Photo-Induced FeCl₃-catalysed direct denitrative chlorination of (hetero)nitroarenes at room temperature

Mingjing Deng^[a], Ke Liu^[a], Zhaolun Ma^[a], Guanzhong Luo^[a] and Longyang Dian*^[a,b]

[a] State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao 266237 (P. R. China), Corresponding author: Longyang Dian, email: longyang_dian@sdu.edu.cn.
[b] Longyang Dian Suzhou Institute of Shandong University No. 388 Ruoshui Road, Suzhou Industrial Park, Suzhou 215123 (P. R. China) Corresponding author: Longyang Dian, email: longyang_dian@sdu.edu.cn.

Content of the supporting information

1. General Information	3
2. Light Source Test Report	4
3. Experimental Section	5
3.1 Control Experiment to Explore the Mechanism	5
3.2 UV-Vis Spectroscopy	7
3.3 Light On/Off Experiments	8
3.4 Detailed optimization of the reaction conditions ^a	9
3.5 General Procedure for the Photoinduced FeCl3-Catalyzed Chlorination	10
3.6 NMR Data	10
3.7 Gram-Scale of the denitrative chlorination reaction.	28
4. References	28
5. ¹ H NMR and ¹³ C NMR Spectra of the Products.	31

1. General Information

¹H NMR spectra were recorded on 600 MHz or 400 MHz spectrometers. The chemical shifts were reported in parts per million (δ) relative to internal standard TMS (0 ppm) for CDCl₃. The peak patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). ¹³C NMR spectra were obtained at 151 MHz or 101 MHz spectrometers and referenced to the internal solvent signals (central peak is 77.0 ppm in CDCl₃). CDCl₃ or d6-DMSO was used as the NMR solvent. High resolution mass spectrometry (HRMS) was obtained on a Q-TOF micro spectroMeter. The UV-Vis Spectroscopy was measured with Yoke UV-Vis Spectrophotometer with Holographic Blazed Grating C-T Monochromator. Melting points were determined with a MicroMelting point apparatus without corrections. Organic solutions were concentrated by rotary evaporation below 30 °C in vacuum. 4A MS was activated by heating at 200 degrees in a muffle furnace for 20 hours.

All the reagents and solvents were purchased as reagent grade and were used without further purification unless otherwise stated. Flash column chromatography was performed over silica gel 200-300 m and the eluent was a mixture of diethyl ether (Et₂O) and n-petane.

2. Light Source Test Report

1 200-				色容差 126.8 SDCM		
1. 200 1. 000- 0. 8000- 李 0. 6000- 安 0. 4000- 0. 2000-						
350	513	675 838 波长(nm)	1000	x=0.380) y=0.380 ANSI/41	00K
Chromaticity coordinates	X=0.1846	y=0.0454/u'=0.2325	V'=0.1287		Duv=-1.875e-00)1
Correlated color temperature	Tc=100000 K	dominant wavelength	λd=436.9 nr	n	color purity	Purity =88.9 %
color ratio	R=10.3%	peak wavelength	λp=396.2 nm		half width	$\Delta\lambda d=1$
	G=69.8%					3.1 nm
	B=19.9%					
Color rendering index: Ra = 34.5						
R1 = 79.33	R2 = 37.93	R3 = -5.46	R4 = 10.42 R5 = 69.36			
R6 = 24.07	R7 = 25.89	R8 = 34.56	R9 = 39.27 R10 = -44.01			
R11 = 26.79	R12 = -86.57	R13 = 46.96	R14 = 45.93 R15 = 54.68			
TM30 parameters:	Rf = 0.0, $Rg: -7$	70.4				
Photometric paran	neters:		1			
Luminous flux	Φ=0.8903 Lm	light micro 0.88 Lm/W 206.0 mW	Photovoltaic efficiency = 20.387%			
light quantum=6.914e-001 umol/s		Fluorescence blue light ratio = 0.00965	Fluorescent efficacy= 1.891e-003			
Electrical paramet	ers		-			
Forward Voltage: VF = 6.738 V		Forward current: IF = 149.9 mA	Power P = 1	011 mW		
Reverse current IR	R=0 uA (reverse v	oltage VR=5.003 V)				
Grading: **[out]		White 1	ight classificat	tion: OUT		

Figure S1. LED Spectral Test Report

3. Experimental Section

3.1 Control Experiment to Explore the Mechanism.

Scheme S1. Control experiments to explore the possible mechanism. Conditions: The reaction was performed with standard condition unless otherwise noted. Substrate (0.1 mmol), cat. (10 mol%, 0.01 mmol), MgCl₂ (0.2 mmol), 4A MS (20 mg) in MeCN (1 mL, 0.1 M) under 390-400 nm light irradiation. f: Substrate (0.1 mmol,) 1,1-Diphenylethylene (0.2 mol, 2 equiv.), MgCl₂ (19 mg, 0.2 mmol, 2 equiv.), 4A MS (20 mg) was dissolved in MeCN (0.9 mL) in a quartz tube, then 100 μ L of FeCl₃/MeCN (1.63 mg, 0.01 mmol, 10 mol%) was added to the reaction mixture. The product 65 was detected by GC-MS.

Figure S2. GC-MS trace of reaction in Scheme S1-f.

entry	Rate (°C/min)	Final Temperature (°C)	Keep time (min)
0	-	50	2
1	25.0	280	3.8
Total time		15	

GC-MS method:

The column: Rtx-5MS, film thickness: 0.25 µm, length: 30 m, inside diameter: 0.25 mm

Figure S3. UV-Vis spectroscopy with 8-Nitroquinoline. SM is 8-Nitroquinoline (**60'**). Red line: MgCl₂/MeCN (1.0 mM); Black line: FeCl₃/MeCN (0.05 mM); Purple line: reaction mixture after 48 h and then diluted to 0.5 mM concertation; brown line: starting material 8-nitroquinoline/MeCN solution (0.5 mM); green line: SM/FeCl₃/MgCl₂ in MeCN (0.5 mM).

3.3 Light On/Off Experiments

Figure S4. Light on/off experiment with 4-chloronitrobenzene.

