Supporting Information

Sustainable photocatalytic synthesis of 2-hydroxybenzofuran-3(2H)-

ones by lead-free Cs₂AgBiBr₆ nanocrystals

Haibo Zhu,^{a,‡} Ting Zhong,^{a,‡} Liu Yang,^a Yajing Shen,^{b,*} Qiangwen Fan,^{a,*} Zhanggao

Le,^a Zongbo Xie,^{a,*}

^aJiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, China.
^bInstitute of Zhejiang University-Quzhou, Quzhou 324000, China.
‡These authors contributed equally to this work.

E-mail: shenyj0356@163.com, fanqw2019@ecut.edu.cn, zbxie@ecut.edu.cn

1.	General information	2
2.	Preparation of Cs ₂ AgBiBr ₆ NCs	2
3.	Preparation of Cs ₂ AgBiBr ₆ MCs	3
4.	Characterization of Cs ₂ AgBiBr ₆	3
5.	General Procedure for the reactions	5
6.	General Procedure for the recycle experiments	7
7.	Inactive substrates	8
8.	HRMS spectrums of the intermediates	8
9.	DFT calculations data	8
10.	Data for the products.	
11.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR for the products	

1. General information

All commercial reagents were used directly without further purification, unless otherwise stated. Unless otherwise specified, all reactions were carried out in a 10 mL quartz glass tube under air and then monitored by TLC. Products were purified by column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent. DMSO-d₆ and CDCl₃ were purchased from Shanghai aladdin Biochemical Technology Co., Ltd. Chemical shifts for ¹H and ¹³C NMR were referred to internal

 $Me_4Si (0 ppm)$ as the standard. The following abbreviations were used to describe NMR signals: s = singlet, d = doublet, t = triplet, m = mulitplet, dd = doublet of doublets, q = quartet.

Characterization. Transmission electron microscopy (TEM) images were obtained on a JEM F200 microscopy with an accelerating voltage of 200 kV. The energy dispersive X-ray (EDX) composition analysis was carried out using an accessory attached on TEM. Powder X-ray diffraction (XRD) patterns were collected on a Rigaku SmartLab diffractometer using a Cu K α radiation at a scan rate of 10° min⁻¹. UV-vis diffuse reflectance spectra (DRS) of the samples were obtained on a Lambda 1050 spectrometer (TU-1901, CN). Electron paramagnetic resonance (EPR) spin-trapping measurements were carried out on a Bruker EMX PLUS EPR spectrometer at X-band frequency (9.4 GHz) and at room temperature. The EPR signals of \cdot O₂⁻ free radicals and ¹O₂ were detected in the presence of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 2,2,6,6-Tetramethylpiperidinooxy (TEMPO) under the illumination of 300 W Xe lamp with an optical cutoff filter ($\lambda \ge 420$ nm). ¹H NMR spectra were recorded at 500 MHz and ¹³C NMR spectra were recorded at 126 MHz using a Bruker Avance 400 spectrometer at ambient temperature (25 °C) with TMS as an internal standard.

2. Preparation of Cs₂AgBiBr₆ NCs

 Cs_2CO_3 (203.5 mg), ODE (10 mL) and OA (0.625 mL) were put into a three-neck round-bottom (RB) flask with the capacity of 100 mL, kept in vacuum for 1 h at 120 °C, and then under N₂ environment was heated to 150 °C until the formation of Csoleate (clear solution). BiBr₃ (90 mg), AgNO₃ (34 mg), OA (2 mL), OLA (2 mL), ODE (8 mL) and HBr (0.2 mL) were put into a three-neck round-bottom flask with the capacity of 100 mL, and the reactant mixture heated to 120 °C for at least 1 h under vacuum to remove residual gases and water in solvents. After complete dissolution of the AgNO₃ and BiBr₃ salt, the reaction mixture was further heated to 200 °C under N₂ atmosphere and 1.6 mL preheated Cs-oleate was added rapidly into the flask under vigorous stirring. After 5 s, the mixture was cooled down to room temperature by putting the flask into the ice-water bath. Centrifuging the crude solution for 5 min at 7000 rpm to separate crude NCs from the solution. After centrifugation, the crude product was redispersed in dichloromethane and centrifuged again for 5 min at 8000 rpm, repeat it again, and then the precipitates were obtained and the upper solution were discarded. Drying at 70 °C for 30 min to obtain $Cs_2AgBiBr_6$ NCs.

3. Preparation of Cs₂AgBiBr₆ MCs

2.130 g CsBr (10.0 mmol), 0.940 g AgBr (5.0 mmol) and 2.245 g BiBr₃ (5.0 mmol) were added into a 100 mL round bottom flask with 50 mL of 48 % HBr. The mixture was heated to 110 °C for 2 h, then cooled to room temperature. An orange powder precipitated from solution, centrifuged at 8000 rpm for 5 min and dried at 70 °C under reduced pressure for 4 h to obtain the Cs₂AgBiBr₆ product. The Cs₂AgBiBr₆ product was dissolved in DMSO giving 50 mM the transparent solution. 1 mL Cs₂AgBiBr₆ transparent solution was added into 10 mL DCM, then precipitated, centrifuged at 8000 rpm for 5 min and dried at 70 °C under reduced pressure overnight to obtain the Cs₂AgBiBr₆ MCs.

4. Characterization of Cs₂AgBiBr₆

Figure S1 (a, b) SEM image of Cs₂AgBiBr₆ NCs. (c, d) TEM image of Cs₂AgBiBr₆ NCs.

Figure S2 SEM image of Cs₂AgBiBr₆ MCs.

Figure S3 SEM image (a) and TEM image (b) of recycled Cs₂AgBiBr₆ NCs.

Figure S4 (a) Electrochemical impedance spectroscopy. (b) XPS valence spectra of $Cs_2AgBiBr_6$ NCs.

