Supporting Information

Engineering In Situ: N-Doped Porous Carbon-Confined FeF3 for

Efficient Lithium Storage

Jinlong Hu^a, Weijun Xu^{a,b#}, Lingzhi Zhang^{a,b*}

^a CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China

^b School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China

*Corresponding author

Tel.: +86 2037246025;

fax: +86 2037246026;

E-mail address: lzzhang@ms.giec.ac.cn

Fig. S1 TG curve of PTFE in N_2 atmosphere.

Fig. S2 (a) SEM image of Fe_2O_3 ; (b) XRD curves of Fe_2O_3 .

Fig. S3 Raman spectrum of FeF₃@NPC.

Fig. S4 TG curve of PTFE and Fe₂O₃@SOP mixture.

Fig. S5 (a) SEM image and (b) EDS spectrum of CoF₂@NPC.

Fig. S6 (a) SEM image and (b) EDS spectrum of CuF2@NPC.

Fig. S7 (a) SEM image and (b) EDS spectrum of AlF₃@NPC.

Fig. S8 Cycling performance of NPC at 0.2 C (NPC was obtained by removing FeF₃ with hydrochloric acid).

Fig. S9 EIS curves of $FeF_3@NPC$ and commercial FeF_3 before cycling with the equivalent circuit as the inset. R_s : electrolyte resistance; R_{ct} : charge-transfer resistance; W_o : Warburg diffusion element.

Fig. S10 (a,b) SEM images of the FeF₃@NPC cathode before and after 100th cycles.

Sample	Current density (mA g ⁻¹)	Initial capacity (mAh g ⁻¹)	Reversible capacity (mAh g ⁻¹)	Voltage region (V)	Ref.
FeF3@NPC	46.8	249	203 (100 th)	2.0-4.5	This work
FeF ₃ /C	23.7	188	166 (50 th)	2.0-4.5	[1]
FeF ₃ /r-GO	23.7	205	168 (50 th)	2.0-4.5	[2]
FeF ₃ /Fe/GC	120	302.1	215.4 (150 th)	2.0-4.5	[3]
p-FeF3@C	23.4	248.1	230 (10 th)	2.0-4.5	[4]
FeF ₃ /ACF	23.7	221 (4 th)	199 (50 th)	2.0-4.5	[5]
FeF ₃ ·0.33H ₂ O/Ag/S	P 23.7	168.2	128.4 (50 th)	2.0-4.5	[6]
FeF ₃ /C	20	166.4	126.3 (100 th)	2.0-4.5	[7]

Table S1. Comparison of representative FeF₃ cathode materials.

References:

[1] T. Kim, W. J. Jae, H. Kim, M. Park, J. M. Han and J. Kim, *J. Mater. Chem. A*, 2016,
4, 14857-14864.

[2] H. Jung, H. Song, T. Kim, J.K. Lee, J. Kim, *J. Alloy. Compd.*, 2015, 647, 750-755.
[3] Y. S. Shi, P. P. Yin, J. Li, X. Z. Xu, Q. T. Jiang, J. Y. Li, H. M. K. Sari, J. J. Wang, W. B. Li, J. H. Hu, Q. X. Lin, J. Q. Liu, J. Yang and X. F. Li, *Nano Energy*, 2023, 108, 108181.

[4] K. Du, R. Tao, C. Guo, H. F. Li, X. L. Liu, P. M. Guo, D. Y. Wang, J.Y. Liang, J. L.

Li, S. Dai and X. G. Sun, Nano Energy, 2022, 103, 107862.

[5] Y. K. Kim, J. K. Lee and J. Kim, *B. Korean Chem. Soc.*, 2015, 36, 1878-1884.

[6] S. Wei, X. Wang, M. Jiang and H. Hu, J. Alloy. Compd., 2016, 689, 945-951.

[7] J. Li, L. C. Fu, Z. W. Xu, J. J. Zhu, D. Y. Li and L. P. Zhou, *Electrochim. Acta*, 2018, **281**, 88-98.