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Experimental procedures 

Reagents 

All chemicals used were of analytical grade and used directly without further treatment. 1,3-dihydroxyacetone, 

hydroxyacetone, 1,3-dichloroacetone, 1,3-dibromoacetone, formic acid, glycolaldehyde dimer, diethylamine, 

Pd(PPh3)4, 1-hexyne, DBU, S-butyl thiobenzoate, 4-methoxybenzophenone, chalcone, and deuterium water 

were purchased from Shanghai Macklin Biochemical Co., Ltd. Acetonitrile, ethanol, methanol, acetic acid, 

tetrahydrofuran were purchased from Tianjin Kermel Chemical Reagent Co., Ltd. Acetone, cyclohexanone, 

glucose, fructose, styrene, and dioxane were purchased from Sinopharm Chemical Reagent Co., Ltd. 

Formaldehyde, glyoxal, and potassium carbonate were purchased from Tianjin Damao Chemical Reagent 

Factory. Glycolic acid, TEMPO, 3-iodotoluen iodobenzene, 4-iodoanisole, phenylboronic acid, 

triphenylphosphine, n-butylamine, 1-butanethiol, N,N-diethyl-3-methylbenzamide, CataCXium® A, Cy2Nme, 

ethyl p-anisate were purchased from Aladdin Chemistry Co., Ltd. Triethylamine was purchased from XiLong 

Scientific Co., Ltd. Palladium(II) chloride, Pd(t-Bu3P)2, [Pd(cinnamyl)Cl]2, acetone-D6, and methanol-D4 

were purchased from Shanghai Energy Chemical Chemical Reagent Co., Ltd. Deionized water was purified 

by using a Millipore Milli-Q Advantage A10 system. He (>99.999%), Ar (>99.999%), H2 (>99.999%), CO 

(>99.999%), CO2 (>99.999%) were provided by Dalian Junfeng Gas Chemicals Co., Ltd. 

Lamp sources 

The data involved in this work used three types of ultraviolet lamps.  

In the condition optimization section, eight of UVC 3535 LED lamps in series was used and purchased from 

Shenzhen Taiyi Photoelectric Co., Ltd. Each UVC 3535 LED lamp bead welded to aluminum substrate (1 cm 

 1 cm), and its electric power is 2 W with optical power of 40-50 mW, the emission angle is 60, and the 

wave length of 275 nm. Commercial handheld 5 W 275 nm LED was used and purchased from ZiGu lighting 

electrical appliance factory. 

In the flow synthesis section, a tubular E27 UVC lamp was used and purchased from Tianchang Kangda UV 

disinfection lamps factory. Its electric power is 36 W with the wave length of 254 nm.  

In the CO generator section, an non-polar submersible UVC lamp was used and purchased from Ningguo 

Hubang Electronic Technology Co., Ltd. Its electric power is 60 W with the wave length of 254 nm.  
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Quartz tubes 

Sealable straight quartz tubes were made-to-order and purchased from Donghai Jing-Ao quartz products Co., 

Ltd. The outside diameter is about 1 cm and the length is about 10 cm. The total volume of the internal cavity 

is approximately 6.5 mL. 

Spiral quartz tubes were made-to-order and purchased from Donghai Jing-Ao quartz products Co., Ltd. The 

diameter for each circle of spiral quartz tubes surrounding the tubular E27 UVC lamp is 49 mm, total circle is 

42, and total length is about 6.5 m. The inner diameter and outer diameter of spiral quartz tubes are 1 mm and 

3 mm, respectively. 

Characterizations 

The UV-vis diffuse reflectance spectra were recorded on a Avasoft-2048L fiber optic spectrometer in the range 

of 200-2500 nm at room temperature. The online mass spectrometer used an online mass spectrometer 200 

(BSD-Mass; Beishide Instrument-S&T. Co., Ltd) with Ar flow. The gas chromatography-mass spectrometry 

(GC-MS) used an Agilent 7890A/5975C instrument equipped with an HP-5 MS column (30 m in length, 0.25 

mm in diameter). 