5. General Procedure for the reactions

A 10 mL quartz glass tube was charged with 4-hydroxycoumarins (1; 0.2 mmol), CABB (10 mol %), alcohol substrates (2; 2.0 ml) or amines (4; 0.3 mmol) dissolved in 2 mL of MeCN, and a magnetic stir bar in a sequential manner. and the resulting reaction mixture was stirred under irradiation of a 50 W 457 nm blue LED and an irradiation distance of about 5 cm under air atmosphere at room temperature. After total conversion of the 4-hydroxycoumarins (detected by TLC), the isolated photocatalyst was centrifuged, and the resulting mixture was purified by flash silica gel chromatography (EtOAc / PE = 1/4) to afford the desired products.

Table S1 Comparison between Cs₂AgBiBr₆ NCs and other photocatalysts^a

OH OH 1a 2a	Cat (10 mg) Blue LED, rt, air, 6 h	OH 3a
Entry	Photocatalyst	Yield $(\%)^b$
1	Cs ₂ AgBiBr ₆	82
2	Eosin Y	63
3	Eosin B	53
4	Rose Bengal	61
5	Rhodamine B	35
6	CBr ₄	Trace
7	Ru(bpy) ₃ Cl ₂ •6H ₂ O	10

^{*a*} Reaction conditions: 4-Hydroxycoumarin (**1a**, 0.2 mmol) and photocatalyst (10 mg) in 2.0 mL of ethanol, 457 nm Blue LED (50 W), under air atmosphere, rt, 6 h. ^{*b*} Isolated yields.

Table S2 Optimization of reaction conditions^a

Entry	Variation from the standard	Yield $(\%)^b$
1	none	70
2	DCE	46
3	EtOAc	65
4	THF	20
5	1,4-dioxane	60
6	4a (2 equiv.) was used	68

7	4a (1 equiv.) was used	55
8	Reaction time: 7 h	65
9	Reaction time: 9 h	69
10	CABB-1 (10 mg)	60
11	CABB-1 (20 mg)	71

^{*a*} Standard reaction conditions: 4-Hydroxycoumarin (**1a**, 0.2 mmol), amines (**4a**, 0.3 mmol), MeCN (2.0 mL), CABB-1 (15 mg), 50 W 457 nm Blue LED, rt, air, 8 h, ^{*b*} Isolated yield.

Table S3 Free radical verification experiments^a

OH 1a) +OH 2a	CABB-1 (10 mg) Blue LEDs, rt, air, 6 h additives (1.0 equiv.)	ОН За
Entry	Scavenger	Inhibited species	Yield $(\%)^b$
1	none	/	82
2	TEMPO	$^{1}O_{2}$ and $\cdot O_{2}^{-}$	14
3	DABCO	¹ O ₂	NR
4	BQ	O2	trace

^{*a*} Reaction conditions: 4-Hydroxycoumarin (**1a**, 0.2 mmol) and CABB-1 (10 mg) in 2.0 mL of ethanol, 457 nm Blue LED (50 W), under air atmosphere, rt, 6 h. ^{*b*} Isolated yields.

6. General Procedure for the recycle experiments

0.2 mmol 4-hydroxycoumarins, 10 mg CABB, and 2.0 ml ethanol were added to a 10 ml glass tube and irradiated with a 50 W 457 nm blue LED in air at room temperature for 6 h. Upon completion of the reaction, the catalyst was collected by centrifuging the reaction solution, combined supernatant was purified by flash silica gel chromatography (EtOAc/PE = 1/3) to afford the desired products. The catalyst was dried under vacuum and was charged again with fresh reagents, repeating the process.

7. Inactive substrates

8. HRMS spectrums of the intermediates

HRMS (ESI) m/z: calcd for $C_{16}H_{16}O [M + H]^+$: 225.1279, found: 225.1277.

Figure S5. HRMS spectrums of free radical addition products

9. DFT calculations data

The transformation was initiated with **B** and singlet oxygen, leading to the formation of **C** via **TS1**, then undergoes a hydrogen transfer process, generate **D** through the **TS2** process, then loses one hydroxyl radical to generate **E**. The intermediate **4** then undergo radical addition, through a **TS4** process to produce **F**. Finally, after the α -ketol rearrangement reaction, the product **3** is produced after the **TS5** process.

Figure S6. Gibbs energy profiles for model reaction of 1a and ethanol

Cartesian coordination of 1

#p opt freq b3lyp scrf=(solvent=ethanol) em=gd3bj tzvp					
С	-3.023406	-1.154509	0.322729		
С	-1.795495	-1.675564	-0.058421		
С	-0.750986	-0.807817	-0.342054		
С	-0.920426	0.580979	-0.252877		
С	-2.172156	1.082653	0.130562		
С	-3.216193	0.226142	0.421514		
Н	-3.837803	-1.830486	0.548163		
Н	-1.635661	-2.741494	-0.143360		
С	0.182422	1.491116	-0.576786		
Н	-2.293168	2.155392	0.197817		
Н	-4.176698	0.619973	0.724277		
С	1.568879	0.796354	-0.631642		
С	1.599433	-0.600211	-0.630905		

Н	2.462060	1.295584	-0.997730		
0	0.060847	2.691168	-0.739800		
0	0.421906	-1.378015	-0.790923		
0	2.817444	-1.126374	-0.918372		
Н	2.753391	-2.093319	-0.953028		
0	1.956272	-0.538152	1.812374		
0	1.980462	0.721310	1.928114		

Cartesian coordination of TS1

#p opt(ts,calcfc,noeigen) freq b3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

С	-3.283484	-0.865537	0.518657
С	-2.087881	-1.541667	0.306443
С	-0.977475	-0.802912	-0.048531
С	-1.008275	0.582684	-0.203265
С	-2.227297	1.237424	0.009147
С	-3.354834	0.520654	0.369447
Н	-4.164674	-1.426095	0.799905
Н	-2.013826	-2.615075	0.408571
С	0.208471	1.318485	-0.566025
Н	-2.259134	2.312000	-0.107370
Н	-4.291524	1.033773	0.537979
С	1.501530	0.518183	-0.526732
С	1.300822	-0.935347	-0.622944
Н	2.244248	0.905032	-1.220077
0	0.239954	2.505203	-0.820681
0	0.197066	-1.537029	-0.273599
0	2.322924	-1.682697	-0.860172
0	2.171140	0.619040	1.265400
0	3.558064	0.373426	1.294242
Н	2.142256	-2.624975	-0.677707

