ª                                        | 8         |  |
| HTM                 | 5                         | 273 K        | 1.68                                           | 29.9                        | 71.7 <sup>a</sup>                              | 0         |  |
| HTM–MA              | 587                       | 273 K        | 3.91                                           | 31.3                        | 58.4 <sup>a</sup>                              | 9         |  |
| sPI-1               | 1108                      | 273 K        | 5.40                                           | 33                          | 40 <sup>a</sup>                                | 10        |  |
| DCBP-CTF-1          | 2437                      | 298 K        | 2.07                                           | 24.1                        | 13 <sup>a</sup>                                | 11        |  |
| F-DCBP-CTF-1        | 1574                      | 298 K        | 3.82                                           | 33.1                        | 31 <sup>a</sup>                                | 11        |  |
| CTF-3               | 1454                      | 298 K        | 1.34                                           | 21                          | 24.5ª                                          | 10        |  |
| F12CTF-3            | 1558                      | 298 K        | 4.33                                           | 24.5                        | 32.4ª                                          | 12        |  |
| CXF1-OMe            | 626                       | 273 K        | 1.49                                           | 26                          | —                                              | 12        |  |
| CFX1-OH             | 540                       | 273 K        | 2.20                                           | 35                          | 98 <sup>a</sup>                                | 13        |  |

Table S8 A summary of CO<sub>2</sub> capture performance of different POPs

| TNHCP1 | 848 | 298 K | 2.20 | 30.8 | 30 <sup>a</sup> |    |
|--------|-----|-------|------|------|-----------------|----|
| TNHCP2 | 766 | 298 K | 2.11 | 32.8 | 42 <sup>a</sup> | 14 |
| TNHCP3 | 751 | 298 K | 2.23 | 32.7 | 45 <sup>a</sup> |    |

*Note*: –, not available. <sup>a</sup> IAST model. <sup>b</sup> Henry law.



**Fig. S7** (a) Cyclic adsorption isotherms of LSS-2,6-DAP-TPA under vacuum swing adsorption conditions, recorded at 293 K. The sample was regenerated by vacuum without additional heating between cycles. (b) Gravimetric CO2 adsorption cycles for LSS-2,6-DAP-TPA were conducted under temperature swing adsorption conditions at 298 K, with a CO<sub>2</sub> flow rate of 60 mL/min. Before each cycle, the sample was reactivated at 150 °C in an N<sub>2</sub> atmosphere.



**Fig. S8** Breakthrough curves for simulated flue gas  $(15v\% CO_2/85v\% N_2)$  at 293 K and 1 bar using (a) 3,5-DAP-TPA POP, (b) 3,5-DAP-IPA POP, and (c) 3,5-DAP-BDA POP. 1 g of each POP sample and a flow rate of 2 mL/min were used for the measurements.



**Fig. S9** (a)  $CO_2$  and  $N_2$  adsorption isotherms of LSS-2,6-DAP-TPA POP measured at 313 K and 0–1 bar; (b) breakthrough curves for simulated flue gas ( $15v\% CO_2/85v\% N_2$ ) using LSS-2,6-DAP-TPA POP at 313 K and 1 bar. 1 g of the POP sample and a flow rate of 2 mL/min were used for the breakthrough measurement.

![](_page_19_Figure_0.jpeg)

Fig. S10 Desorption kinetics of LSS-2,6-DAP-TPA POP at 150 °C under a reduced pressure.

![](_page_19_Figure_2.jpeg)

Time (s) **Fig. S11** Kinetics of Gravimetric CO<sub>2</sub> uptake of LSS-2,6-DAP-TPA POP recorded on TGA at 25 °C.