Photochemical experiments 

Condition optimization experiments were performed by illuminating 0.1 M DHA under 800 rpm stirring for 

1 h at room temperature in a sealable straight quartz reaction tube with the changing factors of radiation 

wavelength, solvent, and atmosphere. Normal conditions are that 0.1 M DHA, 1 mL of H2O, home-made 16 

W 275 nm lamp set by circular arrangement eight of 2 W LED lights in series, irradiation for 1 h, Ar 

atmosphere, room temperature, stir 800 rpm.  

Time-dependent profiles for DHA were collected under normal conditions.  

Visualization photolysis for DHA was carried out by one side illuminating 0.1 M DHA solution in a four-way 

quartz cuvette using a commercial handheld 5 W 275 nm LED. 

In situ gas composition detection was performed by one side illuminating 1.0 M DHA solution with stirring 

of 800 rpm in a sealable quartz reaction tube using a commercial handheld 5 W 275 nm LED. Argon was used 

carrier gas which transports in situ gas products to online mass spectrometer.  

Ex situ gas composition detection was performed by injecting collected gas after reaction to online mass 
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spectrometer. 

Triplet state DHA quenching experiments were performed by illuminating 0.1 M DHA solution for 2 min with 

adding 0.5 M sodium bromide or sodium iodide.  

Radical trapping experiments were performed by illuminating 0.1 M DHA in MeCN and water mixed solvent 

(9 : 1) for 5 min or 2 h with adding a certain amount TEMPO or styrene, respectively. 

Other controlled experiments of various substrates or deuterated solvent were performed under normal 

conditions. 

Photochemical flow experiments were performed using home-built photochemical flow device. The 

performance parameters for DHA conversion and CO/EG generation were studied with changing the 

concentration of DHA solution pumped at a fixed flow rate of 0.2 mL min−1.  

Gas analysis 

The gas products were quantified via the internal standard method by a Tianmei gas chromatograph in Tianmei 

GC. Tianmei GC equipped with a TCD detector and TDX-01 column (3 m × 2 mm). He was used as the 

internal standard. The GC peak area was used for calculation. The differential response was calibrated using 

the response factor. The detailed calculation was as follows: 

V(CO) =
A(CO)

A(He)
 V(He) K(CO) 

V(H2) =
A(H2)

A(He)
 V(He) K(H2) 

VCO: the volume of produced CO; VH2 : the volume of produced H2; VHe: the He volume injected in the 

reactor; ACO: the peak area of CO in GC; AH2: the peak area of H2 in GC; AHe: the peak area of He in GC; KCO: 

the CO response factor related to He in Tianmei GC; KH2: the H2 response factor related to He. 

HPLC analysis 

High-performance liquid chromatography (HPLC, Shimadzu Prominence LC-20AD) equipped with an 

ultraviolet-visible detector (UV) and differential refractive index detector (RID) was used to analyze the 

concentration of substrates and products in the liquid phase. Chromatographic column used a ROA-Organic 

Acid H+ column (8 %, 300 × 7.8 mm), the mobile phase was H2SO4 (0.05 wt%) solution with the flow rate of 

0.5 mL min−1, the column tempoture was 313.15 K, and the UV wavelength was set to 210 nm. And 10 µL of 
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diluent was injected by an autosampler. The molar amount of liquid phase products were quantified by 

standard curves. 

Calculations 

All the calculations have been carried out using Gaussian 16 software package1. Geometry optimization have 

been carried out using Hatree Fock (HF) method, second-order Møller-Plesset perturbation theory (MP2), 

density functional theory (DFT)2-4. The B3LYP functional and the diffuse and polarization functions 

augmented split valence 6-31++G(d,p) basis set is used for description of molecular orbitals for geometry 

optimization5,6. The time dependent (TD) DFT calculations were performed to calculate the excited state of 

each species. 

Carbonylation reactions by CO generator 

Six types of carbonylation reactions were performed based on modified literatures7-12. 

Aminoxarbonylation: the reaction solution of aminoxarbonylation is first obtained in a tube by mixing 3-

iodotoluene (0.025 mmol), diethylamine (0.05 mmol), triethylamine (0.05 mmol) and Pd(PPh3)4 (10 mg) in 

1,4-dioxane (0.5 mL). Then, the mixed reaction solution is flash frozen by immersion of reaction tube in liquid 

nitrogen flash and the reaction tube was evacuated to an internal pressure. Six milliliters of CO produced by 

CO generator was tranfered and injected in above reaction. The reaction was stirred at 65 °C for 22 h in the 

oil bath. The product was detected and quantified by mass spectrometry. 