3.4 Detailed optimization of the reaction conditions^a

Entry	Cat. (10 mol%)	Cl Source	Solent	Light	Yield ^[b]
1	NiCl ₂	NaCl	CHCl₃	365 nm	ND ^[c]
2	CrCl₃	NaCl	CHCl₃	365 nm	ND
3		NaCl	CHCl₃	365 nm	trace
4	FeCl ₃	NaCl	CHCl₃	365 nm	9%
5	FeCl ₃	NaCl	acetone	365 nm	ND
6	FeCI3	NaCl	dioxane	365 nm	
/ Q	FeCI3 FoCla	NaCi	DCE	305 IIII 365 pm	30% ND
g	FeCla		MeCN	365 nm	12%
10	FeCl ₂	NCS	MeCN	365 nm	33%
11	FeCl ₃	ZnCl ₂	MeCN	365 nm	20%
12	FeCl ₃	MgCl ₂	MeCN	365 nm	52%
13	FeCl ₃	CCI4	MeCN	365 nm	23%
14	FeCl ₃	NH ₄ Cl	MeCN	365 nm	31%
15	FeCl ₃	TBACI	MeCN	365 nm	ND
16	FeCl ₃	MgCl ₂	MeCN	370-380 nm	78%
17	FeCl ₃	MgCl ₂	MeCN	380-390 nm	73%
18	FeCI ₃	MgCl ₂	MeCN	390-400 nm	86%
19	FeCl ₃	MgCl ₂	MeCN	400-410 nm	76%
20	CoCl ₂ ·6H ₂ O	MgCl ₂	MeCN	390-400 nm	trace
21	CuCl	MgCl ₂	MeCN	390-400 nm	10%
22	NiCl ₂ ·6H ₂ O	MgCl ₂	MeCN	390-400 nm	10%
23	NiCl ₂ ·DME	MgCl ₂	MeCN	390-400 nm	10%
24	BiCl ₃	MgCl ₂	MeCN	390-400 nm	trace
25	CuCl ₂ ·2H ₂ O	MgCl ₂	MeCN	390-400 nm	10%
26	CeCl ₃	MgCl ₂	MeCN	390-400 nm	15%
27	TiCl ₄	MgCl ₂	MeCN	390-400 nm	10%
28	Fe ₂ O ₃	MgCl ₂	MeCN	390-400 nm	trace
29	Ferrous Oxalate	MaCl ₂	MeCN	390-400 nm	10%
30	Iron(II) gluconate	MaCl ₂	MeCN	390-400 nm	trace
31	Ferric alveine	MaCla	MeCN	390-400 nm	trace
32	Fe₀Q₄	MgCl ₂	MeCN	390-400 nm	trace
33	Fe(acac) _a	MaCla	MeCN	390-400 nm	10%
34		MgCl ₂	MoCN	200-400 nm	16%
35			MeCN	200 400 nm	TJ /0
26			Mach	390-400 mm	trace
30 27[c]	Ferrous furnarate		MeCN	390-400 nm	trace
	FeCI ₃		MeCN	390-400 nm	86%
30 ^[0]	FeCl ₃	MgCl ₂	MeCN	390-400 nm	86%
30 ^[6]	FeCl ₃	MgCl ₂	MeCN	390-400 nm	86%
40	FeCl₃	/	MeCN	390-400 nm	trace
41	/	MgCl ₂	MeCN	390-400 nm	ND

^[a] Unless otherwise noted, the reaction was carried out with **1a** (0.10 mmol) and TM cat. (10 mol%) in solvent (1 mL, 0.1 M) under the irradiation of indicated light (5 W LED) cooling with fan. ^[b] Yields refer to the isolated products. ND means no desired product was detected by GC-MS. [c] 30 mol% FeCl₃ was used [d] 60 mol% FeCl₃ was used [e] 1 equiv. of FeCl₃ was used.

3.5 General Procedure for the Photoinduced FeCl₃-Catalyzed Chlorination.

The substrate nitroarene (0.10 mmol), MgCl₂ (19 mg, 0.2 mmol, 2 equiv.), 4A MS (20 mg) was dissolved in MeCN (0.9 mL) in a quartz tube, 100 μ L of FeCl₃/MeCN (1.63 mg, 0.01 mmol, 10 mol%) was added to the reaction mixture, which was then stirred at room temperature with the irradiation under 390-400 nm light (5 W, 2 cm distance from the light). The process of the reaction was monitored by GC-MS (about 24 h-84 h). Upon completion, the solution was transferred to a random flask and was removed under vacuum and the residue was purified by silica gel chromatography with n-pentane or pentane/Et₂O as mobile phase to afford the desired chloroarenes **2** and **3**.

3.6 NMR Data.

1,4-Dichlorobenzene (1)^[1]

Compound 1 was prepared according to the general procedure in about 24 h. After standard work-up and purification, **1** was obtained (12.6 mg, 86% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 4H).
 ¹³C NMR (101 MHz, CDCl₃) δ 132.5, 129.8.

1,3-Dichlorobenzene (2)^[2]

Compound 2 was prepared according to the general procedure in about 82 h. After standard work-up and purification, **2** was obtained (8.5 mg, 58% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.42 – 7.37 (m, 1H), 7.26 (d, *J* = 3.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 135.0, 130.5, 128.7, 126.9.

1,2-Dichlorobenzene (3)^[3]

Compound 3 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **3** was obtained (11.5 mg, 79% yield).

```
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.47 – 7.41 (m, 2H), 7.20 (dd, J = 6.0, 3.6 Hz, 2H).
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 132.5, 130.5, 127.7.
```

1-Chloro-3-fluorobenzene (4)^[4]

Compound 4 was prepared according to the general procedure in about 82 h, during which 1 equiv. of $FeCl_3$ (16.3 mg) was used. After standard work-up and purification, **4** was obtained (8.1 mg, 62% yield).

¹**H NMR (600 MHz, CDCl**₃) δ 7.29 (td, *J* = 8.2, 6.2 Hz, 1H), 7.16 (d,

J = 8.0 Hz, 1H), 7.12 (dt, J = 8.8, 2.2 Hz, 1H), 7.00 (td, J = 8.5, 2.2

Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 162.7 (d, J = 251.0 Hz), 135.1 (d, J = 11.0 Hz), 130.6 (d, J = 9.0 Hz), 124.5 (d, J = 3.0 Hz), 116.4 (d, J = 24.0 Hz), 113.8 (d, J = 21.0 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -110.92.

1-Chloro-2-fluorobenzene (5)^[5]

Compound 5 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **5** was obtained (9.7 mg, 74% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.42 (td, *J* = 7.8, 1.6 Hz, 1H), 7.28 (d, *J* = 5.5 Hz, 1H), 7.20 – 7.06 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 130.7, 128.2, 128.0, 124.8 (d, J = 4.0 Hz), 116.7, 116.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.45.

1-Chloro-4-fluorobenzene (6)^[4]

Compound 6 was prepared according to the general procedure in about 82 h, during which 1 equiv. of $FeCl_3$ (16.3 mg) was used. After standard work-up and purification, **6** was obtained (6.5 mg, 50% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.24 (m, 2H), 7.07 – 6.97 (m,

2H).

13C NMR (151 MHz, CDCl₃) δ 161.3 (d, J = 246.0 Hz), 129.9 (d, J = 8.2 Hz), 129.1 (d, J = 3.3 Hz), 116.7 (d, J = 22.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.93 (m, 1F).

1-Chloro-2-(trifluoromethyl)benzene (7)^[6]

Compound 7 was prepared according to the general procedure in about 84 h. After standard work-up and purification, 7 was obtained (12.1 mg, 67% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.73 – 7.65 (m, 1H), 7.53 – 7.44 (m, 2H), 7.39 – 7.32 (m, 1H).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.67.