![](_page_20_Figure_0.jpeg)

**Fig. S12** Comparison of experimental and simulated XRD patterns of Ag<sub>33</sub>. The slight disagreement between the XRD patterns can be attributed to the weak stability of the cluster under ambient conditions during the XRD measurement. Single-crystal X-ray diffraction analysis confirmed the successful synthesis of Ag<sub>33</sub> crystals, revealing a triclinic crystal system with unit cell parameters: a = 15.479 Å, b = 32.705 Å, c = 19.035 Å,  $\alpha = 90^{\circ}$ ,  $\beta = 112.988^{\circ}$ ,  $\gamma = 90^{\circ}$ , and a unit cell volume of 8871 Å<sup>3</sup>, which are consistent with previously reported data. <sup>[1]</sup>

![](_page_21_Figure_0.jpeg)

Fig. S13 XRD patterns of the POPs and Ag<sub>33</sub>-POPs.

![](_page_22_Figure_0.jpeg)

**Fig. S14** (a) TGA curves of 3,5-DAP-TPA POP and  $Ag_{33}$ -3,5-DAP-TPA POP recorded under an air atmosphere. (b) Comparison of the XRD pattern of the residue of Ag33-3,5-DAP-TPA POP and elemental Ag (ICDD reference code: 04-003-7259), indicating the presence of elemental Ag in the residue.

![](_page_23_Figure_0.jpeg)

**Fig. S15** (a) CO<sub>2</sub> adsorption isotherms of Ag<sub>33</sub>-3,5-DAP-TPA POP recorded at 273, 293, and 298 K. (b) A comparison of heat of adsorption of CO<sub>2</sub> for 3,5-DAP-TPA POP and Ag<sub>33</sub>-3,5-DAP-TPA POP. A comparison of CO<sub>2</sub> adsorption isotherm of 3,5-DAP-TPA POP and Ag<sub>33</sub>-3,5-DAP-TPA POP at 273 K(c) and 293 K (d). (e) A comparison of CO<sub>2</sub> and N<sub>2</sub> adsorption isotherms of Ag<sub>33</sub>-3,5-DAP-TPA POP recorded at 293 K. The red curves show the fitted results. CO<sub>2</sub> adsorption isotherm was fitted by dual-site Langmuir model, while N<sub>2</sub> adsorption isotherm was fitted by single site Langmuir model. The fitted results are presented in Table S7. (f) CO<sub>2</sub>-over-N<sub>2</sub> selectivity of 3,5-DAP-TPA POP and Ag<sub>33</sub>-3,5-DAP-TPA POP for a simulated gas mixture consisting of 15v% CO<sub>2</sub> and 85v% N<sub>2</sub> at 293 K.

![](_page_24_Picture_0.jpeg)

Fig. S16 SEM images of 3,5-DAP-TPA POP.

![](_page_24_Figure_2.jpeg)

Fig. S17 TEM images and EDS elemental mapping images of 3,5-DAP-TPA POP.

![](_page_25_Figure_0.jpeg)

Fig. S18 XPS spectra of Ag<sub>33</sub>, POPs and Ag<sub>33</sub>-POPs.

![](_page_26_Figure_0.jpeg)

Fig. S19 Infrared spectra of 3,5-DAP-TPA POP and Ag<sub>33</sub>-3,5-DAP-TPA POP.

### Catalysis

### Synthesis of substrates [4]

In a typical experiment, propargylic bromide (1 mL, 13.3 mmol) was slowly added to a 50 mL roundbottom flask containing propargylamine (54 mmol) over 30 min at 0 °C. Subsequently, the resulting mixture was stirred at room temperature for 12 h. The mixture was then diluted with ether and washed with saturated NaHCO<sub>3</sub> aqueous solution ( $3\times30$  mL). The organic phase was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using a petroleum ether/ethyl acetate (10:1) mixture, giving the pure product of propargylic amine as a yellow liquid.

![](_page_27_Figure_3.jpeg)

Scheme S1. General procedure for the synthesis of terminal propargylic amine.

#### General procedure for the Ag<sub>33</sub>-POP-catalyzed CO<sub>2</sub> cycloaddition with propargylamine

A Schlenk flask was charged with Ag<sub>33</sub>-POP (0.004 mmol based on Ag), propargylamine (0.8 mmol), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 12.2 mg, 0.08 mmol), and solvent (6 mL). The flask was then connected to a balloon filled with CO<sub>2</sub> and stirred at the desired temperature (25 or 60 °C) for the desired time (1–24 h). The heterogeneous catalyst was removed through centrifugation, and the solid was thoroughly washed with CH<sub>3</sub>CN. The resulting CH<sub>3</sub>CN solution was combined with the supernatant obtained from centrifugation. The combined mixture was subjected to rotary evaporation, and the obtained crude product was further purified by flash chromatography on silica using dichloromethane/petroleum ether (v/v = 20/1) as the eluent, affording the pure products.

