Comparison of microbial strains as candidate hosts and genetic reservoirs for the valorization of lignin streams

Rebecca A. Wilkes,^{1,2} Andrew J. Borchert,^{1,2} Valentina E. Garcia,^{3,4} Gina M. Geiselman,^{3,4} Sarah Liu,⁵ Adam M. Guss,^{2,6} Joshua K. Michener,^{2,6} Daniel R. Noguera,⁵ Eiji Masai,⁷ John M. Gladden,^{3,4} John Ralph,⁵ Gregg T. Beckham^{1,2*}

1. Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA

2. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA

- 3. Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
- 4. Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA 94550, USA
- 5. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- 6. Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- 7. Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan

Table of Contents

Fig. S1 . Growth dynamics of all seven microbial strains grown on 10% or 25% mock APL and the six tested minimal media
Fig. S2 . Comparison of (A) essential nutrients, (B) cumulative salt additives, and (C) other trace metals in the six different media recipes
Fig. S3. Growth dynamics, maximum absolute growth rates (growth rate), and lag times for the six bacterial strains grown on favorable carbon sources plus NaCl or DMSO
Fig. S4. Growth dynamics, maximum absolute growth rates (growth rate), and lag times for the NBRC0880 compared to KT2440 on 20 mM glucose plus NaCl or DMSO
Fig. S5. Growth comparison of KT2440 in 1 mL culture volumes (light grey) compared to KT2440 in 0.2 mL culture volumes (dark grey)
Fig. S6. The concentration of lignin (g/L) measured in the lyophilized supernatant
Fig. S7 . The sum, in mM of carbon, of all measured aromatic and aliphatic acids present in the supernatant after 120 h
Fig. S8. Measured pH of APL media after 120 h of inoculation with the different microbial strains. 8
Fig. S9 . Depletion profiles of the summed total of measured aromatic acids (red) and aliphatic acids (blue) over time for each strain
Fig. S10. Low molecular mass distribution of APL abiotic control compared to aromatic compound standards10
Table S1. Chemical components of all minimal media recipes 11
Table S2. Total ionic content of each minimal media recipe
Table S3. APL compositional analysis13

Fig. S1. Growth dynamics of all seven microbial strains grown on 10% or 25% mock APL and the six tested minimal media. Data represents the mean \pm the standard error of the mean of three biological replicates.

Fig. S2. Comparison of (A) essential nutrients, (B) cumulative salt additives, and (C) other trace metals in the six different media recipes.

Fig. S3. Growth dynamics, maximum absolute growth rates (growth rate), and lag times for the six bacterial strains grown on favorable carbon sources: 20 mM glucose for F199, JMN2, KT2440, and PD630 or SEMP for SYK-6 and B1D3A. Addition of DMSO or NaCl was used to assess toxicity tolerance. Bacterial growth in 96-well plates containing 200 μ L of growth medium was monitored on a BioscreenC Pro instrument. The data are the means of the maximum absolute growth rate or lag time measurements determined from three replicates and error bars denote the standard deviation of the mean values.

Fig. S4. Growth dynamics, maximum absolute growth rates (growth rate), and lag times for the NBRC0880 compared to KT2440 grown on 20 mM glucose plus increasing concentrations of NaCl or with 1% DMSO. Growth in 48-well plates containing 1 mL of growth medium was monitored using a BioLector® automated growth curve analysis system. The data are the means of the maximum absolute growth rate or lag time measurements determined from three replicates and error bars denote the standard deviation of the mean values.

Fig. S5. Growth comparison of KT2440 in 1 mL culture volumes (light grey) compared to KT2440 in 0.2 mL culture volumes (dark grey). Maximum absolute growth rates and lags were calculated from the change in biomass over time monitored using BioLector® automated growth curve analysis system or a BioscreenC Pro instrument. RM minimal media supplemented with increasing concentrations of mock APL, aromatic acids, aldehydes, or aliphatic acids as sole carbon sources were used to culture strains. If no measurement of growth occurred after 80 h, the strains were considered to not grow on that substrate concentration. All data represent the mean ± the standard deviation of the calculated growth rates and lags determined from three biological replicates.

Fig. S6. The concentration of lignin (g/L) measured in the lyophilized supernatant of the initial APL versus the concentration after inoculation with the seven different microbial strains or no inoculation (abiotic control) after 120 h. The concentration was corrected for the amount of evaporation that occurred at the end of 120 h. Data represents the mean \pm the standard deviation of three replicates.

Fig. S7. The sum, in mM of carbon, of all measured aromatic and aliphatic acids present in the supernatant after 120 h. The concentration was corrected to account for the evaporation that occurred at the end of 120 h. Data represents the mean \pm the standard deviation of three replicates.

Fig. S8. Measured pH of APL media after 120 h of inoculation with the different microbial strains. Data represents the mean ± the standard deviation of three biological replicates.

Fig. S9. Depletion profiles of the summed total of measured aromatic acids (red) and aliphatic acids (blue) over time for each strain. Data represents the mean ± the standard deviation of three biological replicates.

Fig. S10. Low molecular mass distribution of APL abiotic control compared to aromatic compound standards.