Cartesian coordination of 2

С	-3.237064	-0.952281	0.351230	
С	-2.017519	-1.590310	0.169224	
С	-0.903639	-0.810719	-0.081489	
С	-0.960643	0.580781	-0.162118	
С	-2.204262	1.197767	0.019059	
С	-3.332079	0.439645	0.276606	
Н	-4.119542	-1.544986	0.551072	
Н	-1.923945	-2.666108	0.216682	
С	0.256851	1.357861	-0.434363	
Н	-2.254272	2.276268	-0.041661	
Н	-4.288299	0.923139	0.422269	
С	1.518455	0.577124	-0.396016	
С	1.406287	-0.833957	-0.499380	
Н	2.379909	1.037193	-0.858562	
0	0.268010	2.564394	-0.619766	
0	0.296299	-1.499795	-0.275610	
0	2.477188	-1.543373	-0.686864	
0	1.877930	0.538652	0.997036	
0	3.172791	0.274300	1.186400	
Н	2.310091	-2.494403	-0.555874	
*****	*****	*********	*****	****

#p opt freq b3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

Cartesian coordination of TS2

#p opt=(calcfc,ts,noeigen) freq b3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

С	3.473672	-0.801985	0.054290
С	2.274415	-1.503927	0.028149
С	1.098894	-0.781493	-0.004024
С	1.067486	0.612700	-0.009161
С	2.289732	1.294435	0.025325
С	3.482823	0.594014	0.054229

Н	4.406010	-1.349745	0.077224
Н	2.245683	-2.584313	0.036205
С	-0.212588	1.328297	-0.061224
Н	2.273925	2.375652	0.020026
Н	4.423221	1.127235	0.074432
С	-1.432273	0.426146	-0.329408
С	-1.260396	-0.953412	-0.024545
Н	-2.162014	0.526967	0.923389
0	-0.327323	2.533068	0.036268
0	-0.082508	-1.538647	-0.005667
0	-2.356561	-1.758812	0.029233
0	-2.810558	0.409998	-0.634312
0	-3.642655	0.519628	0.631528
Н	-2.120583	-2.706328	0.010544

Cartesian coordination of 3

#p opt freq b3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

С	-3.270867	-0.940115	0.380153
С	-2.049159	-1.581298	0.213000
С	-0.940125	-0.806253	-0.059292
С	-0.997180	0.582379	-0.174331
С	-2.241759	1.201642	-0.008878
С	-3.368697	0.447996	0.268467
Н	-4.151553	-1.529498	0.596580
Н	-1.953925	-2.655337	0.287120
С	0.218487	1.357226	-0.448457
Н	-2.294092	2.278278	-0.095031
Н	-4.325542	0.933692	0.401230
С	1.522147	0.540300	-0.367652
С	1.373258	-0.821511	-0.508036
0	0.234025	2.551719	-0.665460

0	0.262669	-1.505437	-0.242109	
0	2.469551	-1.567483	-0.720282	
0	1.942544	0.585747	0.979232	
0	3.260712	0.382391	1.070784	
Н	2.303141	-2.518929	-0.575778	
Н	3.589319	0.034115	0.238725	
*****	*****	******	*****	****

Cartesian coordination of TS3

#p opt=(calcfc,ts,noeigen) freq b3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

С	-3.544552	0.488607	0.203763
С	-2.435708	1.346843	0.166019
С	-1.184926	0.758227	0.032254
С	-0.959773	-0.621430	-0.068691
С	-2.098334	-1.453208	-0.021774
С	-3.372730	-0.897755	0.111580
Н	-4.549629	0.913385	0.306054
Н	-2.547381	2.432013	0.239147
С	0.375629	-1.213281	-0.210125
Н	-1.968294	-2.539775	-0.092969
Н	-4.247988	-1.554566	0.144674
С	1.548693	-0.226372	-0.405583
С	1.132296	1.265460	-0.166388
0	0.629074	-2.390964	-0.199820
0	-0.113177	1.702586	0.019923
0	2.035032	2.183343	-0.151954
0	2.762151	-0.499161	-0.702967
0	3.534440	-0.710846	1.128634
Н	1.654431	3.162528	-0.074731
Н	4.115126	-1.375807	0.880973

Cartesian coordination of 4

С	3.084617	-0.869403	0.014835
С	1.869999	-1.544316	0.006424
С	0.711295	-0.793492	-0.005250
С	0.705276	0.598819	-0.012938
С	1.942223	1.252182	-0.002419
С	3.121045	0.525746	0.010092
Н	4.005505	-1.436424	0.024884
Н	1.816326	-2.623781	0.010665
С	-0.563874	1.349506	-0.014389
Н	1.948942	2.333458	-0.005561
Н	4.072291	1.039962	0.016725
С	-1.809793	0.515470	-0.030258
С	-1.643481	-0.930746	-0.004126
0	-0.626534	2.565912	-0.011253
0	-0.486857	-1.525410	-0.014185
0	-2.683552	-1.694626	-0.006000
0	-2.941510	0.991910	0.051991
Н	-2.439284	-2.638103	0.017028

#p opt freq b3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

Cartesian coordination of TS4

**

#p opt(calcfc,ts,noeigen) freq rb3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

С	-3.562188	-0.889363	0.668393
С	-2.432303	-1.556962	0.213666
С	-1.327290	-0.817721	-0.174817
С	-1.337625	0.579759	-0.120070
С	-2.493282	1.234054	0.324291
С	-3.599106	0.505809	0.721951
Н	-4.425027	-1.463803	0.978721
Н	-2.400678	-2.635621	0.149216
С	-0.165788	1.326953	-0.508481