Thiocarbonylation: the reaction solution of thiocarbonylation is first obtained in a tube by mixing iodobenzene 

(0.025 mmol), 1-butanethiol (0.05 mmol), triethylamine (0.05 mmol) and Pd(PPh3)4 (10 mg) in 1,4-dioxane 

(0.5 mL). Then, the mixed reaction solution is flash frozen by immersion of reaction tube in liquid nitrogen 

flash and the reaction tube was evacuated to an internal pressure. Six milliliters of CO produced by CO 

generator was tranfered and injected in above reaction. The reaction was stirred at 85 °C for 22 h in the oil 

bath. The product was detected and quantified by mass spectrometry. 

Alkoxycarbonylation: the reaction solution of alkoxycarbonylation is first obtained in a tube by mixing 4-

iodoanisole (0.025 mmol), triethylamine (0.05 mmol) and Pd(PPh3)4 (10 mg) in ethanol (0.5 mL). Then, the 

mixed reaction solution is flash frozen by immersion of reaction tube in liquid nitrogen flash and the reaction 

tube was evacuated to an internal pressure. Six milliliters of CO produced by CO generator was tranfered and 

injected in above reaction. The reaction was stirred at 80 °C for 22 h in the oil bath. The product was detected 
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and quantified by mass spectrometry. 

Carbonylative Suzuki coupling: the reaction solution of carbonylative suzuki coupling is first obtained in a 

tube by mixing 4-iodoanisole (0.025 mmol), phenylboronic acid (0.075 mmol), K2CO3 (0.075 mmol) and 

Palladium(II) chloride (2 mg) in 1,4-dioxane (0.5 mL). Then, the mixed reaction solution is flash frozen by 

immersion of reaction tube in liquid nitrogen flash and the reaction tube was evacuated to an internal pressure. 

Six milliliters of CO produced by CO generator was tranfered and injected in above reaction. The reaction 

was stirred at 80 °C for 24 h in the oil bath. The product was detected and quantified by mass spectrometry. 

Double Carbonylation: the reaction solution of double carbonylation coupling is first obtained in a tube by 

mixing 4-iodoanisole (0.025 mmol), n-butylamine (0.05 mmol), DBU (0.05 mmol) and Pd(t-Bu3P)2 (10 mg) 

in THF solution (0.5 mL). Then, the mixed reaction solution is flash frozen by immersion of reaction tube in 

liquid nitrogen flash and the reaction tube was evacuated to an internal pressure. Six milliliters of CO produced 

by CO generator was tranfered and injected in above reaction. The reaction was stirred at 25 °C for 22 h in 

the oil bath. The reaction product was detected and quantified by mass spectrometry. 

Carbonylative Sonogashira: the reaction solution of carbonylative sonogashira coupling is first obtained in a 

tube by mixing 4-iodoanisole (0.25 mmol), PPh3 (10 mg), Palladium(II) chloride (3 mg), Et3N (0.105 mL), 

H2O (0.31 mL) and 1-hexyne (0.3 mmol). Then, the mixed reaction solution is flash frozen by immersion of 

reaction tube in liquid nitrogen flash and the reaction tube was evacuated to an internal pressure. Twenty 

milliliters of CO produced by CO generator was tranfered and injected in above reaction. The reaction was 

stirred at 95 °C for 20 h in the oil bath. The product was detected and quantified by mass spectrometry. 
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Supplementary figures 

 

Fig. S1. Method summary for CO and ethylene glycol production. (A) CO production methods including gasification13-19, 

methane reforming20-25, CO2 hydrogenation26-29, electrochemical and photocatalytic CO2 reduction30,31. (B) Ethylene glycol 

production methods including ethylene oxide hydration32-34, syngas hydrogenation35, biomass hydrogenation36-38, and 

methanol coupling39,40. (C) CO production together with ethylene glycol from photolysis of biomass-based dihydroxyacetone. 
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Fig. S2. The home-made lamp set and photoreaction tube for condition optimization of the photolysis of DHA. (A) the home-

made lamp set surrounding the heat sink. (B) Eight of 2 W 275 nm LED lights in series. (C) The 1 mL of 0.1 M DHA aqueous 

