Supporting Information

Streptothricin F biological production and simulated moving

bed purification from food waste digestate

Xiaofang Zhou,^a Peiyi Li,^b Yuchen Sun,^b Zeyang Zhang,^b Chuanyi Yao,^b Qingbiao Li*^{b,c} and Yuanpeng Wang*^b

^a College of School of environment and ecology, Xiamen University, Xiamen, P. R. China

^b Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical

Engineering, Xiamen University, Xiamen, P. R. China

° College Food and Biological Engineering, Jimei University, Xiamen, P. R. China

* Corresponding Author:

Yuanpeng Wang, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 Fujian, China. Qingbiao Li, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 Fujian, China; College Food and

Biological Engineering, Jimei University, Xiamen 361021 Fujian, China.

1. Experimental Section

1.1 Greenhouse gas emissions (GHG)

The primary utility consumption in the process includes purchased low-pressure steam, circulating water, and electricity. Utility usage is converted to standard oil equivalents for calculation. In the life cycle evaluation, process energy is calculated based on standard oil and electricity as detailed in equations (Formula S1-S4). The converted values are provided in Table S8, S10.

$$GHG_{tCO2eq} = CO_2 + 25 \times CH_4 + 298 \times N_2O \tag{1}$$

 $IE_{CO2} = I_{CO2} \times LHV_{CO2} \times EC \times 44/12 \tag{2}$

$$IE_{CH4} = I_{CH4} \times LHV_{CH4} \times EC \tag{3}$$

$$IE_{N20} = I_{N20} \times LHV_{N20} \times EC \tag{4}$$

1.2 Non-renewable energy consumption (NEC)

In addition to utility consumption, three non-renewable energy sources (crude oil, raw coal, and natural gas) used in the separation process are analyzed for life cycle non-renewable energy consumption. The method for calculating energy consumption is detailed in equations (Formula S5-S6). The results of the non-renewable energy consumption calculations are provided in Table S11.

$$NED = NE_{crudeoil} + NE_{crudecoal} + NE_{natura lg \, a \, s} \tag{5}$$

$$NE_i = \sum \left(EC \times LHV \times PFCF_i \right) \tag{6}$$

1.3 Eutrophication potential (EP)

The life cycle assessment model for eutrophication potential is calculated using the characterization approach, which integrates input and output data from the life cycle inventory with various environmental impact categories. The quantitative calculation is detailed in equations (Formula S7). The results of the eutrophication potential calculations are presented in Table S9, S12.

$$EI_j = \sum_i EF_{i,j} \times E_i \tag{7}$$

2. Supplementary Figures and Tables

Figure S1 The Structure of Streptothricin F (C₁₉H₃₄O₈N₈, 502 MV).

Figure S2 The concentration of Streptothricin F in the supernatant at different adsorption times.

Figure S3 The liquid chromatogram of Streptothricin F during food waste digestate biological fermentation and crude extraction (Retention time is 13.29 min).

Figure S4 The liquid chromatogram of Streptothricin F standard and crude extract were analyzed in a simulated moving bed with C18 semi-preparative columns.

Figure S5 The total ion flow spectrum of Streptothricin F standard and crude extract by LC-MS (Retention time is 17.85 min).

Figure S6 The liquid chromatogram of crude extract was analyzed using four C18 semi-preparative columns.

Figure S7 The total ion flow of extract E and extract R after the simulated moving bed separation and recrystallization using the C18 analysis column.

Figure S8 The Mass spectrum of extract E were examined after recrystallization.

Table S1 The ingredients of Gause no. 1 medium.

Table S2 The composition of food waste digestate.

Table S3 The C/N/P changes after pre-treatment of food waste digestate.

Table S4 The comparison of different pretreatment methods for food waste digestate.

 Table S5 The correlation analysis of Streptothricin F concentration in food waste digestate after fermentation under different treatments.

Table S6 The retention time of thiourea.

Table S7 The operating parameters of the simulated moving bed at different operating points.

Table S8 Converted value of utility usage.

Table S9 Environmental impact indicators and characterization factors.

Table S10 Greenhouse gas emission (tCO2 eq/m³ food waste digestate).

Table S11 List of renewable energy consumption (MJ eq/m³ food waste digestate).