1-Chloro-4-(trifluoromethoxy)benzene (8)^[7]

Compound 8 was prepared according to the general procedure in about 84 h, during which 1 equiv. of $FeCl_3$ (16.3 mg) was used. After standard work-up and purification, **8** was obtained (10.4 mg, 53% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.33 (m, 2H), 7.18 – 7.12 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 147.7 (d, *J* = 2.0 Hz), 132.5, 129.9, 122.4, 120.4 (q, *J* = 258.6 Hz)

¹⁹F NMR (376 MHz, CDCl₃) δ -58.20.

1-Chloro-2-(trifluoromethoxy)benzene (9)^[8]

Compound 9 was prepared according to the general procedure in about 84 h. After standard work-up and purification, **9** was obtained (12.9 mg, 66% yield).

¹**H NMR (400 MHz, CDCl3**) δ 7.50 (dd, J = 7.7, 1.8 Hz, 1H), 7.43 – 7.31 (m, 2H), 7.31 – 7.23 (m, 1H).

¹³C NMR (101 MHz, CDCl3) δ 145.3 (d, J = 2.0 Hz), 131.0, 127.8 (d, J = 5.0 Hz), 127.5, 122.6, 120.5 (q, J = 260.0 Hz).

¹⁹F NMR (376 MHz, CDCl3) δ -57.9.

4-Chlorobenzonitrile (10)^[9]

Compound 10 was prepared according to the general procedure in about 84 h. After standard work-up and purification, **10** was obtained (11.2 mg, 82% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.63 – 7.58 (m, 2H), 7.50 – 7.45 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 139.5, 133.3, 129.7, 117.9, 110.7.

p-Chloroacetophenone (11)^[1]

Compound 11 was prepared according to the general procedure in about 70 h. After standard work-up and purification, **11** was obtained (11.2 mg, 73% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 – 7.80 (m, 2H), 7.42 – 7.34 (m, 2H), 2.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.6, 139.3, 135.2, 129.5, 128.7, 26.3.

2-Chloroacetophenone (12)^[10]

Compound 12 was prepared according to the general procedure in about 32 h. After standard work-up and purification, **12** was obtained (10.5 mg, 68% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.53 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.42 – 7.24 (m, 3H), 2.62 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 200.2, 138.9, 131.8, 131.1, 130.5, 129.2, 126.8, 30.5.

Methyl 4-chlorobenzoate (13)^[9]

Compound 13 was prepared according to the general procedure in about 32 h. After standard work-up and purification, **13** was obtained (10.2 mg, 60% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.97 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 3.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.1, 139.3, 130.9, 128.6, 128.5,

52.2.

Chlorobenzene (14)^[3]

Compound 14 was prepared according to the general procedure in about 72 h. After standard work-up and purification, **14** was obtained (9.2 mg, 82% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 6.98 (m, 5H).
¹³C NMR (151 MHz, CDCl₃) δ 134.2, 129.7, 128.6, 126.4.

N-(4-Chlorophenyl)acetamide (15)^[11]

Compound 15 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **15** was obtained (13.6 mg, 80% yield).

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05 (d, *J* = 8.9 Hz, 2H), 7.78 (d, *J* = 8.9 Hz, 2H).

¹³C NMR (101 MHz, DMSO) δ 169.0, 138.4, 128.8, 126.9, 120.9,

40.2, 38.9, 24.1.

N-(2-Chlorophenyl)acetamide (16)^[12]

Compound 16 was prepared according to the general procedure in about 84 h. After standard work-up and purification, **16** was obtained (12.4 mg, 73% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.3 Hz, 1H), 7.28 (dd, J = 8.0, 1.5 Hz, 1H), 7.23 – 7.17 (m, 1H), 6.96 (td, J = 7.7, 1.6 Hz, 1H), 2.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 134.6, 128.9, 127.7, 124.6, 121.6, 24.8.

N-(4-Chlorophenyl)propanamide (17)^[13]

Compound 17 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **17** was obtained (13.6 mg, 74% yield). ¹**H NMR (400 MHz, CDCl₃)** δ 7.52 – 7.46 (m, 2H), 7.31 – 7.24 (m, 2H), 2.41 (q, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 136.5, 129.1, 128.9, 121.2, 30.6, 9.6.

N-(2-Chlorophenyl)benzamide (18)^[12]

Compound 18 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **18** was obtained (15.5 mg, 67% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.57 (dd, J = 8.4, 1.6 Hz, 1H), 7.96 – 7.90 (m, 2H), 7.61 – 7.56 (m, 1H), 7.52 (dd, J = 8.2, 6.5 Hz, 2H), 7.42 (dd, J = 8.1, 1.5 Hz, 1H), 7.34 (ddd, J = 8.5, 7.5,

1.5 Hz, 1H), 7.08 (td, *J* = 7.7, 1.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.2, 134.7, 134.6, 132.2, 129.0, 128.9, 127.9, 127.1, 124.7, 123.0, 121.4.

N-(4-Chlorophenyl)benzamide (19)^[11]

Compound 19 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **19** was obtained (19.7 mg, 85% yield). ¹**H NMR (400 MHz, DMSO-d6)** δ 7.96 – 7.90 (m, 2H), 7.83 – 7.76 (m, 2H), 7.58 (d, *J* = 7.3 Hz, 1H), 7.52 (dd, *J* = 8.2,

= 7.76 (m, 211), 7.38 (u, J = 7.3 Hz, 111), 7.32 (uu, J = 8.2, 6.5 Hz, 2H), 7.42 - 7.36 (m, 2H).

¹³C NMR (101 MHz, DMSO) δ 166.1, 138.3, 134.8, 132.0, 128.8, 128.7, 127.9, 127.7, 122.2.

N-(4-Chlorophenyl)-4-fluorobenzamide (20)^[14]

Compound 20 was prepared according to the general procedure in about 48 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **20** was obtained (19.5 mg, 78% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.86 (dd, *J* = 8.7, 5.3 Hz, 2H), 7.57 (d, *J* = 8.7 Hz, 2H), 7.32 (d, *J* = 8.8 Hz, 2H), 7.14 (t, *J* = 8.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5 (d, J = 154.5 Hz), 163.7, 136.3, 130.7, 129.7, 129.4 (d, J = 9.1 Hz), 129.1, 121.5, 115.9 (d, J = 22.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.93.

N-(4-Chlorophenyl)-3-fluorobenzamide (21)^[15]

Compound 21 was prepared according to the general procedure in about 48 h, during which 1 equiv. of $FeCl_3$ (16.3 mg) was used. After standard work-up and purification, **21** was obtained (18.0 mg, 72% yield).

¹**H NMR (400 MHz, DMSO-d6**) δ 7.75 (dddd, *J* = 20.5, 9.9, 3.0, 1.5 Hz, 4H), 7.57 (dd, *J* = 7.9, 5.8 Hz, 1H), 7.48 – 7.36 (m, 3H).