Н	-2.490276	2.315068	0.362577
Н	-4.486461	1.011874	1.076267
С	1.150956	0.464647	-0.552944
С	0.910788	-0.887335	-1.066381
0	-0.090361	2.517468	-0.737138
0	-0.258319	-1.543466	-0.677304
0	1.779030	-1.595839	-1.806354
0	2.102350	1.061525	-1.314010
0	1.482836	0.365465	0.810856
С	2.668712	-0.404870	1.126666
С	2.989343	-0.161892	2.582958
Н	3.484425	-0.082938	0.478233
Н	2.470193	-1.464473	0.941973
Н	3.871444	-0.740151	2.863449
Н	3.196803	0.893624	2.763149
Н	2.159306	-0.470434	3.220052
Н	1.682682	-0.162858	-2.333422

Cartesian coordination of 5

#p opt freq rb3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

С	3.698943	0.299132	0.683969
С	2.647733	1.207741	0.619031
С	1.438840	0.777754	0.113682
С	1.229598	-0.527176	-0.338213
С	2.305714	-1.415753	-0.268452
С	3.529625	-1.010794	0.240295
Н	4.652370	0.620394	1.081000
Н	2.759489	2.230791	0.949574
С	-0.081128	-0.967265	-0.869971
Н	2.151996	-2.428599	-0.615170
Н	4.351742	-1.711191	0.294333

С	-1.205030	0.042667	-0.687251	
С	-0.745783	1.426918	-0.346616	
0	-0.272391	-2.045464	-1.388242	
0	0.433167	1.769866	0.050356	
0	-1.605939	2.360998	-0.505042	
0	-2.292530	0.007970	-1.317396	
0	-1.284851	-0.066494	0.690327	
С	-2.629065	-0.180427	1.129711	
С	-2.908306	-1.587461	1.636732	
Н	-3.307608	0.050759	0.299699	
Н	-2.790891	0.563770	1.915540	
Н	-3.934418	-1.656743	2.006626	
Н	-2.781885	-2.314266	0.832501	
Н	-2.230311	-1.849239	2.450917	
Н	-2.376971	1.887311	-0.932541	
*****	*****	*****	*****	*****

Cartesian coordination of TS5

#p opt=(calcfc,ts,noeigen) freq rb3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

С	3.456324	0.936543	-0.594992
С	2.455156	0.404421	-1.395540
С	1.369822	-0.201024	-0.775663
С	1.283631	-0.252259	0.622426
С	2.312867	0.273428	1.416672
С	3.395878	0.873205	0.804491
Н	4.306440	1.411704	-1.067490
Н	2.510193	0.446947	-2.474422
С	0.070197	-0.842915	1.089465
Н	2.233950	0.214069	2.494364
Н	4.193535	1.297522	1.398625
С	-1.658265	-0.492292	-0.292501
С	-0.664117	-1.399740	-0.755077

0	-0.348556	-1.184196	2.148208	
0	0.375631	-0.772389	-1.512496	
0	-0.835715	-2.626860	-0.812943	
0	-2.710561	-1.000681	0.301769	
0	-1.599142	0.798253	-0.478514	
С	-2.280338	1.708690	0.461404	
С	-2.562592	2.975849	-0.304094	
Н	-1.594577	1.858454	1.295496	
Н	-3.193073	1.237100	0.813642	
Н	-3.036452	3.700849	0.358898	
Н	-1.644634	3.414537	-0.695575	
Н	-3.240021	2.772125	-1.135191	
Н	-2.659999	-1.969761	0.183916	
*****	*****	*****	****	*****

Cartesian coordination of 6

#p opt freq rb3lyp scrf=(solvent=ethanol) em=gd3bj tzvp

С	3.453157	0.817256	-0.448345
С	2.542867	0.221532	-1.310007
С	1.381105	-0.313268	-0.767905
С	1.137143	-0.245437	0.608275
С	2.074130	0.343717	1.468459
С	3.229349	0.881338	0.934748
Н	4.361809	1.239808	-0.857649
Н	2.723470	0.163605	-2.374326
С	-0.126807	-0.820290	0.983370
Н	1.871676	0.380619	2.530770
Н	3.959652	1.353665	1.577322
С	-1.618944	-0.463457	-0.311531
С	-0.562472	-1.396069	-0.558883
0	-0.653238	-1.096179	2.014251
0	0.467448	-0.939210	-1.555825

0	-0.734916	-2.631431	-0.549250	
0	-2.722023	-0.926078	0.242566	
0	-1.538734	0.808041	-0.598005	
С	-2.411470	1.749435	0.122614	
С	-1.998872	3.136714	-0.294872	
Н	-2.271641	1.580118	1.190315	
Н	-3.441685	1.523706	-0.146238	
Н	-2.631592	3.863831	0.216248	
Н	-0.960676	3.332682	-0.026172	
Н	-2.120143	3.272087	-1.369897	
Н	-2.634283	-1.900108	0.274192	
****	*****	*****	****	****

10. Data for the products.

ethyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3a: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a faint yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.60 (m, 2H), 7.21 – 7.07 (m, 2H), 5.35 (s, 1H), 4.36 – 4.24 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.86, 171.43, 166.88, 139.17, 125.37, 123.11, 118.87, 113.50, 97.66, 64.06, 13.85.

methyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3b: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (dd, *J* = 14.2, 7.7 Hz, 2H), 7.20 –

7.11 (m, 2H), 3.84 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.65, 171.36, 167.40, 139.27, 125.42, 123.22, 118.81, 113.55, 97.59, 54.35.

propyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3c: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.65 (m, 2H), 7.21 – 7.09 (m, 2H), 5.34 (s, 1H), 4.25 – 4.18 (m, 2H), 1.65 – 1.57 (m, 2H), 0.81 (dd, *J* = 10.6, 4.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.85, 171.38, 166.98, 139.17, 125.34, 123.11, 118.93, 113.45, 97.71, 69.33, 21.65, 9.88.

isopropyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3d: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.63 (m, 2H), 7.21 – 7.09 (m, 2H), 5.39 (s, 1H), 5.21 – 5.07 (m, 1H), 1.22 (dd, *J* = 6.3, 1.1 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 194.00, 171.48, 166.43, 139.11, 125.33, 123.03, 118.90, 113.45, 97.65, 72.72, 21.35 (d, *J* = 5.5 Hz).

butyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3e: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.64 (m, 2H), 7.21 – 7.09 (m, 2H), 5.41 (s, 1H), 4.25 (qt, *J* = 10.7, 6.6 Hz, 2H), 1.62 – 1.51 (m, 2H), 1.23 (dt, *J* = 14.8, 7.4 Hz, 2H), 0.83 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.93, 171.38, 166.92, 139.19, 125.34, 123.10, 118.91, 113.45, 97.78, 67.73, 30.12, 18.68, 13.47.

isobutyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3f: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.65 (m, 2H), 7.20 – 7.11 (m, 2H), 5.30 (s, 1H), 4.07 – 4.00 (m, 2H), 1.88 (dt, *J* = 13.4, 6.7 Hz, 1H), 0.82 – 0.77 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 193.83, 171.33, 166.93, 139.16, 125.29, 123.11, 119.02, 113.40, 97.79, 73.46, 27.56, 18.54.

pentyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3g: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.65 (m, 2H), 7.19 – 7.10 (m, 2H), 5.28 (s, 1H), 4.29 – 4.19 (m, 2H), 1.58 (dt, *J* = 13.9, 6.8 Hz, 2H), 1.26 – 1.15 (m, 4H), 0.81 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.81, 171.37, 166.97, 139.16, 125.34, 123.11, 118.97, 113.45, 97.68, 68.06, 27.78, 27.52, 22.04, 13.86.

hexyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3h: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (dd, *J* = 17.2, 7.6 Hz, 2H), 7.16 – 6.92 (m, 2H), 5.31 (s, 1H), 4.16 (td, *J* = 6.7, 2. Hz, 2H), 1.56 – 1.41 (m, 2H), 1.18 – 1.00 (m, 6H), 0.74 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 189.09, 166.61, 162.17, 134.38, 120.57, 118.33, 114.21, 108.68, 93.01, 63.23, 26.29, 23.29, 20.24, 17.61, 9.11.

heptyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3i: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (dd, *J* = 16.7, 8.0 Hz, 2H), 7.21 – 7.10 (m, 2H), 5.29 (s, 1H), 4.24 (td, *J* = 6.6, 2.2 Hz, 2H), 1.58 (dd, *J* = 13.4, 6.6 Hz, 2H), 1.24 – 1.13 (m, 8H), 0.85 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.81, 171.37, 166.98, 139.15, 125.34, 123.11, 118.97, 113.45, 97.68, 68.04, 31.54, 28.58, 28.10, 25.29, 22.45, 14.07.

octyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3j: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.69 (dd, *J* = 17.8, 7.8 Hz, 2H), 7.22 – 7.07 (m, 2H), 5.28 (s, 1H), 4.29 – 4.19 (m, 2H), 1.65 – 1.50 (m, 2H), 1.22 (d, *J* = 32.2 Hz, 10H), 0.87 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 189.02, 166.61, 162.22, 134.36, 120.57, 118.34, 114.23, 108.68, 92.93, 63.28, 26.88, 24.27, 24.13, 23.36, 20.59, 17.86, 9.34.

ethyl 2-hydroxy-5-methyl-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3k: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 8.2 Hz, 2H), 7.03 (d, J = 8.3 Hz, 1H), 4.34 – 4.26 (m, 2H), 2.37 (s, 3H), 1.23 (d, J = 7.1 Hz, 3H), 0.86 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.97, 169.90, 167.04, 140.39, 132.89, 124.78, 118.74, 113.10, 97.90, 64.00, 20.65, 13.87.

ethyl 2-hydroxy-6-methoxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

31: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as

a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, J = 8.6, 2.9 Hz, 1H), 6.70 (d, J = 8.6 Hz, 1H), 6.55 (t, J = 2.5 Hz, 1H), 5.42 (s, 1H), 4.36 – 4.24 (m, 2H), 3.90 (d, J = 2.9 Hz, 3H), 1.26 – 1.22 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 191.35, 174.02, 169.19, 167.00, 126.61, 112.41, 111.85, 98.68, 96.66, 63.99, 56.13, 13.89.

ethyl 5-fluoro-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3m: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (td, *J* = 8.7, 2.6 Hz, 1H), 7.35 (dd, *J* = 6.4, 2.6 Hz, 1H), 7.11 (dd, *J* = 8.9, 3.5 Hz, 1H), 4.37 – 4.26 (m, 2H), 1.24 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.40 (d, *J* = 2.9 Hz), 167.06 (d, *J* = 124.8 Hz), 159.23, 157.29, 126.72 (d, *J* = 25.7 Hz), 119.40 (d, *J* = 8.2 Hz), 114.72 (d, *J* = 7.6 Hz), 110.55 (d, *J* = 24.1 Hz), 98.54, 64.24, 13.86; ¹⁹F NMR (CDCl₃, 376 MHz, 298 K) δ = -119.09 (ddd, *J* = 8.7, 6.7, 3.7 Hz).

ethyl 5-chloro-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

3n: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 2.2 Hz, 1H), 7.62 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 1H), 4.31 (dd, *J* = 8.9, 7.2 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.73, 169.69, 166.43, 138.96, 128.64, 124.70, 120.00, 114.88, 98.40, 64.28, 13.86.

ethyl 5-bromo-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate

30: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 2.1 Hz, 1H), 7.76 (dd,

J = 8.8, 2.2 Hz, 1H), 7.05 (d, *J* = 8.8 Hz, 1H), 5.43 (s, 1H), 4.31 (dd, *J* = 9.3, 7.2 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.48, 170.11, 166.41, 141.67, 127.83, 120.54, 115.63, 115.32, 98.21, 64.32, 13.88.

