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1. Scheme of the reaction setup 

 

 
Figure S1. Reaction setup equipped with a mechanical stirrer, a condenser, a 

thermocouple, an N2 feeding, and a sampling valve. 

 

2. Low-angle XRD patterns 
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Figure S2. Low-angle XRD patterns of the zeolite samples. 
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3. Scheme of reaction products of limonene-1,2-epoxide isomerization 

 

 
Figure S3. Reaction products of limonene-1,2-epoxide transformations over heterogeneous 

catalysts based on zeolite ZSM-5. 
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4. Repeatability test 
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Figure S4. Repeatability test of d-ZSM-5/4d in the isomerization of LE. (A) LE conversion 

as a function of the reaction time, (B) selectivity to dihydrocarvone, (C) selectivity to 

carveol, (D) selectivity to product 3, and (E) cis/trans dihydrocarvone mole ratio, as a 

function of the conversion. Reaction conditions: CLE,0 = 13 mmol L-1, 75 mL of total 

volume, anhydrous ethyl acetate as a solvent, 115 mg of catalyst, 70 ºC, 520-530 rpm, N2 

atmosphere. 
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5. Confirmation of catalytic route 
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Figure S5. Initial reaction rate of limonene-1,2-epoxide as a function of catalyst 

mass over d-ZSM-5/7d. Reaction conditions: Csubstrate,0 = 13 mmol L-1, 150 mL of 

total volume, anhydrous ethyl acetate as a solvent, 70 ºC, 520-530 rpm, N2 

atmosphere. 
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6. Turnover Frequency (TOF) 
 

Table S1. Comparison of turnover of frequency (TOF) for various heterogeneous catalysts 

in the limonene-1,2-epoxide isomerization.  

Catalyst Solvent 
Reaction 

conditions 

TOFb 

(min-1) 

Selectivity 

to target 

(%)d 

Reference 

ZSM-5 Ethyl acetate 13 mmol L-1, 75 

mL of total 

volume, 115 mg 

of catalyst, 70 ºC, 

520-530 rpm, N2 

atmosphere 

0.6 42 (20) 

This work 

h-ZSM-5 Ethyl acetate 1.6 43 (60) 

d-ZSM-5/4d Ethyl acetate 4.4 62 (60) 

d-ZSM-5/7d Ethyl acetate 2.3 55 (60) 

3.9Fe/SBA15a 

Toluene 

0.25 mmol of 

substrate, 1 mL 

of solvent, 70 ºC, 

750 rpm, 10 mg 

of catalyst 

0.46 42 (21) 

[1] 

Ethyl acetate 0.29 44 (15) 

Acetonitrile 0.12 50 (5) 

Acetone 0.35 0 (17) 

THF 0.12 48 (5) 

1,4-Dioxane 0.17 0 (8) 

Tert-butanol 0.12 13 (5) 

Cyclohexane 0.23 7 (12) 

Hexane 0.23 2 (10) 

8.6Fe/MCM41a,c 

Toluene 

0.25 mmol of 

substrate, 1 mL 

of solvent, 70 ºC, 

750 rpm, 25 mg 

of catalyst 

0.8 62 (100)  

Ethyl acetate 0.8 56 (100) [1] 

tert-Butanol 0.8 56 (100)  

5.4Cu/MCM4 a,c 

Toluene 0.2 69 (38)  

Ethyl acetate 0.01 96 (<1) [1] 

tert-Butanol 0.00 0 (0)  

9.2Fe/SBA15 a,c 

Toluene 0.2 65 (100) 

[1] Ethyl acetate 0.2 56 (100) 

tert-Butanol 0.2 50 (100) 

7.2Cu/SBA15 a,c 

Toluene 0.1 67 (41) 

[1] Ethyl acetate 0.02 80 (6) 

tert-Butanol 0.04 63 (11) 
a The values represent the metal loading (% wt.). b TOF was calculated with Eq. (5).              

c Substrate corresponds to α-pinene epoxide. d Values in parenthesis indicate the conversion 

and target corresponds to dihydrocarvone or campholenic aldehyde if the substrate is 

limonene-1,2-epoxide or α-pinene epoxide, respectively.  
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7. TG-Air Analyses 

 

 
Figure S6. TG-DTG (air) analyses of the fresh, spent, and regenerated catalysts of sample 

d-ZSM-5/4d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

8. Conversion of limonene-1,2-epoxide isomers 
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Figure S7. Conversion of cis-limonene-1,2-epoxide (A, C) and trans-limonene-1,2-epoxide 

(B, D) as a function of reaction time, evaluating the effect of the catalyst (A, B) and the 

solvent (C, D). Reaction conditions for Figures A and B are described in Figure 5, and those 

for Figures C and D are described in Figure 7. 
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9. Isomerization of pinene epoxides 
 

 
Figure S8. Main products of (A) α-pinene epoxide and (B) β-pinene epoxide 

rearrangement. 