¹³C NMR (101 MHz, DMSO) δ 164.6, 162.2 (d, J = 245.4 Hz), 138.0, 137.2 (d, J = 7.1 Hz), 131.0 (d, J = 8.1 Hz), 128.9, 127.9, 124.1, 122.3, 118.9 (d, J = 21.2 Hz), 114.7 (d, J = 22.2 Hz).

¹⁹F NMR (376 MHz, DMSO) δ -112.44 (m, 1F).

N-(4-Chlorophenyl)-2-fluorobenzamide (22)^[16]

Compound 22 was prepared according to the general procedure in about 48 h, during which 1 equiv. of $FeCl_3$ (16.3 mg) was used. After standard work-up and purification, **22** was obtained (22.0 mg, 88% yield).

22 1H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 15.8 Hz, 1H), 8.07 (td, J = 8.0, 1.9 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.50 – 7.40 (m, 1H), 7.25 (dd, J = 8.5, 2.1 Hz, 2H), 7.15 – 7.05 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.5, 161.2 (d, *J* = 4.0 Hz), 159.1, 136.2, 134.0 (d, *J* = 9.1 Hz), 132.2 (d, *J* = 2.1 Hz), 129.7, 129.1, 125.2 (d, *J* = 3.0 Hz), 121.7, 121.0 (d, *J* = 11.1 Hz), 116.1 (d, *J* = 25.3 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ-113.12 (m, 1F).

N-(4-Chlorophenyl)-3-(trifluoromethyl)benzamide (23)^[2]

Compound 23 was prepared according to the general procedure in about 48 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **23** was obtained (24.6 mg, 82% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 1.8 Hz, 1H), 8.04 - 8.00 (m, 1H), 7.81 - 7.77 (m, 1H), 7.62 - 7.55 (m, 3H), 7.34 - 7.28 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 164.5, 135.7 (d, *J* = 61.6 Hz), 131.3 (d, *J* = 32.3 Hz), 130.4, 130.1, 129.5, 129.1, 128.6 (q, *J* = 4.0 Hz), 124.9, 124.0 (q, *J* = 4.0 Hz), 122.2, 121.8.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -62.74.

N-(2-Chlorophenyl)-4-fluorobenzamide (24)^[14]

Compound 24 was prepared according to the general procedure in about 48 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **24** was obtained (16.2 mg, 65% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.52 (dd, J = 8.3, 1.5 Hz, 1H), 7.96 – 7.90 (m, 2H), 7.41 (dd, J = 8.0, 1.5 Hz, 1H),

7.33 (ddd, *J* = 8.5, 7.6, 1.5 Hz, 1H), 7.19 (t, *J* = 8.6 Hz, 2H), 7.09 (td, *J* = 7.7, 1.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 164.2, 163.8, 134.5, 130.8 (d, J = 3.0 Hz), 129.5 (d, J = 10.1 Hz), 128.5 (d, J = 115.1 Hz), 124.9, 123.1, 121.5, 116.0 (d, J = 22.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ-106.77 (m, 1F).

N-(4-Chlorophenyl)benzenesulfonamide (25)^[17]

Compound 25 was prepared according to the general procedure in about 48 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **25** was obtained (18.7 mg, 70% yield). ¹**H NMR (400 MHz, CDCl**₃) δ 7.78 (ddt, *J* = 7.0, 5.0, 2.1

 $\begin{array}{c} 25 \\ Hz, 1H), 7.56 (td, J = 7.3, 1.4 Hz, 1H), 7.49 - 7.41 (m, 1H), 7.23 - 7.16 (m, 1H), 7.03 (ddd, J = 8.8, 3.8, 2.1 Hz, 1H). \end{array}$

¹³C NMR (101 MHz, CDCl₃) δ 138.6, 134.9, 133.3, 129.4, 129.2, 127.2, 123.1.

N-(4-Chlorophenyl)-4-fluorobenzenesulfonamide (26)^[18]

Compound 26 was prepared according to the general procedure in about 48 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **26** was obtained (20.0 mg, 70% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.83 – 7.76 (m, 1H),

7.25 – 7.18 (m, 1H), 7.13 (dd, J = 8.9, 8.2 Hz, 1H), 7.09

– 7.01 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.3 (d, J = 256.5 Hz), 134.7, 134.5 (d, J = 3.0 Hz), 131.4, 130.0 (d, J = 10.1 Hz), 129.5, 123.2, 116.5 (d, J = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ-103.70 (m, 1F).

(3-Chlorophenyl)(3-nitrophenyl)methanone(27^a)^[16] and 3,3'-

Dichlorobenzophenone (27^b)^[19]

Compound 27^a and **27^b** was prepared according to the general procedure in about 72 h. After standard work-up and purification, **27^a** (13.1 mg, 50% yield) and **27^b** (5.0 mg, 20% yield) were obtained.

Compound 27^a ¹H NMR (400 MHz, CDCl₃) δ 8.53 (t, J

= 1.9 Hz, 1H), 8.39 (ddd, *J* = 8.2, 2.3, 1.1 Hz, 1H), 8.05 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.71 (t, *J* = 1.9 Hz, 1H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.41 (t, *J* = 7.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 192.8, 148.1, 138.4, 137.8, 135.3, 135.1, 133.3, 130.0, 129.8, 129.8, 128.0, 127.1, 124.6.

Compound 27^b ¹H NMR (400 MHz, CDCl₃) δ 7.77 (t, *J* = 1.9 Hz, 2H), 7.64 (dt, *J* = 7.7, 1.3 Hz, 2H), 7.58 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 2H), 7.44 (t, *J* = 7.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 193.8, 138.6, 134.8, 132.8, 129.8, 129.8, 128.0.

3-Chlorobenzamide (28)^[1]

Compound 28 was prepared according to the general procedure in about 48 h, during which 1 equiv. of $FeCl_3$ (16.3 mg) was used. After standard work-up and purification, **28** was obtained (7.8 mg, 50% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.82 (t, *J* = 1.9 Hz, 1H), 7.69 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.39 (t,

J = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 134.9, 134.8, 132.2, 130.0, 127.7, 125.4.

4-Chlorobenzophenone (29)^[9]

Compound 29 was prepared according to the general procedure in about 82 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **29** was obtained (15.6 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.74 (m, 4H), 7.63 – 7.58 (m, 1H), 7.52 – 7.44 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 195.5, 138.9, 137.2, 135.8, 132.6, 131.4, 129.9, 128.6, 128.4.

4-Chlorophenylboronic acid pinacol ester (30)^[20]

Compound 30 was prepared according to the general procedure in about 72 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **30** was obtained (14.3 mg, 60% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 – 7.61 (m, 2H), 7.31 – 7.22 (m, 2H), 1.26 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 137.5, 136.1, 128.0, 84.0, 24.8.