N-benzyl-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5a: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.02 (t, *J* = 6.3 Hz, 1H), 8.89 (s, 1H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.66 (d, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.30 – 7.22 (m, 4H), 7.18 (t, *J* = 7.4 Hz, 1H), 4.31 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 197.67, 171.82, 165.66, 139.72, 139.39, 128.72, 127.58, 127.29, 124.96, 122.89, 119.49, 113.70, 101.15, 42.53.

2-hydroxy-N-(4-methylbenzyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5b: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.97 (t, *J* = 6.3 Hz, 1H), 8.87 (s, 1H), 7.76 (dd, *J* = 11.4, 4.1 Hz, 1H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.20 – 7.10 (m, 5H), 4.25 (d, *J* = 6.3 Hz, 2H), 2.28 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.66, 171.80, 165.54, 139.69, 136.37, 136.33, 129.24, 127.63, 124.93, 122.86, 119.50, 113.68, 101.13, 42.29, 21.15.

N-(4-(tert-butyl)benzyl)-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5c: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product

as a colorless liquid; ¹H NMR (500 MHz, DMSO- d_6) δ 8.97 (t, J = 6.3 Hz, 1H), 8.86 (s, 1H), 7.79 – 7.72 (m, 1H), 7.67 – 7.61 (m, 1H), 7.33 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.3 Hz, 1H), 7.20 – 7.11 (m, 3H), 4.25 (d, J = 6.4 Hz, 2H), 1.26 (s, 9H); ¹³C NMR (126 MHz, DMSO- d_6) δ 197.67, 171.80, 165.53, 149.65, 139.69, 136.39, 127.41, 125.45, 124.93, 122.86, 119.50, 113.68, 101.13, 42.20, 34.64, 31.64.

2-hydroxy-N-(4-methoxybenzyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5d: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.94 (t, *J* = 6.3 Hz, 1H), 8.85 (s, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.17 (t, *J* = 8.6 Hz, 3H), 6.88 (d, *J* = 8.5 Hz, 2H), 4.21 (d, *J* = 6.3 Hz, 2H), 3.73 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.67, 171.79, 165.46, 158.69, 139.68, 131.37, 129.04, 124.93, 122.86, 119.50, 114.10, 113.68, 101.12, 55.51, 41.99.

2-hydroxy-N-(2-methoxybenzyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5e: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.94 (d, *J* = 1.5 Hz, 1H), 8.77 (t, *J* = 6.0 Hz, 1H), 7.81 – 7.74 (m, 1H), 7.70 – 7.64 (m, 1H), 7.25 (dd, *J* = 12.6, 4.8 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 8.1 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 4.28 (t, *J* = 6.4 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.68, 171.84, 165.69, 156.87, 139.75, 128.45, 127.12, 126.44, 124.97, 122.91, 120.56, 119.46, 113.70, 110.81, 101.13, 55.76, 37.76.

2-hydroxy-3-oxo-N-(4-phenoxybenzyl)-2,3-dihydrobenzofuran-2-carboxamide

5f: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, DMSO- d_6) δ 9.04 (t, J = 6.3 Hz, 1H), 8.90 (s, 1H), 7.76 (dd, J = 11.4, 4.2 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.38 (t, J = 7.9 Hz, 2H), 7.26 (dd, J = 19.4, 8.4 Hz, 3H), 7.15 (dt, J = 20.7, 7.4 Hz, 2H), 6.99 (dd, J = 7.9, 6.8 Hz, 4H), 4.28 (d, J = 6.3 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 197.66, 171.81, 165.62, 157.35, 155.87, 139.72, 134.61, 130.50, 129.43, 124.96, 123.76, 122.89, 119.48, 119.12, 118.83, 113.69, 101.13, 42.01.

N-(4-fluorobenzyl)-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5g: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 7.3 Hz, 1H), 7.22 – 7.13 (m, 2H), 7.12 – 6.93 (m, 5H), 6.44 (s, 1H), 4.30 (d, J = 5.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 195.96, 171.78, 165.19, 163.29, 139.50, 132.56 (d, J = 3.2 Hz), 129.48 (d, J = 8.2 Hz), 125.38, 123.09, 118.46, 115.67 (d, J = 21.5 Hz), 113.61, 99.60, 43.11; ¹⁹F NMR (CDCl₃, 376 MHz, 298 K) $\delta = -114.23 - -114.45$ (m).

N-(4-chlorobenzyl)-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5h: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, DMSO- d_6) δ 9.08 (t, J = 6.3 Hz, 1H), 8.91 (s, 1H), 7.76 (dd, J = 11.4, 4.1 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 7.25 (dd, J = 15.6, 8.3 Hz, 3H), 7.17 (t, J = 7.4 Hz, 1H), 4.27 (d, J = 6.4 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 197.59, 171.80, 165.75, 139.74, 138.45, 131.89, 129.51, 128.68, 124.96, 122.91, 119.44, 113.69, 101.11, 41.96.

N-(4-bromobenzyl)-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5i: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, DMSO- d_6) δ 9.10 (t, J = 6.2 Hz, 1H), 8.91 (s, 1H), 7.77 (t, J = 7.4 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 8.3 Hz, 2H), 7.28 – 7.13 (m, 4H), 4.25 (d, J = 6.2 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 197.59, 171.79, 165.73, 139.75, 138.88, 131.60, 129.89, 124.97, 122.92, 120.37, 119.43, 113.69, 101.09, 42.02.

2-hydroxy-N-(4-iodobenzyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5j: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the titled thiocyanation indole as a white solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 8.91 (d, *J* = 3.7 Hz, 1H), 7.77 (t, *J* = 7.7 Hz, 1H), 7.69 (d, *J* = 7.1 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 7.4 Hz, 2H), 4.23 (d, *J* = 5.7 Hz, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.59, 171.79, 165.71, 139.75, 139.27, 137.45, 130.06, 124.97, 122.92, 119.43, 113.69, 101.09, 93.15, 42.14.