# Procedure for the gram-scale Ag<sub>33</sub>-3,5-DAP-TPA POP-catalyzed CO<sub>2</sub> cycloaddition with propargylamine

![](_page_27_Figure_8.jpeg)

**Scheme S2.** Gram scale reaction of CO<sub>2</sub> cycloaddition with *N*-methylpropargylamine catalyzed by Ag<sub>33</sub>-3,5-DAP-TPA POP.

A Schlenk flask was charged with  $Ag_{33}$ -3,5-DAP-TPA POP (316 mg, 2.47 wt.% Ag), *N*-methylpropargylamine (1.0 g, 14.47 mmol), DBU (220.3 mg, 1.447 mmol), and CH<sub>3</sub>CN (100 mL). The flask was then connected to a balloon filled with CO<sub>2</sub> and stirred at 60 °C for 24 h. The heterogeneous catalyst was removed through centrifugation, and the solid was thoroughly washed with CH<sub>3</sub>CN. The resulting CH<sub>3</sub>CN solution was combined with the supernatant obtained from centrifugation. The combined mixture was subjected to rotary evaporation, and the obtained crude product was further purified by flash chromatography on silica using dichloromethane/petroleum ether (v/v = 20/1) as the eluent, affording the pure product 2a (Yield: 90%, 1.47 g).

#### General procedure for sequential CO2 capture and conversion process

As depicted in Fig. 6a-b, a 150 mL round-bottom flask was utilized as the catalytic reactor. It was loaded with Ag<sub>33</sub>-3,5-DAP-TPA POP (17.5 mg, 0.5 mol%) and connected to the pilot-scale breakthrough setup. The flask was evacuated using a vacuum pump. By switching Valve 5, the catalytic reactor was linked to the gas collection bottle, allowing the captured CO<sub>2</sub> to be transferred into the reactor. Once the gas transfer was completed, Valve 5 was switched again to disconnect the catalytic reactor from the gas collection bottle. A mixture of CH<sub>3</sub>CN (6 mL), *N*-methylpropargylamine (**1a**), and DBU was then injected into the catalytic reactor via a syringe. The reaction mixture was stirred at 60 °C for 6 hours. After the reaction, the heterogeneous catalyst was removed by centrifugation, and the solid residue was thoroughly washed with CH<sub>3</sub>CN. The CH<sub>3</sub>CN solution was combined with the supernatant from the centrifugation, and the mixture was subjected to rotary evaporation. The crude product obtained was further purified using flash chromatography on silica with a dichloromethane/petroleum ether mixture (v/v = 20/1) as the eluent, yielding pure product of **2a**. The catalytic results are presented in Table S13.

By repeating the catalytic reactions that convert captured  $CO_2$  from simulated flue gas, a sustained conversion of flue gas into fine chemicals was achieved.