3-Chlorophenylboronic acid pinacol ester (31)^[20]

Compound 31 was prepared according to the general procedure in about 72 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **31** was obtained (13.1 mg, 55% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.70 (d, J = 2.3 Hz, 1H), 7.59 (dd, J = 7.4, 1.3 Hz, 1H), 7.34 (ddd, J = 8.0, 2.3, 1.2 Hz, 1H),

7.22 (t, *J* = 7.7 Hz, 1H), 1.26 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 134.5, 134.0, 132.6, 131.2, 129.2, 84.1, 24.8.

2-Chlorophenylboronic acid pinacol ester (32)^[20]

Compound 32 was prepared according to the general procedure in about 72 h, during which 1 equiv. of $FeCl_3$ (16.3 mg) was used. After standard work-up and purification, **32** was obtained (14.7 mg, 62% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.60 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.25 (dd, *J* = 6.1, 1.9 Hz, 2H), 7.20 – 7.12 (m, 1H), 1.28 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 139.5, 136.4, 131.8, 129.3, 125.8, 84.1, 24.7.

1,2,4-Trichlorobenzene (33)^[21]

Compound 33 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **33** was obtained (11.8 mg, 65% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 (d, *J* = 2.4 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 7.18 (dd, *J* = 8.6, 2.4 Hz, 1H)

¹³C NMR (101 MHz, CDCl₃) δ 133.4, 133.0, 131.1, 130.3, 128.7, 128.0.

1,2,3,5-Tetrachlorobenzene (34)^[21]

Compound 34 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **34** was obtained (15.1 mg, 70% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 134.8, 132.7, 130.3, 128.7.

1,2,4-Trichlorobenzene (35)^[21]

Compound 35 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **35** was obtained (13.6 mg, 75% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.45 (d, *J* = 2.4 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 7.18 (dd, *J* = 8.6, 2.4 Hz, 1H)

¹³C NMR (101 MHz, CDCl₃) δ 133.4, 133.0, 131.1, 130.3, 128.7, 128.0.

1,2,3-Trichlorobenzene (36)^[22]

Compound 36 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **36** was obtained (19.8 mg, 66% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.37 (d, J = 8.1 Hz, 2H), 7.14 (dd, J = 8.4, 7.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 134.3, 131.5, 128.7, 127.5.

1,2,3,4-Tetrachlorobenzene (37)^[23]

Compound 37 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **37** was obtained (17.3 mg, 80% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.34 (s, 2H)

¹³C NMR (101 MHz, CDCl₃) δ 133.1, 132.5, 128.4.

Hexachlorobenzene (38)

Compound 35 was prepared according to the general procedure in about 72 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **38** was obtained (11.4 mg, 40% yield).

¹³C NMR (101 MHz, CDCl₃) δ 132.3.

1-Chloro-2,3,4-trifluorobenzene (39)^[23]

Compound 39 was prepared according to the general procedure in about 72 h. After standard work-up and purification, **39** was obtained (14.2 mg, 85% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.18 – 7.11 (m, 1H), 6.95 (tdd, J = 9.4, 7.4, 2.3 Hz, 1H).

¹³**C NMR (101 MHz, CDCl₃)** δ 151.4-149.2 (m), 148.9-146.7 (m), 140.8 (dt, *J* = 255.5 Hz), 123.9 (dd, *J* = 7.1, 4.0 Hz), 177.8 (dd, *J* =

15.2, 4.0 Hz), 122.3 (dd, *J* = 19.2, 4.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ-133.33 (m, 1F), -134.99 (m, 1F), -156.48 (m, 1F).

1,3-Dichloro-2-fluorobenzene (40)^[24]

Compound 40 was prepared according to the general procedure in about 72 h. After standard work-up and purification, **40** was obtained (11.6 mg, 70% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.31 (dd, *J* = 8.2, 6.5 Hz, 2H), 7.03 (td, *J* = 8.1, 1.6 Hz, 1H).

40 ¹³C NMR (101 MHz, CDCl₃) δ 154.3 (d, J = 251.5 Hz), 129.0, 124.7 (d, J = 3.0 Hz), 122.5 (d, J = 18.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ-115.76 (t, 1F).

1-(3-Chloro-4-fluorophenyl)ethanone (41)

Compound 41 was prepared according to the general procedure in about 36 h. After standard work-up and purification, **41** was obtained (14.7 mg, 85% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 8.04 (dt, *J* = 7.1, 1.6 Hz, 1H), 7.88 (ddd, *J* = 8.5, 4.6, 2.2 Hz, 1H), 7.25 (q, *J* = 8.6 Hz, 1H), 2.60 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.3, 161.0 (d, J = 258.6 Hz), 134.2 (d, J = 3.0 Hz), 131.2, 128.7 (d, J = 8.1 Hz), 121.8 (d, J = 18.2 Hz), 116.8 (d, J = 21.2 Hz), 26.5. ¹⁹F NMR (376 MHz, CDCl₃) δ-107.67 (m, 1F).

2-Chloro-1,3-difluorobenzene (42)

Compound 42 was prepared according to the general procedure in about 72 h. After standard work-up and purification, **42** was obtained (12.2 mg, 82% yield).

¹**H NMR (400 MHz, CDCl3**) δ 7.25 – 7.17 (m, 1H), 7.02 – 6.94 (m, 2H).

⁴² ¹³C NMR (101 MHz, CDCl₃) δ 159.1 (dd, J = 249.0, 3.0 Hz), 127.5 (t, J = 9.0 Hz), 112.0 (dt, J = 19.0, 3.0 Hz), 109.9 (d, J = 21.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -113.1 (2F).

2-Chloro-1,4-difluorobenzene (43)^[25]

Compound 43 was prepared according to the general procedure in about 72 h. After standard work-up and purification, **43** was obtained (12.3 mg, 83% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.07 (m, 2H), 6.95 (ddt, J = 9.1, 7.6, 3.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.4 - 156.9 (m), 155.9 - 153.5 (m), 121.7 (dd, J = 20.2, 11.1 Hz), 117.7 (d, J = 27.3 Hz), 117.1 (dd, J = 24.2, 9.1 Hz), 114.8 (dd, J = 24.2, 7.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ-117.00 (m, 1F), -121.44 (m, 1F).

2,4-Dichlorofluorobenzene (44)^[5]

Compound 44 was prepared according to the general procedure in about 42 h. After standard work-up and purification, **44** was obtained (14.9 mg, 90% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, J = 6.4, 2.6 Hz, 1H), 7.21 (ddd, J = 8.8, 4.1, 2.5 Hz, 1H), 7.08 (t, J = 8.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.0 (d, J = 250.5 Hz), 130.4, 129.5 (d, J = 4.0 Hz), 128.2 (d, J = 7.1 Hz), 122.0 (d, J = 19.2 Hz), 117.5 (d, J = 22.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ-117.77 (m, 1F).