 

0 10 20 30 40 50 60

0

20

40

60

80

100

 

 

C
o
n
ve

rs
io

n
 (

%
) 

/ 
Y

ie
ld

 (
%

)

Time (min)

 Conversion    P-cymene

 FA                 CA

 PC                TC

 PCOL

 
Figure S9. Conversion and product distribution of the isomerization of α-pinene epoxide 

over d-ZSM-5/4d. FA: Fencholenic aldehyde, CA: Campholenic aldehyde, PC: Pinocamphone, 

TC: Trans-carveol, PCOL: Pinocarveol, PA: Perillyl alcohol. Reaction conditions: C0 = 13 

mmol L-1, 75 mL of total volume, dimethyl carbonate as a solvent, 115 mg of catalyst, 70 ºC, 

520-530 rpm, N2 atmosphere. 
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10. Comparison of catalytic systems for the isomerization of pinene epoxides. 
 

Table S2. Comparison of catalytic systems for the isomerization of α- and β-pinene 

epoxides.  

Entry Substrate Catalyst Solvent 
Reaction 

conditions 

Conversion 

(%) 
Selectivity (%) Ref 

1 

α-Pinene 

epoxide 

d-ZSM-5/4d 

Ethyl acetate 

13 mmol L-1, 115 mg 

catalyst, 60 ºC, 15 

min 

100 

62.5 CA 

8.1 TC 

5.7 FA 

5.6 PC 

2 PCY 

This 

work 

2 
Dimethyl 

carbonate 

13 mmol L-1, 115 mg 

catalyst, 70 ºC, 5 min 
100 

72.4 CA 

4.7 TC 

5.2 FA 

6.1 PC 

2.1 PCY 

This 

work 

3 ZrPa (2.4 M) 
N, N-

Dimethylacetamide 

3.28 mmol substrate, 

50 mg catalyst, 2 mL 

solvent, 160 ºC, 5 h 

100 
19 CA 

73 TC 
[2] 

4 Fe/MCM-41 (1.7 

wt%) 

Toluene 

0.25 mmol substrate, 

10 mg catalyst, 1 mL 

solvent, 70 ºC, 2.5 h 

100 66 CA 

[1] 

5 Ethyl acetate 100 58 CA 

6 
Cu/MCM-41 (1.3 

wt%) 
Toluene 20 82 CA 

7 
Fe/SBA-15 (3.9 wt%) 

Toluene 100 64 CA  
8 Ethyl acetate 100 58 CA  

9 
Cu/SBA-15 (1.2 

wt%) 
Toluene 46 71 CA 

10 MZ-5b (1.5) 
N, N-

Dimethylacetamide 

2 mmol substrate, 75 

mg catalyst, 100 mL 

solvent, 140 ºC, 3 h 

92 
27 CA 

45 TC  
[3] 

11 

MoO3-Modified beta 

zeolite 

Toluene 
1.25 g substrate, 125 

mg catalyst, 6 mL 

solvent, 70 ºC, 3 h 

100 

34.2 CA 

14.8 TC 

14.0 PMD 
[4] 

12 Ethyl acetate 97 

37.1 CA 

15.8 TC 

13.9 PMD 

13 Cs2.5H0.5PW12040 Acetone 

0.75 mmol substrate, 

7.50 μmol catalyst, 5 

mL total, 40 ºC, 5 

min 

100 

17 CA 

11 TS 

62 Pinol 

[5] 

14 Al-SiO2 (12 wt%) Dichloroethane 

0.25 mmol substrate, 

5 mg catalyst, 2 mL 

solvent, 30 ºC, 30 

min 

80 

72 CA 

2 FA 

15 TC 

8 TS 

[6] 

15 Phosphonate/Carbon DMF 

3.28 mmol substrate, 

50 mg catalyst, 2 mL 

solvent, 140 ºC, 1 h 

100 

22 CA 

67 TC 

9 TPC 

[7] 

16 

β-Pinene 

epoxide 

d-ZSM-5/4d Ethyl acetate 
13 mmol L-1, 115 mg 

catalyst, 50 ºC, 5 min 
100 

47.7 myrtanal 

3.1 myrtenol 

18.5 PA 

This 

work 

17 Fe/MCM-41 Acetonitrile 
0.25 mmol substrate, 

26% of catalyst, 1 mL 

solvent, 70 ºC, 1 h 

23 

90 myrtanal 

8 PA 

2 myrtenol 
[8] 

18 Fe/SBA-15 Hexane 27 

68 myrtanal 

26 PA 

6 myrtenol 

19 Sn-Beta-300 Toluene 

0.012 mol L-1, 75 mg 

of catalyst, 150 mL 

total, 70 ºC, 6 h 

72 

66 myrtanal 

10 PA 

2 myrtenol 

[9] 
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20 Zeolite beta 25 DMSO 