|                    | NH + CO <sub>2</sub>              | Catalyst (0.5 mol%)<br>DBU (10 mol%)<br>0.1 MPa, 24h |                                 | _         |
|--------------------|-----------------------------------|------------------------------------------------------|---------------------------------|-----------|
| Entry <sup>a</sup> | catalyst                          | Temperature (°C)                                     | Solvent                         | Yield (%) |
| 1                  | Ag <sub>33</sub> -3,5-DAP-TPA POP | RT                                                   | CH <sub>3</sub> OH              | 50        |
| 2                  | Ag <sub>33</sub> -3,5-DAP-TPA POP | RT                                                   | THF                             | 40        |
| 3                  | Ag <sub>33</sub> -3,5-DAP-TPA POP | RT                                                   | DMF                             | 70        |
| 4                  | Ag <sub>33</sub> -3,5-DAP-TPA POP | RT                                                   | CH <sub>3</sub> CN              | 80        |
| 5                  | Ag <sub>33</sub> -3,5-DAP-TPA POP | 60 °C                                                | CH <sub>3</sub> CN              | 95        |
| 6                  | 3,5-DAP-TPA POP                   | 60 °C                                                | CH <sub>3</sub> CN              | 9         |
| 7                  | 'BuSAg                            | 60 °C                                                | CH <sub>3</sub> CN              | 32        |
| 8                  | CF <sub>3</sub> COOAg             | 60 °C                                                | CH <sub>3</sub> CN              | 29        |
| 9                  | Ag <sub>33</sub>                  | 60 °C                                                | CH <sub>3</sub> CN              | 53        |
| 10                 | Ag <sub>33</sub> -3,5-DAP-IPA POP | 60 °C                                                | CH <sub>3</sub> CN <sup>b</sup> | 87        |
| 11                 | Ag <sub>33</sub> -3,5-DAP-BDA POP | 60 °C                                                | CH <sub>3</sub> CN              | 89        |
| 12                 | Ag <sub>33</sub> -2,6-DAP-TPA POP | 60 °C                                                | CH <sub>3</sub> CN              | 88        |
| 13                 | Ag <sub>33</sub> -2,6-DAP-IPA POP | 60 °C                                                | CH <sub>3</sub> CN              | 83        |
| 14                 | Ag <sub>33</sub> -2,6-DAP-BDA POP | 60 °C                                                | CH <sub>3</sub> CN              | 85        |

Table S9 Control Experiments for Chemical Conversion of N-methylpropargylamine with CO<sub>2</sub>

<sup>a</sup> *N*-Methylpropargylamine (0.8 mmol), DBU (12.2 mg, 0.08 mmol), solvent (6 mL); <sup>b</sup> solvent: 8 mL CH<sub>3</sub>CN

| $\frac{Ag_{33}-3,5-DAP-TPA POP (0.5 mol%)}{DBU (10 mol%)} + CO_2 - \frac{Ag_{33}-3,5-DAP-TPA POP (0.5 mol%)}{60 °C, CH_3CN, 0.1 MPa} $ |                                                     |          |          |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|----------|--|--|--|--|--|
| Entry                                                                                                                                  | CO <sub>2</sub> partial pressure (MPa) <sup>a</sup> | Time (h) | Yield(%) |  |  |  |  |  |
| 1                                                                                                                                      | 0                                                   | 6        | 0        |  |  |  |  |  |
| 2                                                                                                                                      | 0.015                                               | 6        | 66       |  |  |  |  |  |
| 3                                                                                                                                      | 0.05                                                | 6        | 82       |  |  |  |  |  |
| 4                                                                                                                                      | 0.07                                                | 6        | 92       |  |  |  |  |  |
| 5                                                                                                                                      | 0.09                                                | 6        | 93       |  |  |  |  |  |
| 6                                                                                                                                      | 0.1                                                 | 6        | 93       |  |  |  |  |  |

**Table S10** Influence of partial pressure of  $CO_2$  on its cycloaddition with *N*-Methylpropargylamine catalyzed by  $Ag_{33}$ -3,5-DAP-TPA POP

<sup>a</sup> The total gas pressure is 1 bar and the partial pressure of  $CO_2$  was controlled by mixing  $CO_2$  with specific amount of  $N_2$ .

**Table S11** Catalytic results of CO<sub>2</sub> cycloaddition with various propargylamines using Ag<sub>33</sub>-3,5-DAP-TPA POP