Table S12 List of eutrophication potential (KgSO2 eq/kg food waste digestate).

 Table S13 Life Cycle Emission Inventory Data.

Figure S1 The Structure of Streptothricin F ($C_{19}H_{34}O_8N_8$, 502 MV).

Figure S2 The concentration of Streptothricin F in the supernatant at different adsorption times.

Figure S3 The liquid chromatogram of Streptothricin F during food waste digestate biological fermentation and crude extraction (Retention time is 13.29 min).

Figure S4 The liquid chromatogram of Streptothricin F standard and crude extract were analyzed in a simulated moving bed with C18 semi-preparative columns.

Figure S5 The total ion flow spectrum of Streptothricin F standard and crude extract by LC-MS (Retention time is 17.85 min).

Figure S6 The liquid chromatogram of crude extract was analyzed using four C18 semi-preparative columns.

Figure S7 The total ion flow of extract E and extract R after the simulated moving bed separation and recrystallization using the C18 analysis column.

Figure S8 The Mass spectrum of extract E were examined after recrystallization.

Ingredient	Medium		
	/L		
Soluble starch	20.0 g		
KNO3	1.0 g		
NaCl	0.5 g		
K ₂ HPO ₄	0.5 g		
MgSO ₄ ·7 H ₂ O	0.5 g		
FeSO ₄ ·7 H ₂ O	10.0 mg		
pH	7.4-7.6		

 Table S1 The ingredients of Gause no. 1 medium.

1	
Operating parameter	Parameter value
pH	8.42±0.11
EC (ms/cm)	400 ± 37
TOC (mg/L)	5608 ± 48
COD (mg/L)	15860 ± 443
TN (mg/L)	3158 ± 37
TP (mg/L)	396 ± 27
NH4 ⁺ -N (mg/L)	2743 ± 31
TS (%)	1.78 ± 0.21
VS (%)	0.74 ± 0.14

Table S2 The composition of food waste digestate.

	TOC	COD	TN	NH4 ⁺ -N	TP
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
FWD	5608 ± 48	15860 ± 443	3158 ± 37	2743 ± 31	396 ± 27
FWD-MD	6421 ± 56	16155 ± 419	650 ± 17	228 ± 22	393 ± 34

 Table S3 The C/N/P changes after pre-treatment of food waste digestate.

	COD	NH4 ⁺ -N	TP	comparison
	(mg/L)	(mg/L)	(mg/L)	
Food waste digestate	15860 ± 443	2743 ± 31	396 ± 27	
Mamhrana				High removal rate, high
distillation	16155 ± 419	228 ± 22	393 ± 34	removal rate, simple to
distillation				operate
Struvite	7509 190	1410 - 72	14.7	Adding chemical reagents,
precipitation	/398±189	1419±73	14±7	secondary pollution
Activated carbon	15120 - 477	2416+92	410+21	Low removal effect,
adsorption	15139±477	2416±83	410±21	generate solid waste
D :	5504+121	242+11	54-11	Nonselectivity,
Keverse osmosis	5594±121	242±11	54±11	complicated operation

Table S4 The comparison of different pretreatment methods for food waste digestate.

Index	FWD	FWD-MD	G-25%	G-50%	G-75%	G-100%	S-25%	S-50%	S-75%	S-100%
FWD	1	0.0498	0.0009	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	0.9078
FWD-MD	*	1	0.0734	< 0.0001	< 0.0001	< 0.0001	0.0128	< 0.0001	< 0.0001	0.9996
G-25%	**	ns	1	< 0.0001	0.0011	< 0.0001	0.9967	< 0.0001	< 0.0001	0.0193
G-50%	**	**	**	1	< 0.0001	0.0011	< 0.0001	0.6977	0.0011	< 0.0001
G-75%	**	**	**	**	1	0.4989	0.0067	0.0005	0.4905	< 0.0001
G-100%	**	**	**	**	ns	1	< 0.0001	0.0587	>0.9999	< 0.0001
S-25%	**	*	ns	**	**	**	1	< 0.0001	< 0.0001	0.0031
S-50%	* *	**	**	ns	**	ns	**	1	0.0604	< 0.0001
S-75%	**	**	**	**	ns	**	**	ns	1	< 0.0001
S-100%	ns	ns	*	**	**	**	**	**	**	1

Table S5 The correlation analysis of Streptothricin F concentration in food waste digestate after fermentation under different treatments.