solution in photoreaction tube before photolysis. (D) The 1 mL of 0.1 M DHA aqueous solution in photoreaction tube after 

photolysis for 10 min.  
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Fig. S3. The reaction kinetics for the photolysis of DHA in (A) H2O and (B) D2O solution. 
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Fig. S4. Photolysis of dihydroxyacetone with different concentrations. Reaction conditions: 0.1-1.0 M DHA, 1 mL of H2O, 

home-made 16 W 275 nm lamp set by circular arrangement eight of 2 W LED lights in series, irradiation for 1-5 h, Ar 

atmosphere, room temperature, stir 800 rpm. 
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Fig. S5. Gas detection using online mass spectrometer. (A) In situ detection of produced gas by controling 

light switch. (B) Ex situ detection of produced gas by injection. 
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Fig. S6. Time-dependent datum for the photolysis of DHA. (A) Gas chromatograms. (B) Online mass spectrometer 

chromatograms obtained by ex situ injection detection. (C) The proportion of CO in the obtained gas of CO and H2. (D) The 

high-performance liquid chromatograms. (E) Carbon distribution after 1 h. Reaction conditions: 0.1 M DHA, 1 mL of H2O, 

home-made 16 W 275 nm lamp set, irradiation for 2-60 min, Ar atmosphere, room temperature, stir 800 rpm. 
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Fig. S7. GC-MS pattern for the photolysis of DHA. (A) GC-MS pattern for the photolysis of DHA. (B) MS 

spectra in GC-MS pattern at a retention time of 2.8 min. Reaction conditions: 0.1 M DHA, 1 mL of H2O, 

home-made 16 W 275 nm lamp set by circular arrangement eight of 2 W LED lights in series, irradiation for 

1 h, Ar atmosphere, room temperature, stir 800 rpm.  

  

0 2 4 6 8 10 12

In
te

n
s
it
y
 (

a
. 

u
.)

Rentention time (min)

A B

20 30 40 50 60 70

30.1

31.1

32.1

33.1

3435 4041
42

43

44.1454646.9 56585960
61
62

6364

In
te

n
s
it
y
 (

a
. 

u
.)

m/z

31.1

43.0

62.0

56.0



S15 
 

 

 

Fig. S8. Triplet state DHA quenching experiments by adding bromide or iodide ions. (A) Triplet state DHA 

quenching mechanisms. (B) Gas chromatograms. (C) The high-performance liquid chromatograms. Reaction 

conditions: 0.1 M DHA, 0.5 M NaBr (or NaI), 1 mL of H2O, home-made 16 W 275 nm lamp set by circular 

arrangement eight of 2 W LED lights in series, irradiation for 2 min, Ar atmosphere, room temperature, stir 

800 rpm. 
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Fig. S9. Radical trapping experiments. (A) Capture reaction mechanisms. (B) The CO yield for the photolysis 

of DHA with adding different quantities of styrene. (C) The CO yield for the photolysis of DHA with adding 

different quantities of TEMPO. Reaction conditions with adding styrene: 0.1 M DHA, 1 mL of MeCN and 

H2O (the volume ratio is 9 : 1), home-made 16 W 275 nm lamp set by circular arrangement eight of 2 W LED 

lights in series, irradiation for 2 h, Ar atmosphere, room temperature, stir 800 rpm. Reaction conditions with 

adding TEMPO: 0.1 M DHA, 1 mL of MeCN and H2O (the volume ratio is 9 : 1), home-made 16 W 275 nm 

lamp set by circular arrangement eight of 2 W LED lights in series, irradiation for 5 min, Ar atmosphere, room 

temperature, stir 800 rpm. 