![](_page_31_Figure_1.jpeg)

| Catalyst                                 | Substrate | Solvent | CO <sub>2</sub><br>(atm) | Product | Time<br>(h) | Temp.<br>(°C) | Yield<br>(%) | Ref.         |
|------------------------------------------|-----------|---------|--------------------------|---------|-------------|---------------|--------------|--------------|
| Ag <sub>33</sub> -3,5-<br>DAP-TPA<br>POP | NH        | MeCN    | 1                        |         | 6           | 60            | 93           | This<br>work |
| Ag4                                      | N         | MeCN    | 1                        |         | 2           | 25            | 99           | 16           |
| Au@Ag24                                  | R         | DMF     | 1                        | RСоон   | 12          | 50            | 92           | 17           |
| Ag27-MOF                                 |           | MeCN    | 1                        | ~~~     | 6           | R. T.         | 97           | 18           |
| Zn-TpPa                                  |           | DMF     | 1                        |         | 18          | 30            | 99           | 19           |
| Ag@RB-<br>POP                            | — — — он  | MeCN    | 1                        | J°, ~°  | 12          | 30            | 94           | 20           |
| Pd@BBA-2                                 | HN        | DMSO    | 1                        | ° N−−   | 0.5         | 40            | 98           | 21           |

Table S12 The use of silver cluster and POP based catalysts for  $\mathrm{CO}_2$  cycloaddition reactions

| Entry · | Conditions of Breakthrough experiment                                                          |                       | Catalytic conditions                |                   | Yield | Space-time<br>Yield                         |
|---------|------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|-------------------|-------|---------------------------------------------|
|         | Simulated flue gas                                                                             | Flow rate<br>(mL/min) | Reactant                            | Reaction time (h) | (%)   | (kg/m <sup>3</sup> <sub>POP</sub> /<br>day) |
| 1       | 15v% CO <sub>2</sub> /85v% N <sub>2</sub>                                                      | 2                     | 0.8 mmol <b>1a</b><br>0.08 mmol DBU | 6                 | 89    | 5.8                                         |
| 2       | $\begin{array}{l} 15v\% \ CO_2 / 85v\% \ N_2 + 50 \\ ppm \ NO_2 + 50 \ ppm \ SO_2 \end{array}$ | 2                     | 0.8 mmol <b>1a</b><br>0.08 mmol DBU | 6                 | 88    | 5.7                                         |
| 3       | 15v% CO <sub>2</sub> /85v% N <sub>2</sub>                                                      | 10                    | 0.8 mmol <b>1a</b><br>0.08 mmol DBU | 6                 | 86    | 5.6                                         |
| 4       | 15v% CO <sub>2</sub> /85v% N <sub>2</sub>                                                      | 10                    | 1.6 mmol <b>1a</b><br>0.16 mmol DBU | 6                 | 74    | 9.6                                         |

Table S13 The catalytic results of continuous sequential  $CO_2$  capture and conversion processes

![](_page_34_Figure_0.jpeg)

**Fig. S19** Result of hot filtration experiment for the cycloaddition reaction of *N*-methylpropargylamine with CO<sub>2</sub> catalyzed by Ag<sub>33</sub>-3,5-DAP-TPA POP.

![](_page_35_Figure_0.jpeg)

**Fig S20** Comparison XPS spectra of the as synthesized catalyst Ag<sub>33</sub>-3,5-DAP-TPA POP and the recovered catalyst after the catalysis reactions.

NMR data

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  3.30 (d, *J* = 2.5 Hz, 2H), 2.39 (s, 3H), 2.16 (t, *J* = 2.4 Hz, 1H), 1.37 (br s, 1H)

<sup>13</sup>C NMR (101 MHz, Chloroform-d) δ 81.92, 71.40, 39.87, 39.56, 35.12

![](_page_36_Picture_4.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.42–7.24 (m, 5H), 3.90 (s, 2H), 3.45 (d, *J* = 2.5 Hz, 2H), 2.28 (t, *J* = 2.4 Hz, 1H), 1.54 (br s, 1H)

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 139.41, 128.48, 128.45, 127.20, 82.10, 71.61, 52.29, 37.35

![](_page_36_Picture_7.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.29–7.22 (m, 2H), 6.84 (t, *J* = 7.3 Hz, 1H), 6.72 (d, *J* = 7.5 Hz, 2H), 3.96 (d, *J* = 2.5 Hz, 2H), 2.26 (t, *J* = 2.4 Hz, 1H)

<sup>13</sup>C NMR (101 MHz, Chloroform-d) δ 146.91, 129.31, 118.69, 113.59, 81.12, 71.37, 33.67