1,5-Dichloro-2,4-difluorobenzene (45)

Compound 45 was prepared according to the general procedure in about 72 h. After standard work-up and purification, **45** was obtained (13.2 mg, 72% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.47 (t, *J* = 7.4 Hz, 1H), 7.02 (t, *J* = 8.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 156.7 (dd, J = 253.5, 11.1 Hz), 131.1, 117.1 (dd, J = 15.2, 8.1 Hz), 106.0(t, J = 26.3 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ-112.02 (t, 2F).

1,4-Dichloro-2-(trifluoromethyl)benzene (46)^[26]

Compound 46 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **46** was obtained (13.3 mg, 62% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.69 (s, 1H), 7.46 (s, 2H)

¹³C NMR (101 MHz, CDCl₃) δ 133.0, 132.8, 132.6, 130.7 (q, J =

2.0 Hz), 129.8 (q, J = 32.3 Hz), 127.8 (q, J = 6.1 Hz), 122.1 (q, J = 277.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.18.

1,2,5-Trichloro-3-(trifluoromethyl)benzene (47)

Compound 47 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **47** was obtained (21.2 mg, 85% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.77 (s, 1H), 7.67 – 7.60 (m, 1H). ¹³**C NMR (101 MHz, CDCl**₃) δ 137.1, 132.8, 131.6, 131.1, 129.1 (q, *J* = 6.0 Hz), 128.1 (d, *J* = 33.3 Hz), 121.8 (d, *J* = 274.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.84 (m, 3F).

1,4-Dichloro-2-(trifluoromethyl)benzene (48)^[26]

Compound 48 was prepared according to the general procedure in about 48 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **48** was obtained (10.8 mg, 50% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.46 (s, 2H)

¹³C NMR (101 MHz, CDCl₃) δ 133.0, 132.8, 132.6, 130.7 (q, J = 2.0 Hz), 129.8 (q, J = 32.3 Hz), 127.8 (q, J = 6.1 Hz), 122.1 (q, J = 277.8 Hz).
¹⁹F NMR (376 MHz, CDCl₃) δ -63.18.

N-(4-Chloro-2-fluorophenyl)acetamide (49)^[27]

Compound 49 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **49** was obtained (14.1 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.24 (t, J = 8.5 Hz, 1H), 7.17 – 7.05 (m, 2H), 2.21 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 152.0 (d, *J* = 302.0 Hz), 126.9 (dd, *J* = 369.7, 10.1 Hz)126.9 (d, *J* = 369.7 Hz), 124.7 (d, *J* = 3.0 Hz), 122.5 (d, *J* = 2.0 Hz), 115.6 (d, *J* = 23.2 Hz), 24.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -128.46 (m, 1F).

N-(2,5-Dichlorophenyl)acetamide (50)^[28]

Compound 50 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **50** was obtained (16.3 mg, 80% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.48 (t, J = 2.8 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.03 (dt, J = 8.7, 2.1 Hz, 1H), 2.26 (d, J = 1.0 Hz,

3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 135.3, 133.5, 129.5, 124.5, 121.3, 24.9.

N-(2-Chloro-4-fluorophenyl)acetamide (51)^[29]

Compound 51 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **51** was obtained (16.5 mg, 88% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 8.27 (dd, *J* = 9.2, 5.7 Hz, 1H), 7.11 (dd, *J* = 8.0, 2.9 Hz, 1H), 6.99 (ddd, *J* = 9.1, 7.8, 2.9 Hz, 1H), 2.22

(s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 158.4 (d, J = 247.5 Hz), 131.0(d, J = 3.0 Hz), 123.1 (d, J = 8.1 Hz), 116.2 (d, J = 26.3 Hz), 144.6 (d, J = 21.2 Hz), 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ-116.28 (m, 1F).

N-(2,4,5-Trichlorophenyl)acetamide (52)

Compound 52 was prepared according to the general procedure in about 60 h. After standard work-up and purification, **52** was obtained (17.2 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.46 (s, 1H), 2.25 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 133.9, 131.9, 129.7, 122.3, 120.7, 24.9.

N-(2-Chloro-4-fluorophenyl)benzenesulfonamide (53)

Compound 53 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **53** was obtained (20.0 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.70 (m, 2H), 7.66 (dd, J = 9.9, 5.3 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.43 (t, J =

7.8 Hz, 2H), 6.99 (dd, J = 5.5, 2.5 Hz, 1H), 6.86 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.8 (d, J = 249.5 Hz), 138.6, 133.4, 129.6 (d, J = 3.0 Hz), 129.1, 127.2 (t, J = 5.1 Hz), 125.4 (d, J = 9.1 Hz), 116.6 (d, J = 26.3 Hz), 115.1 (d, J = 22.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -113.80 (m, 1F).

Benzoic acid, 3,4-dichloro-, methyl ester (54)^[17]

Compound 54 was prepared according to the general procedure in about 48 h, during which 1 equiv. of FeCl₃ (16.3 mg) was used. After standard work-up and purification, **54** was obtained (11.3 mg, 55% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 8.11 (t, *J* = 2.1 Hz, 1H), 7.98 – 7.77 (m, 1H), 7.66 – 7.43 (m, 1H), 3.92 (d, *J* = 0.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.2, 137.6, 132.9, 131.5, 130.5, 129.9, 128.6, 52.5.

1,2-Dichloro-4-methoxybenzene (55)^[9]

Compound 55 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **55** was obtained (5.3 mg, 30% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 (d, *J* = 8.9 Hz, 1H), 6.99 (d, *J* = 2.9 Hz, 1H), 6.75 (dd, *J* = 8.9, 2.9 Hz, 1H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.6, 132.8, 130.6, 123.9, 115.7, 114.1, 55.7.

2,5-Dichloropyridine (56)^[30]

Compound 56 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **56** was obtained (10.1 mg, 68% yield).

¹**H NMR (600 MHz, CDCl₃)** δ 8.28 (d, *J* = 2.5 Hz, 1H), 7.55 (dd, *J* = 8.5, 2.6 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 1H)

¹³C NMR (151 MHz, CDCl₃) δ 149.4, 148.4, 138.4, 130.9, 125.1.

2,3-Dichloropyridine (57)^[31]

Compound 57 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **57** was obtained (8.9 mg, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.30 (dq, J = 4.2, 1.8 Hz, 1H), 7.77 (dq, J = 8.0, 1.6 Hz, 1H), 7.32 – 7.12 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 149.2, 147.2, 138.7, 130.6, 123.2.

2,3-Dichloro-5-methylpyridine (58)

Compound 58 was prepared according to the general procedure in about 82 h, during which 1 equiv. of $FeCl_3$ (16.3 mg) was used. After standard work-up and purification, **58** was obtained (8.1 mg, 50% yield).

⁵⁸ ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.01 (m, 1H), 7.59 (dt, J = 1.5, 0.7 Hz, 1H), 2.31 (d, J = 0.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 147.5, 146.2, 139.3, 133.7, 129.8, 77.3.

2,3-Dichloro-6-methoxypyridine (59)^[32]

Compound 59 was prepared according to the general procedure in about 72 h. After standard work-up and purification, **59** was obtained (11.2 mg, 63% yield).