Chemical Name	Chemical Formula	M9	RM	MM 457	Wx	SD	К3
	mM					I	
Sodium phosphate dibasic dodecahydrate	Na ₂ HPO ₄ • 12H ₂ O	47.8	-	17.2	27.4	-	-
Potassium phosphate monobasic	KH ₂ PO ₄	25.0	12.2	11.2	12.5	46.4	46.4
Potassium phosphate dibasic	K ₂ HPO ₄	-	22.8	-	-	53.6	53.6
Sodium chloride	NaCl	8.56	-	-	-	1.71	-
Ammonium chloride	NH4CI	7.57	-	-	-	-	-
Ammonium sulfate	(NH4)2SO4	-	10.6	3.78	7.57	37.8	-
Ammonium phosphate dibasic	(NH4)2HPO4	-	-	-	-	-	30.3
Magnesium sulfate heptahydrate	MgSO₄ ▪ 7H₂O	2.00	4.06	0.81	0.406	4.15	1.00
			μ	M			
Magnesium oxide	MgO	-	-	-	267	-	-
Ferrous sulfate heptahydrate	FeSO₄ ∙ 7H₂O	18.0	1.80	7.19	34.2	10.0	5.00
Calcium chloride dihydrate	CaCl₂ ▪ 2H2O	100	102	340	-	901	34.0
Calcium carbonate	CaCO ₃	-	-	-	20.0	-	-
Zinc sulfate heptahydrate	ZnSO₄ ∙ 7H₂O	-	1.39	0.350	8.02	2.48	-
Zinc chloride	ZnCl ₂	-	-	-	-	-	6.90
Manganese sulfate monohydrate	MnSO ₄ • H ₂ O	-	0.120	-	5.02	2.65	7.17
Manganese chloride tetrahydrate	MnCl ₂ • 4H ₂ O	-	-	0.150	-	-	-
Copper sulfate pentahydrate	CuSO₄ ∙ 5H₂O	-	-	-	1.00	0.250	-
Copper chloride dihydrate	CuCl ₂ • 2H ₂ O	-	0.290	0.060 0	-	-	2.23
Cobalt sulfate heptahydrate	CoSO₄ ∙ 7H₂O	-	0.210	-	1.00	-	-
Cobalt chloride hexahydrate	CoCl ₂ • 6H ₂ O	-	-	0.840	-	-	2.10
Boric acid	H ₃ BO ₃	-	0.240	4.85	0.970	8.09	0.50 1
Ethylenediaminetetraacetic acid (EDTA) disodium salt	Na ₂ EDTA	-	0.860	17.1	-	-	1.19
Ethylenediaminetetraacetic acid (EDTA) ferric-sodium salt	FeNa • EDTA	-	13.6	-	-	-	-
Nickel chloride hexahydrate	NiCl ₂ • 6H ₂ O	-	0.040	0.080 0	-	-	-
Sodium molybdate dihydrate	NaMoO ₂ • 2H ₂ O	-	8.26	0.120	-	0.970	12.0 0
Ferric citrate	C ₆ H ₅ FeO ₇	-	-	-	-	-	250

Table S1. Chemical components of all minimal media recipes

Thiamine HCI	C ₁₂ H ₁₈ Cl ₂ N ₄ O S	-	-	-	-	-	13.3
Ferric chloride	FeCl₃	-	-	-	-	1.23	-
Potassium iodide	KI		-	-	-	0.600	-
	nM						
Biotin		-	-	-	-	8.19	-
Calcium pantothenate		-	-	-	-	839.4	-
Folate		-	-	-	-	4.53	-
Inositol		-	-	-	-	11101	-
Niacin		-	-	-	-	3249	-
<i>p</i> -Aminobenzoic acid		-	-	-	-	1458	-
Pyridoxine HCI		-	-	-	-	1945	-
Riboflavin		-	-	-	-	531	-
Thiamine HCI		-	-	-	-	1185	-

	M9	RM	MM457	Wx	SD	K3		
Essential nutrients (mM)								
PO4 ³⁻	72.8	34.99	28.4	39.9	100	100		
NH4 ⁺	7.57	10.6	3.78	7.57	37.8	30.3		
Mg ²⁺	2.00	4.06	0.81	0.67	4.15	0.997		
Ca ²⁺	0.10	0.102	0.34	0.0199	0.901	0.0340		
Supplemental salts (mM)								
Na+	104	0.0153	34.4	54.7	1.71	0.00238		
K+	25.0	57.8	11.2	12.50	153	153		
Cl	16.3	0.205	0.682	0	1.71	0.0767		
SO42-	2.02	14.7	4.60	8.03	42.0	1.00		
Trace metal components (µM)								
Fe ²⁺ /Fe ³⁺	18	15.4	7.19	34.2	11.2	255		
Zn ²⁺	0	1.39	0.35	8.02	2.48	6.90		
Mn ²⁺	0	0.12	0.15	5.02	2.65	7.17		
Cu ²⁺	0	0.29	0.06	1	0.25	2.23		
Co ²⁺	0	0.21	0.84	1	0	2.10		
Ni ²⁺	0	0.04	0.08	0	0	0		
Mo+	-	8.26	0.12	-	0.97	12.0		

Table S2. Total ionic content of each minimal media recipe

Table S3. APL compositional analysis.

	Composition in freeze-
Sample Description	(%)
Ash	55.3 ± 0.2
Lignin	19.7 ± 0.2
Glucan	1.63 ± 0.03
Xylan	6.16 ± 0.13
Galactan	1.88 ± 0.2
Arabinan	2.88 ± 0.05
Fructan	0.00 ± 0.00
Acetyl	1.41 ± 0.06
Total %	88.9 ± 0.3