![](_page_36_Figure_10.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.25 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 3.80 (s, 2H), 3.78 (s, 3H), 3.39 (d, *J* = 2.5 Hz, 2H), 2.25 (t, *J* = 2.4 Hz, 1H), 1.60 (br s, 1H)

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 158.80, 131.49, 129.65, 113.83, 82.15, 71.56, 55.25, 51.64, 37.16

![](_page_36_Figure_13.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.38–7.22 (m, 5H), 3.48 (d, *J* = 2.4 Hz, 2H), 3.02 (t, *J* = 6.8 Hz, 2H), 2.86 (t, *J* = 7.1 Hz, 2H), 2.24 (t, *J* = 2.4 Hz, 1H), 1.35 (br s, 1H)

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 139.77, 128.73, 128.52, 126.26, 82.05, 71.42, 49.77, 38.12, 36.15

![](_page_37_Figure_0.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  4.68 (d, J = 2.8 Hz, 1H), 4.25 (d, J = 2.6 Hz, 1H), 4.13 (t, J = 2.5 Hz, 2H), 2.88 (s, 3H)

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 155.76, 148.92, 86.36, 49.89, 30.39

![](_page_37_Figure_3.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.42–7.25 (m, 5H), 4.75 (d, *J* = 2.8 Hz, 1H), 4.48 (s, 2H), 4.25 (d, *J* = 3.2 Hz, 1H), 4.03 (t, *J* = 2.4 Hz, 2H)

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 155.66, 148.95, 134.98, 128.99, 128.27, 128.19, 86.78, 47.87, 47.23

![](_page_37_Figure_6.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.54 (d, *J* = 7.7 Hz, 2H), 7.39 (t, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 7.4 Hz, 1H), 4.85 (d, *J* = 2.9 Hz, 1H), 4.64 (s, 2H), 4.44 (d, *J* = 2.6 Hz, 1H)

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 152.38, 147.67, 137.16, 129.29, 124.58, 118.08, 87.21, 48.41

![](_page_37_Figure_9.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.19 (d, *J* = 8.2 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 4.71 (d, *J* = 2.9 Hz, 1H), 4.39 (s, 2H), 4.22 (d, *J* = 2.3 Hz, 1H), 3.99 (t, *J* = 2.4 Hz, 2H), 3.79 (s, 3H)

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 159.55, 155.57, 149.07, 129.60, 126.99, 114.30, 86.64, 55.31, 47.22

![](_page_37_Figure_12.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.32 (t, *J* = 7.2 Hz, 2H), 7.24 (dd, *J* = 15.2, 7.1 Hz, 3H), 4.70 (q, *J* = 2.7 Hz, 1H), 4.22 (d, *J* = 3.1 Hz, 1H), 3.99 (t, *J* = 2.4 Hz, 2H), 3.60–3.53 (m, 2H), 2.89 (t, *J* = 7.3 Hz, 2H)

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 155.47, 149.03, 137.96, 128.79, 128.60, 126.83, 86.47, 48.40, 45.17, 33.93

![](_page_38_Figure_0.jpeg)

<sup>13</sup>C NMR spectrum of 1a

![](_page_39_Figure_0.jpeg)

<sup>13</sup>C NMR spectrum of **1b** 

40

![](_page_40_Figure_0.jpeg)

<sup>13</sup>C NMR spectrum of **1c** 

1c

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

<sup>13</sup>C NMR spectrum of **1d** 

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

**1e** 

![](_page_42_Figure_3.jpeg)

<sup>13</sup>C NMR spectrum of **1e** 

43

![](_page_43_Figure_0.jpeg)

2a

<sup>13</sup>C NMR spectrum of **2a** 

![](_page_44_Figure_0.jpeg)

<sup>13</sup>C NMR spectrum of **2b** 

![](_page_45_Figure_0.jpeg)

**2c** 

<sup>13</sup>C NMR spectrum of 2c

![](_page_46_Figure_0.jpeg)

<sup>13</sup>C NMR spectrum of **2d** 

![](_page_47_Figure_0.jpeg)

**2e** 

120 110 f1 (ppm) 