¹**H NMR (400 MHz, CDCl**₃) δ 7.59 (dd, *J* = 8.6, 0.9 Hz, 1H), 6.64 (dd, *J* = 8.5, 0.9 Hz, 1H), 3.92 (d, *J* = 0.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.8, 145.5, 140.8, 121.5, 110.6, 54.4.

8-Chloroquinoline (60)^[33]

Compound 60 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **60** was obtained (11.5 mg, 70% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 8.94 (dd, J = 4.2, 1.5 Hz, 1H), 8.05 (dd, J = 8.3, 1.5 Hz, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.39 – 7.29 (m, 2H)

¹³C NMR (101 MHz, CDCl₃) δ 150.7, 144.0, 136.3, 133.0, 129.3, 129.3, 126.8, 126.2, 121.6.

5-Chloroquinoline (61)^[34]

Compound 61 was prepared according to the general procedure in about 82 h. After standard work-up and purification, **61** was obtained (13.6 mg, 83% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 8.84 (d, *J* = 4.0 Hz, 1H), 8.44 (d, *J* = 8.5 Hz, 1H), 7.94 (dd, *J* = 5.6, 3.9 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.37 (dd, *J* = 8.5, 4.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 150.8, 148.6, 132.8, 131.2, 129.1, 128.5, 126.5, 126.2, 121.8.

5-Chloro-1-methyl-1*H*-imidazole-2-carbonitrile (62)

Compound 62 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **62** was obtained (6.9 mg, 49% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.11 (s, 1H), 3.78 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 128.6, 122.5, 121.6, 110.4, 32.1.

HRMS (ESI) m/z calcd for $C_5H_5ClN_3Na$ [M + Na⁺] 142.0167, found

142.0159.

5-Chloro-N-(2,5-dichlorophenyl)-2-hydroxybenzamide (63)^[35]

Compound 63 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **63** was obtained (16.1 mg, 51% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 8.7 Hz, 1H), 7.44 - 7.39 (m, 2H), 7.26 (s, 1H), 7.25 - 7.22 (m, 1H), 7.09 (dd, J = 8.7, 2.3 Hz, 1H), 7.04 - 7.01 (m, 2H), 6.84 - 6.79 (m, 2H), 3.01 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 155.0, 148.3, 130.8, 130.4, 126.4, 125.1, 124.0, 122.6, 119.2, 117.8, 39.6.

HRMS (ESI) m/z calcd for $C_{13}H_8Cl_3NO_2Na$ [M + Na⁺] 337.9513, found 337.9508.

N-(4-chloro-2-phenoxyphenyl)methanesulfonamide (64)

Compound 64 was prepared according to the general procedure in about 48 h. After standard work-up and purification, **64** was obtained (15.4 mg, 52% yield).

¹**H NMR (600 MHz, CDCl₃)** δ 8.27 (dd, *J* = 8.9, 1.3 Hz, 1H), 7.44 (d, *J* = 2.4 Hz, 1H), 7.41 (d, *J* = 2.3 Hz, 1H), 7.36 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.27 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.19 (s, 2H), 6.94 (dd, *J* =

8.9, 1.3 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 167.0, 160.4, 135.1, 132.1, 130.5, 129.1, 128.1, 125.1, 124.6, 124.1, 123.1, 120.7, 115.3.

HRMS (ESI) m/z calcd for $C_{13}H_{12}CINO_3SNa [M + Na^+]$ 320.0119, found 320.0126.

3-Chloro-N-(2,3,6-trichloro-4-(trifluoromethyl)phenyl)-5-

(trifluoromethyl)pyridin-2-amine (65)

Compound 65^a was prepared according to the general procedure in about 48 h. After standard work-up and purification, **65**^a (8.8 mg, 20% yield), **65**^b (11.3 mg, 25% yield) and **65**^c (18.2 mg, 40% yield) were obtained. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, J=2.1, 1.1 Hz, 1H), 7.88 (d, J=2.1 Hz, 1H), 7.80 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 152.6, 143.5 (q, *J* = 4.0 Hz), 136.4 (d, *J* = 345.4 Hz), 134.3 (q, *J* = 3.0 Hz), 131.5, 130.7, 128.4 (d, *J* = 33.3 Hz), 126.7 (q, *J* = 6.1 Hz), 123.8 (d, *J* = 137.4 Hz), 121.1 (d, *J* = 140.4 Hz), 120.3, 119.9, 116.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -61.48, -62.97.

HRMS (ESI) m/z calcd for $C_{13}H_4Cl_4F_6N_2O_2Na$ [M + Na⁺] 464.8925, found 464.8918.

Compound 65^b ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.27 (dd, J = 2.1, 1.0 Hz, 1H), 8.21 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 142.8 (q, J = 4.0Hz), 139.1 (d, J = 410.1 Hz), 134.9 (q, J = 3.0 Hz), 134.3, 131.5, 125.3 (d, J = 34.3 Hz), 123.5 (d, J = 126.3Hz), 122.6 (q, J = 4.0 Hz), 122.0, 121.5 (d, J = 25.3 Hz),

120.1, 118.0.

¹⁹F NMR (**376** MHz, CDCl₃) δ -61.68, -62.86.

HRMS (ESI) m/z calcd for $C_{13}H_4Cl_3F_6N_3O_2Na$ [M + Na⁺] 475.9165, found 475.9158.

Compound 65^c ¹**H NMR (400 MHz, CDCl₃)** δ 8.26 (dd, J = 2.1, 1.0 Hz, 1H), 7.98 (s, 1H), 7.87 (d, J = 2.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 143.3 (q, J = 4.0 Hz), 134.7 (q, J = 4.0 Hz), 133.2, 132.2, 130.0 (q, J = 5.1 Hz), 128.4 (d, J = 33.3 Hz), 124.1 (d, J = 24.2

Hz), 122.1 (d, J = 115.1 Hz), 121.3, 120.9, 119.9, 116.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.59, -62.54. HRMS (ESI) m/z calcd for C₁₃H₄Cl₃F₆N₃O₂Na [M + Na⁺] 475.9165, found 475.9168.

3.7 Gram-Scale of the denitrative chlorination reaction.

The 4-nitrochloroarene (1.57 g, 10 mmol), MgCl₂ (1.90 g, 20 mmol, 2 equiv.), 4A MS (2.0 g) was dissolved in MeCN (90 mL) in a quartz tube, 10 mL of FeCl₃/MeCN (163 mg, 1 mmol, 10 mol%) was added to the reaction mixture, which was then stirred at room temperature with the irradiation under 390-400 nm light (two of 10 W LED , 2 cm distance from the light), the reaction system was cooling with fan, which is shown as below. The process of the reaction was monitored by GC-MS (about 48 h). Upon completion, the solution was transferred to a random flask and was removed under vacuum and the residue was purified by silica gel chromatography with n-pentane as mobile phase to afford the desired 1,4-dichloroarene (1.17 g, 80% yield) as white solid.