2-hydroxy-3-oxo-N-(4-(trifluoromethyl)benzyl)-2,3-dihydrobenzofuran-2-carboxamide

5k: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.18 (t, *J* = 6.3 Hz, 1H), 8.94 (s, 1H), 7.80 – 7.74 (m, 1H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.67 – 7.63 (m, 1H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 4.38 (d, *J* = 6.3 Hz, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.56, 171.80, 165.89, 144.26, 139.76, 128.25, 125.89, 125.65, 124.97, 123.72, 122.93, 119.41, 113.69, 101.11, 42.28; ¹⁹F NMR (DMSO-*d*₆)

376 MHz, 298 K) $\delta = -60.81$.

2-hydroxy-3-oxo-N-(2-(trifluoromethyl)benzyl)-2,3-dihydrobenzofuran-2-carboxamide

51: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the titled thiocyanation indole as a white solid; ¹H NMR (500 MHz, DMSO- d_6) δ 9.17 (t, J = 6.0 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H), 7.74 – 7.63 (m, 3H), 7.48 (t, J = 7.7 Hz, 2H), 7.25 (d, J = 8.4 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 4.50 (dd, J = 12.6, 5.3 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 197.53, 171.84, 166.08, 139.84, 137.34, 133.09, 127.81 (d, J = 3.6 Hz), 126.50, 126.25 (d, J = 4.2 Hz), 125.97, 125.02, 123.79, 122.99, 119.35, 113.72, 101.14, 39.09; ¹⁹F NMR (DMSO- d_6 , 376 MHz, 298 K) $\delta = -59.40$.

ethyl 4-((2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamido)methyl)benzoate

5m: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.1 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.02 (dd, *J* = 15.7, 8.0 Hz, 2H), 6.76 (s, 1H), 4.44 – 4.36 (m, 2H), 4.29 (q, *J* = 7.2 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.07, 171.81, 166.67, 165.45, 142.21, 139.37, 129.96, 129.46, 127.39, 125.22, 122.92, 118.51, 113.53, 99.80, 61.25, 43.23, 14.28.

N-([1,1'-biphenyl]-4-ylmethyl)-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5n: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (t, *J* = 8.1 Hz, 2H), 7.53 (t, *J* = 8.3 Hz, 4H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.37 – 7.32 (m, 1H), 7.31 – 7.25 (m, 2H), 7.15

-7.02 (m, 2H), 6.94 (s, 1H), 4.43 (d, J = 5.4 Hz, 2H), 2.01 (s, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 197.69, 171.84, 165.72, 140.42, 139.73, 139.25, 138.65, 129.41, 128.28, 127.82, 127.08, 124.97, 122.91, 119.51, 113.71, 101.19, 56.54, 42.32.

2-hydroxy-N-(naphthalen-1-ylmethyl)-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

50: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, *J* = 14.0, 8.1 Hz, 2H), 7.81 – 7.77 (m, 1H), 7.55 – 7.46 (m, 4H), 7.41 – 7.36 (m, 2H), 7.03 (d, *J* = 8.3 Hz, 1H), 6.98 (t, *J* = 7.4 Hz, 1H), 6.89 (s, 1H), 6.36 (s, 1H), 4.83 (d, *J* = 5.5 Hz, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.69, 171.85, 165.74, 139.75, 134.36, 133.69, 131.14, 128.98, 127.94, 126.72, 126.28, 125.84, 125.25, 124.99, 123.85, 122.93, 119.50, 113.72, 101.20, 40.62.

N-(2-amino-6-fluorobenzyl)-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5p: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a yellow solid; ¹H NMR (500 MHz, DMSO- d_6) δ 8.90 (s, 1H), 8.80 (t, J = 5.9 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 6.98 (dd, J = 14.9, 8.0 Hz, 1H), 6.44 (d, J = 8.0 Hz, 1H), 6.29 (t, J = 8.9 Hz, 1H), 5.52 (s, 2H), 4.23 (ddd, J = 34.7, 14.5, 6.1 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 197.47, 171.69, 166.09, 161.28, 149.62, 139.72, 129.61, 124.94, 122.93, 119.49, 113.68, 111.09, 108.74, 102.42, 100.95, 60.26; ¹⁹F NMR (DMSO- d_6 , 376 MHz, 298 K) $\delta = -113.10 - -120.41$ (m).

2-hydroxy-3-oxo-N-(thiophen-2-ylmethyl)-2,3-dihydrobenzofuran-2-carboxamide

5q: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a yellow solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.07 (t, *J* = 6.2 Hz, 1H), 8.86 (s, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 7.5 Hz, 1H), 7.39 (dd, *J* = 4.6, 1.6 Hz, 1H), 7.23 (d, *J* = 8.3 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 6.99 – 6.90 (m, 2H), 4.43 (dd, *J* = 6.2, 1.8 Hz, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.47, 171.75, 165.47, 142.02, 139.71, 127.05, 126.11, 125.63, 124.95, 122.90, 119.47, 113.70, 101.04, 37.74.

2-hydroxy-3-oxo-N-phenethyl-2,3-dihydrobenzofuran-2-carboxamide

5r: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.51 (m, 2H), 7.26 (t, *J* = 7.3 Hz, 3H), 7.12 (d, *J* = 7.1 Hz, 2H), 7.03 (t, *J* = 7.4 Hz, 2H), 6.66 (t, *J* = 5.7 Hz, 1H), 6.52 (s, 1H), 3.44 (dd, *J* = 13.4, 6.9 Hz, 2H), 2.76 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 196.01, 171.65, 165.10, 139.31, 138.20, 128.82, 128.70, 126.67, 125.24, 122.95, 118.63, 113.52, 99.73, 41.24, 35.27.