An asterisk (*) represents a significant difference of P < 0.05, while two asterisks (**) represent a significant difference of P < 0.01.

Eleverates (mL/min)	Retention time (min)					
Flow rates (mL/min) -	Column #1	Column #2	Column #3	Column #4		
0.5	15.901	15.633	15.681	15.71		
1	7.884	7.826	7.765	7.776		
2	4.053	4.146	4.028	4.031		
3	2.793	2.803	2.778	2.783		
4	2.087	2.078	2.077	2.076		
5	1.682	1.66	1.65	1.656		
R2	0.99982	0.99988	0.99983	0.99983		
The overall porosity	0.70296	0.69943	0.6949	0.6961		
The bed porosity	0.35809	0.35164	0.35173	0.35187		

 Table S6 The retention time of thiourea.

.

P5
l,0.92
40
.000
.705
.024
.319
.12%
.07%
1

Table S7 The operating parameters of the simulated moving bed at different operating points.

Utility usage	A	Commencian vehico	Energy value	
(m ³ /food waste digestate):	Aspen	Conversion value	(kgEO/m ³ food waste digestate)	
Water	0.396	55	21.78	
Electricity (kwh)	0.36	0.22	0.0792	

 Table S8 Converted value of utility usage.

Environmental impact indicators	Pollutants	Characterization factor
	COD	0.02
	NO ₃ -	0.42
	PO ₄ ³⁻	1.00
(EP)	NH ₃	0.35
Kg PO ₄ ³⁵ eq/kg	$\mathrm{NH_{4}^{+}}$	0.35
	NO _X	0.13
	N ₂ O	0.27

Table S9 Environmental impact indicators and characterization factors.

Table S10 Greenhouse g	gas emission (tCO2 eq/m	³ food waste digestate).	
------------------------	----------------	-----------	-------------------------------------	--

	EC			Ι		IE CO ₂	IE N ₂ O	IE CH4	GHG _{tCO2eq}
	EC	LUA	ICO ₂	IN ₂ O	ICH ₄				
Standard oil	0.02178	41868	0.00002533	4.1E-10	0.00000007	0.084692843	3.73873E-07	6.3832E-05	0.086400056
Electricity	0.36	10.89	0.00024802	6.2E-10	0.00000216	0.003565238	2.43065E-09	8.46806E-06	0.003777664
Total									0.09017772

	EC	1.1117	PFCF PFCF PFCF	NE many agai	NE activation	Total NE			
	EC	LHV	crude oil	raw coal	natural gas	NE crude oli	NE raw coai	NE natural gas	TOTALINE
Standard oil	0.02178	41868	1.06	0.14	0.03	966.598142	127.663905	0.004452	1094.2665
Electricity	0.36	10.89	0.37	2.86	0.03	1.450548	11.212344	0.031746	12.694638
Total									1106.96114

Table S11 List of renewable energy consumption (MJ eq/m³ ³ food waste digestate).

	COD	characterization	(EP)
	kg/m ³	factor	Kg PO ₄ ³⁻ eq/kg
Food waste digestate	15.228	0.022	0.335016
Biological Fermentation	1.372	0.022	0.030184
Crude extraction	0.364	0.022	0.008008
Separation and Purification	1.16	0.022	0.02552
Total			0.398728

Table S12 List of eutrophication potential (KgSO₂ eq/kg food waste digestate).

Operating parameter	Food waste	Biological	Crude	Separation and
	digestate	Fermentation	extraction	Purification
COD (mg/L)	18457	3229	1195	333
EP (KgPO ₄ ³⁻ eq/kg)	_	0.3350	0.0380	0.0260
GHG (tCO2 eq/m ³)	_	_	0.0038	0.0860
NEC (MJ eq/m ³)	_	_	0.3600	0.3900

Table S13 Life Cycle Emission Inventory Data.

The primary sources of emissions and energy consumption include: ① Raw Material Acquisition: This refers to the energy and emissions associated with the extraction and processing of raw materials used in fermentation and purification; ② Waste Management: This pertains to emissions generated during the treatment and disposal of waste products.