4. References

[1] G. A. Molander, L. N. Cavalcanti, J. Org Chem. 2011, 76, 7195-7203.

- [2] R. Mészáros, S. B. Ötvös, Green Chem. 2021, 23, 4685–4696.
- [3] X. Min, Q Chen, J. Am. Chem. Soc. 2022, 144, 11081–11087.
- [4] S. D. Schimler, M. S. Sanford, J. Am. Chem. Soc. 2017, 139, 1452-1455.
- [5] Z. Yu, W. Su, Tetrahedron Lett. 2013, 54, 1261–1263.
- [6] Y. Li, C. Duan, Synlett. 2011, 12, 1713–1716.
- [7] W. Zheng, C. A. Morales-Rivera, J. W. Lee, P. Liu, M.-Y. Ngai, *Angew. Chem. Int. Ed.* 2018, *57*, 9645–9649.
- [8] W. Zheng, M. Ngai, Angew. Chem. Int. Ed. 2018, 57, 13795–13799.
- [9] R. Hernandez-Ruiz, S. Gomez-Gil, M. R. Pedrosa, S. Suarez-Pantiga, S. Roberto, *Org. Biomol. Chem.* **2023**, *21*, 7791–7798.
- [10] Y.-F. Wang, Y.-R. Gao, S. Mao, Y.-L. Zhang, D.-D. Guo, Z.-L. Yan, S.-H. Guo, Y.-Q. Wang, *Org. Lett.* **2014**, *16*, 1610–1613.
- [11] S. Josef, S. Düsel, B. König, Eur. J. Org. Chem. 2020, 1491-1495.
- [12] X. Wan, Z. Ma, B. Li, K. Zhang, S. Cao, S. Zhang, Z. Shi, J. Am. Chem. Soc. 2006, 128, 7416–7417.
- [13] N. B. Kilimciler, N. M. Palavecino, N. Gruber, D. R. Vega, L. R. Orelli, J. E. Díaz, *J. Org. Chem.* **2023**, doi/10.1021/acs.joc.2c02558
- https://pubs.acs.org/doi/10.1021/acs.joc.2c02558
- [14] S. K. Nayak, M. K. Reddy, T. N. G. Row, D. Chopra, *Cryst. Growth Des.* **2011**, *11*, 1578–1596.
- [15] Y.-C. Teo, F.-F. Yong, I. K. Ithnin, S.-H. T.Yio, Z. Lin, *Eur. J. Org. Chem.* 2013, 515–524.
- [16] M. S. Crocker, Z. Deng, J. N. Johnston, J. Am. Chem. Soc. 2022, 144, 16708–16714.
- [17] W. Zhang, J. Xie, B. Rao, M. Luo, J. Org. Chem. 2015, 80, 3504–3511.
- [18] S. Kikkawa, M. Okayasu, H. Hikawa, I. Azumaya, *Cryst. Growth Des.* **2021**, *21*, 1148–1158.
- [19] L. Yang, T. Zeng, Q. Shuai, X. Guo, C.-J. Li, *Chem. Commun.* **2011**, *47*, 2161–2163.
- [20] L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc. 2017, 139,7440-7443.
- [21] L. Sharp-Bucknall, M. Sceney, K. F. White, J. L. Dutton, *Dalton Trans.* **2023**, *52*, 3358–3370.
- [22] V. A. Kallepalli, M. R. Smith, J. Org. Chem. 2015, 80, 8341-8353.
- [23] W. Wang, X. Yang, R. Dai, Z. Yan, J. Wei, X. Dou, X. Qiu, H. Zhang, C. Wang, Y.
- Liu, S. Song, N. Jiao, J. Am. Chem. Soc. 2022, 144, 13415–13425.
- [24] S. Yamada, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 2215–2218.
- [25] H. Zhang, J. Wu, X. Zhang, M. Fan, J. Org. Chem. 2023, 88, 12826–12834.
- [26] J. Qi, J. Xu, H. T. Ang, B. Wang, N. K. Gupta, S. R. Dubbaka, P. O., X. Mao, Y. Lum, J. Wu, *J. Am. Chem. Soc.* **2023**, *145*, 24965–24971.
- [27] L. Jin, X. Zeng, S. Li, G. Qiu, P. Liu, Eur. J. Org. Chem. 2022, e202200399.
- [28] S. Strekalova, A. Kononov, V. Morozov, O. Babaeva, E. Gavrilova, Y. Budnikova, *Adv. Synth. Catal.* **2023**, *365*, 3375–3381.
- [29] F. Liu, N. Wu, X. Cheng, Org. Lett. 2021, 23, 3015–3020.
- [30] X. Feng, Y. Qu, Y. Han, X. Yu, M. Bao, Y. Yamamoto, Chem. Commun. 2012, 48,

9468-9470.

[31] X. Zhang, X. Feng, H. Zhang, Y. Yamamoto, M. Bao, *Green Chem.* 2019, 21, 5565–5570.

- [32] B. Bartels, P. Cueni, D. Muri, M. Koerner, Bioorg. Med. Chem. 2018, 26, 970-976.
- [33] C. Wang, D. M. Flanigan, L. N. Zakharov, P. R. Blakemore, *Org. Lett.* 2011, *13*, 4024–4027.
- [34] A. L. Ware, S. S. Pekamwar, Indo Am. J. Pharm. Res. 2019, 9, 3040–3043.
- [35] R. A. Mook, J. Wang, X.-R. Ren, M. Chen, I. Spasojevic, L. S. Barak, H. K. Lyerly, W. Chen, *Bioorg. Med. Chem.* **2015**, *23*, 5829–5838.

5. ¹H NMR and ¹³C NMR Spectra of the Products.

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 16 f1 (ppa)

CI

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -17(fi (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -1 f1 (ppm)

CI

NC

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 r1 (ppm)

135, 397 135, 397 131, 47 131, 47 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 133, 44 134, 44 144, 44 144, 44 144, 44 144, 44 144, 44 144, 4414, 44 144, 44 144, 4414, 44 144, 44 144, 4414, 44 144, 44 144, 4414, 44 144, 44 144, 4414, 44 144, 44 144, 4414, 44 144, 44 144, 4414, 44 144, 4414, 44 144, 4414, 44 144, 4414, 44 144, 4414, 44 144, 4414, 44 144, 4414, 44 144, 441

71-106.74

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -21 -12

No. 123, 16
No. 134, 87
No. 134, 18
No. 135, 18
No. 123, 14
No. 123, 14
No. 123, 14

= 100.01

$\xleftarrow[-115, 74]{-115, 76}$

70 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 f1 (ppm)

50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

 $\underbrace{ \begin{array}{c} -128, 43 \\ -128, 45 \\ -128, 46 \\ -128, 48 \end{array} }_{ -128, 48 }$

 10.0
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 6.0
 5.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 2.0
 1.5
 1.0
 0.5
 0.0

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)