2-hydroxy-3-oxo-N-(prop-2-yn-1-yl)-2,3-dihydrobenzofuran-2-carboxamide

5s: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.90 (s, 1H), 7.80 – 7.75 (m, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 1H), 3.88 – 3.82 (m, 2H), 3.12 (s, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.35, 171.68, 165.47, 139.77, 124.96, 122.97, 119.43, 113.70, 100.89, 81.12, 73.36, 28.64.

N-ethyl-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5aa: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.79 (s, 1H), 8.46 (t, *J* = 5.7 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 8.3 Hz, 1H), 7.17 (t, *J* = 7.4 Hz, 1H), 3.20 – 3.03 (m, 2H), 1.03 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.80, 171.79, 165.20, 139.62, 124.88, 122.80, 119.59, 113.64, 101.00, 34.05, 15.04.

2-hydroxy-3-oxo-N-propyl-2,3-dihydrobenzofuran-2-carboxamide

5ab: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.56 (m, 2H), 7.09 (t, *J* = 8.0 Hz, 2H), 6.58 (s, 1H), 6.33 (s, 1H), 3.19 (dd, *J* = 13.5, 6.8 Hz, 2H), 1.56 – 1.47 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.37, 171.80, 165.20, 139.14, 125.08, 122.70, 118.66, 113.47, 99.81, 41.52, 22.38, 11.19.

2-hydroxy-N-isopropyl-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5ac: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.63 – 7.58 (m, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.07 (t, J = 8.2 Hz, 2H), 6.54 (s, 1H), 6.48 (d, J = 7.8 Hz, 1H), 3.95 (tt, J = 13.3, 6.6 Hz, 1H), 1.13 (d, J = 6.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 196.24, 171.79, 164.17, 139.24, 125.21, 122.86, 118.66, 113.55, 99.58, 42.42, 22.29.

N-butyl-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5ad: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (t, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 8.2 Hz, 2H), 6.67 (s, 1H), 3.19 (dd, *J* = 13.4, 6.8 Hz, 2H), 1.45 (dd, *J* = 14.8, 7.4 Hz, 2H), 1.32 – 1.25 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.17, 171.79, 165.10, 139.32, 125.32, 122.91, 118.61, 113.59, 99.67, 39.17, 31.13, 19.88, 13.71.

2-hydroxy-N-isobutyl-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5ae: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.58 (m, 2H), 7.15 – 7.06 (m, 2H), 6.59 (s, 1H), 6.29 (s, 1H), 3.05 (td, *J* = 6.7, 2.1 Hz, 2H), 1.81 – 1.71 (m, 1H), 0.87 (dd, *J* = 6.7, 0.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 196.18, 171.82, 165.22, 139.30, 125.31, 122.88, 118.61, 113.59, 99.74, 47.13, 28.31, 19.90 (d, *J* = 2.6 Hz).

2-hydroxy-3-oxo-N-pentyl-2,3-dihydrobenzofuran-2-carboxamide

5af: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.59 (m, 2H), 7.13 (dd, *J* = 12.3, 5.1 Hz, 2H), 6.51 (s, 1H), 6.21 (s, 1H), 3.22 (dd, *J* = 13.7, 6.8 Hz, 2H), 1.49 (dt, *J* = 14.6, 7.4 Hz, 2H), 1.32 – 1.25 (m, 4H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.15, 171.78, 165.09, 139.29, 125.32, 122.89, 118.64, 113.59, 99.68, 40.05, 28.82, 28.77, 22.26, 13.97.

N-hexyl-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5ag: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product

as a colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.61 (m, 2H), 7.17 – 7.09 (m, 2H), 6.48 (s, 1H), 6.20 (s, 1H), 3.23 (dd, *J* = 13.8, 6.7 Hz, 2H), 1.48 (dd, *J* = 14.1, 7.0 Hz, 2H), 1.31 – 1.25 (m, 6H), 0.87 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.15, 171.78, 165.08, 139.27, 125.31, 122.88, 118.67, 113.58, 99.70, 40.08, 31.36, 29.05, 26.37, 22.51, 14.02.

N-heptyl-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5ah: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.61 (m, 2H), 7.18 – 7.09 (m, 2H), 6.46 (s, 1H), 6.18 (s, 1H), 3.23 (dd, *J* = 13.8, 6.7 Hz, 2H), 1.53 – 1.45 (m, 2H), 1.28 (d, *J* = 18.3 Hz, 8H), 0.87 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.11, 171.77, 165.07, 139.30, 125.34, 122.91, 118.63, 113.59, 99.66, 40.10, 31.68, 29.08, 28.87, 26.66, 22.59, 14.10.

N-cyclohexyl-2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamide

5ai: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.58 (m, 2H), 7.21 – 7.08 (m, 2H), 6.35 (d, *J* = 7.3 Hz, 1H), 3.69 (dd, *J* = 11.2, 7.3 Hz, 1H), 1.87 (d, *J* = 11.6 Hz, 2H), 1.69 (d, *J* = 12.8 Hz, 2H), 1.60 (d, *J* = 12.7 Hz, 1H), 1.38 – 1.24 (m, 3H), 1.21 – 1.08 (m, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 197.78, 171.79, 164.49, 139.57, 124.87, 122.78, 119.60, 113.64, 100.92, 48.48, 32.34, 25.48, 25.28.

2-hydroxy-2-(morpholine-4-carbonyl)benzofuran-3(2H)-one

5aj: Flash column chromatography (petroleum/ethyl acetate 4:1) afforded the product

as a white solid; ¹H NMR (500 MHz, CDCl₃) δ 11.26 (s, 1H), 7.61 – 7.54 (m, 2H), 7.07 – 7.02 (m, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 3.85 – 3.76 (m, 4H), 3.71 – 3.65 (m, 2H), 3.44 – 3.38 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 196.05, 163.55, 163.34, 138.22, 132.01, 119.96, 118.70, 116.79, 66.66 (d, *J* = 10.4 Hz), 46.39, 41.66.

11. ¹H NMR, ¹³C NMR and ¹⁹F NMR for the products.