<sup>13</sup>C NMR spectrum of 2e

#### **References:**

- 1. Y.-L. Shen, J.-L. Jin, G.-X. Duan, P.-Y. Yu, Y.-P. Xie, X. Lu, Chem. Eur. J., 2021, 27, 1122
- B. K. Teo, Y. H. Xu, B. Y. Zhong, Y. K. He, H. Y. Chen, W. Qian, Y. J. Deng, Y. H. Zou, *Inorg. Chem.*, 2001, 40, 6794–6801
- 3. S. Hug, L. Stegbauer, H. Oh, M. Hirscher, B. V. Lotsch, Chem. Mater., 2015, 27, 8001-8010.
- J. Chen, L. Jiang, W. Wang, Z. Shen, S. Liu, X. Li, Y. Wang, J. Colloid Interface Sci., 2022, 609, 775-84
- 5. H. Kuan, F. Liu, S. Dai. J. Mater. Chem. A., 2016, 4, 13063-13070
- 6. Y. Zhao, K.-X. Yao, B. Teng, T. Zhang, Y. Han, Energy Environ. Sci., 2013, 6, 3684-3692
- 7. K.-A. Fayemiwo, G.-T. Vladisavljevic´, S.-A. Nabavi, B. Benyahia, D.-P. Hanak, K.-N. Loponov, V. Manovic´, *Chem. Eng. J.*, 2018, 334, 2004-2013
- 8. Y. Li, L. Yang, X. Zhu, J. Hu, H. Liu, Int. J. Coal Sci. Technol., 2017, 4, 50-59
- 9. J.-F. Guo, L.-Z. Wang, D. Zhang, J.-H. Huang, Energy Fuels, 2020, 34, 9771-9778.
- 10. J. Yan, B. Zhang, Z. Wang, Polym. Chem., 2016, 7, 7295-7303
- 11. G. Wang, K. Leus, H.-S. Jena, C. Krishnaraj, S. Zhao, H. Depauw, N. Tahir, Y.-Y. Liu, P. Van Der Voort, J. Mater. Chem. A, 2018, 6, 6370-6375
- 12. Z. Yang, S. Wang, Z. Zhang, W. Guo, K. Jie, M.-I. Hashim, O.-Š. Miljanić, D.-E. Jiang, I. Popovs, S. Dai, *J. Mater. Chem. A*, 2019, 7, 17277-17282
- A. Pedrini, J. Perego, S. Bracco, C.-X. Bezuidenhout, P. Sozzani, A. Comotti, J. Mater. Chem. A, 2021, 9, 27353-27360
- 14. A. Hassan, S. Goswami, A. Alam, R. Bera, N. Das, Sep. Purif. Technol., 2021, 257, 117923
- 15. A-L. Gu, W.-T. Wang, X.-Y. Cheng, T.-D. Hu, Z.-L. Wu, Inorg. Chem., 2021, 60, 13425-13433
- 16. L. Li, Y. Lv, H. Sheng, Y. Du, H. Li, Y. Yun, Z. Zhang, H. Yu, M. Zhu, Nat. Commun., 2023, 14, 6989.
- 17. Y. Liu, X. Chai, X. Cai, M. Chen, R. Jin, W. Ding, Y. Zhu, Angew. Chem. Int. Ed., 2018, 57, 9775-9779.
- M. Zhao, S. Huang, Q. Fu, W. Li, R. Guo, Q. Yao, F. Wang, P. Cui, C. H. Tung, D. Sun, Angew. Chem. Int. Ed., 2020, 59, 20031-20036
- 19. Q. Cao, L. L. Zhang, C. Zhou, J. H. He, A. Marcomini, J. M. Lu, Appl. Catal. B, 2021, 294, 120238
- 20. X. Yu, Z. Yang, F. Zhang, Z. Liu, P. Yang, H. Zhang, B. Yu, Y. Zhao, Z. Liu, *Chem. Commun.*, 2019, 55, 12475-12478
- 21. S. Ghosh, S. Riyajuddin, S. Sarkar, K. Ghosh, S. M. Islam ChemNanoMat, 2020, 6, 160-172