0.8 mL substrate, 25 

wt% of catalyst 

(based on the 

substrate), volume 

ratio substrate: 

solvent = 1:5, 70 ºC, 

2 h 

100 

19 myrtanal 

36 PA 

10 myrtenol 

9 p-Menth-1-en-

7,8-diol 

[10] 

21 Ti/SBA-15 Hexane 

0.25 mmol substrate, 

10 mg catalyst, 0.5 

mL solvent, 80 ºC, 1 

h 

> 99 
20 myrtanal 

45 PA  

[11] 

22 Mo/SBA-15 Hexane > 99 63 PA 

23 Mo/MCM-41 Hexane 98 

2 myrtanal 

20 PA 

5 myrtenol 

24 Mo/SiO2 Hexane 99 

12 myrtanal 

32 PA 

2 myrtenol 
aValue in parenthesis refer to the concentration of H3PO4 utilized in the synthesis of the 

catalyst. b Selectivities at 70 % conversion. ZrP: Zirconium phosphate. MZ: Mesoporous 

beta zeolite where the value in parenthesis denotes the Brønsted-to-Lewis acidity ratio. CA: 

Campholenic aldehyde. TC: Trans-Carveol. FA: Fencholenic aldehyde. PC: Pinocamphone. 

PCY: p-Cymene. PMD: p-Methadien-2-ol. TS: trans-Sobrerol. TPC: Trans-Pinocarveol. 

PA: Perillyl alcohol. 
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11. Characterization of substrate and reaction products 

 

11.1. Isomerization of limonene-1,2-epoxide 

 

Table S3. Retention times for the compounds involved in the isomerization of 

limonene-1,2-epoxide. 

Compound Retention time (min) 

Cis limonene-1,2-epoxide  7.17 

Trans limonene-1,2-epoxide  7.22 

Cis dihydrocarvone (1a)  7.99 

Trans dihydrocarvone (1b)  8.10 

Carveol (2)  8.32 and 8.49 

Product 3 6.81 

Fenchone (4)  7.75 

Product 5  7.82 

Product 6  5.15 

Product 7  7.91 

Limonene glycol (8) 9.92 
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Figure S10. Representative chromatogram of a reaction sample after 2 h in the 

isomerization of limonene-1,2-epoxide. Reaction conditions: Csubstrate,0 = 13 mmol L-1, 75 

mL of total volume, DMC as a solvent, 115 mg of d-ZSM-5/4d, 70 ºC, 520-530 rpm, N2 

atmosphere. 
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❖ Product 3 

 
Figure S11. Mass spectrum of product 3. 

 

❖ Product 5 

 

Figure S12. Mass spectrum of product 5. 
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❖ Product 6 

 
Figure S13. Mass spectrum of product 6. 

 

❖ Product 7 

 
Figure S14. Mass spectrum of product 7. 
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❖ Product obtained with acetonitrile as solvent 

 

 
Figure S15. Mass spectrum of the main product obtained with acetonitrile as solvent. 
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11.2. Isomerization of α-pinene epoxide 

 

Table S4. Retention times for the compounds involved in the isomerization of α-

pinene epoxide. 

Compound Retention time (min) 

α-Pinene epoxide 6.78 

Campholenic aldehyde (1) 7.02 

Fencholenic aldehyde (2) 6.47 

P-Cymene (3) 5.72 

Trans-pinocarveol (4) 7.43 

Pinocamphone (5) 7.54 

Trans-Carveol (6) 8.32 
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Figure S16. Representative chromatogram of a reaction sample after 60 min in the 

isomerization of α-pinene epoxide. Reaction conditions: Csubstrate,0 = 13 mmol L-1, 75 mL of 

total volume, ethyl acetate as a solvent, 115 mg of d-ZSM-5/4d, 60 ºC, 520-530 rpm, N2 

atmosphere. 
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11.3. Isomerization of β-pinene epoxide 

 

Table S5. Retention times for the compounds involved in the isomerization of β-

pinene epoxide. 

Compound Retention time (min) 

β-pinene epoxide 7.55 

Product 1 (1) 7.11 

Product 2 (2) 7.79 

Cis-myrtanal (3a) 7.87 

Trans-myrtanal (3b) 7.96 

Myrtenol (4) 8.08 

Perillyl alcohol (5) 9.45 

Product 3 (6) 9.84 
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Figure S17. Representative chromatogram of a reaction sample after 60 min in the 

isomerization of β-pinene epoxide. Reaction conditions: Csubstrate,0 = 13 mmol L-1, 75 mL of 

total volume, ethyl acetate as a solvent, 115 mg of d-ZSM-5/4d, 50 ºC, 520-530 rpm, N2 

atmosphere. 

 



20 
 

 
Figure S18. Mass spectrum of product 1. 

 

 
Figure S19. Mass spectrum of product 2. 
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Figure S20. Mass spectrum of product 3. 
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