  

0

20

40

60

80

100

C
O

 y
ie

ld
 (

%
)

 CO

Normal 10 mg 50 mg 180 mg 

Quality of styrene

0

10

20

30

40

50

60

70

C
O

 y
ie

ld
 (

%
) 

Quality of TEMPO 

CO

Normal 1 mg 3 mg 5 mg

A

B C



S17 
 

 

Fig. S10. Photolysis of DHA in deuterated methanol or methanol. (A) Activation of hydrocarbon bonds and 

intermolecular crossover reaction. (B, D) GC-MS patterns for the photolysis of DHA in deuterated methanol 

or methanol. (C, E) MS spectra in GC-MS pattern at a retention time of about 2.2 min for EG or deuterated 

EG. Reaction conditions: 0.1 M DHA, 1 mL of CD3OD or CH3OH, home-made 16 W 275 nm lamp set by 

circular arrangement eight of 2 W LED lights in series, irradiation for 1 h, Ar atmosphere, room temperature, 

stir 800 rpm. 
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Fig. S11. Photolysis of acetone in methanol. (A) Activation of hydrocarbon bonds of methanol and C-C bond 

coupling of hydroxymethyl radical. (B) GC-MS patterns for the photolysis of acetone in methanol or only 

methanol. (C) The EG yield relative to the amount of acetone added. Normal conditions: 0.1 M acetone, 1 mL 

of CH3OH, home-made 16 W 275 nm lamp set by circular arrangement eight of 2 W LED lights in series, 

irradiation for 1 h, Ar atmosphere, room temperature, stir 800 rpm. 
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Fig. S12. Photolysis of DHA and (deuterated) acetone in water solution. (A) Intermolecular crossover reaction. 

(B, D) GC-MS patterns for the photolysis of DHA and (deuterated) acetone in water solution. (C, E) MS 

spectra in GC-MS pattern at a retention time of about 2.55 min for hydroxyacetone or deuterated 

hydroxyacetone. Reaction conditions: 0.1 M DHA and 0.1 M (deuterated) acetone, 1 mL of H2O, home-made 

16 W 275 nm lamp set by circular arrangement eight of 2 W LED lights in series, irradiation for 1 h, Ar 

atmosphere, room temperature, stir 800 rpm. 
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Fig. S13. Photolysis of glycolaldehyde. (A) Gas chromatogram after 1 h. (B) The high-performance liquid 

chromatogram after 1 h. (C) Time-dependent profile. Reaction conditions: 0.1 M glycolaldehyde, 1 mL of 

H2O, home-made 16 W 275 nm lamp set by circular arrangement eight of 2 W LED lights in series, irradiation 

for 0-3 h, Ar atmosphere, room temperature, stir 800 rpm. 

  

0 2 4 6 8 10

Rentention time (min)

H2 

He (Internal standard)

CO

9 12 15 18 21 24 27 30

Rentention time (min)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

20

40

60

80

100

C
o
n
v
e
rs

io
n
 a

n
d
 y

ie
ld

 (
%

)

Time (h)

CO

EG

Glycolaldehyde

0

20

40

60

80

100

C
O

/(
C

O
+

H
2
) 

(%
) 

A

B

C



S21 
 

 

Fig. S14. Photolysis of DHA and glycolaldehyde in D2O or photolysis of D2O and water. (A) Gas 

chromatograms for photolysis of DHA and glycolaldehyde in D2O or photolysis of only D2O and water. (B) 

Online mass spectrometer chromatograms of photolysis of glycolaldehyde in D2O obtained by ex situ injection 

detection. (C) Online mass spectrometer chromatograms of photolysis of DHA in D2O obtained by ex situ 

injection detection. Reaction conditions: 0.1 M DHA or glycolaldehyde or no substrates, 1 mL of H2O, home-

made 16 W 275 nm lamp set by circular arrangement eight of 2 W LED lights in series, irradiation for 1 h, Ar 

atmosphere, room temperature, stir 800 rpm. 
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Fig. S15. UV-Vis diffuse reflectance spectra of (A) dihydroxyacetone, (B) hydroxyacetone, and (C) acetone. 
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Fig. S16. Home-built photochemical flow device. (A) The working photochemical flow reaction device. (B) 

Partial collected CO and EG aqueous solution during DHA photolysis for 1000 h. 
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Fig. S17. Home-built Sunlight-Electricity-Ultraviolet light system. (A, C) Sunlight-Electricity-Ultraviolet 

light system composed of photovoltaic panel, power storage and photochemical flow device working day and 

night. (B, D) Spiral quartz tube that surrounding the ultraviolet lamp working day and night. 
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Fig. S18. Brief working principle diagram for CO Generator. 
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Fig. S19. Non-polar submersible UV lamp. (A) the photo and (B) size specification. 
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