Supporting Information

Engineering high-valence nickel sites in Ni3S2/Ni3Se² architectures enabling urea-assisted hydrogen evolution

reaction

Taotao Ai^{a, 1,*}, Miaomiao Bai^{b, 1}, Weiwei Bao^{a,*}, Jie Han^a, Xueling Wei^a, Xiangyu Zou^a, Jungang Hou^b, Lizhai Zhang^a, Zhifeng Deng^a, Yuxin Zhang^{c, *}

^aNational and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.

^bCollege of Chemistry and Materials Science, Northwestern University, Xi'an 710100, China.

^cSchool of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

^dCollege of Materials Science and Engineering, Chongqing University, Chongqing

400044, China.

¹These authors contributed equally to this work

***Corresponding Author**

Taotao Ai, E-mail: aitaotao0116@126.com

Weiwei Bao, E-mail: baowei1834@163.com

Yuxin Zhang, E-mail: zhangyuxin@cqu.edu.cn

Number of pages: 27

Number of Figures: 16

Number of Tables: 1

List of Contents

1. Experimental Section:

1.1 Materials

1.2 Preparation of $RuO₂$ electrode on NF

1.3 General characterizations

1.4 Electrochemical Test

2. Supplementary Figures:

Fig. S1. Optical image of (a) the bare NF, (b) Ni_3S_2/NF , (c) Ni_3Se_2/NF , (d) $Ni_3S_2@Ni_3Se_2/NF$ and (e) $RuO₂/NF$, respectively.

Fig. S2. The SEM images of bare NF (a) with low magnification, (b) with high magnification.

Fig. S3. The EDS spectrum of $Ni₃S₂/@Ni₃Se₂/NF electrode.$

Fig. S4. Comparison of overpotentials of different current densities under OER test in 1 M KOH electrolyte.

Fig. S5. (a) comparisons of the EIS parameter and (b) Polarization curves were recorded initially and after 2000 CV cycles for $Ni₃S₂(@Ni₃S₂/NF of urea test in 1 M KOH + 0.33 M urea.$

Fig. S6. Comparisons of the EIS parameter of OER test in 1.0 M KOH.

Fig. S7. Electrocatalytic stability. (a-b) Polarization curves and Nyquist plots of $Ni₃S₂(@Ni₃Se₂/NF$ electric catalyst initially as well as after 2000 CV cycles; (c) Chronopotentiometry curve of the Ni₃S₂@Ni₃Se₂/NF [recorded](mailto:Ni3S2@ni3se2/NF%20recorded%20at%201.68) at 1.67 V for 100 h; (d) Time-dependent concentration of dissolved Ni and Se in 1 M KOH.

Fig. S8. Active site test CV curves of (a) $Ni₃S₂/NF$, (b) $Ni₃Se₂/NF$, (c) $Ni₃S₂(@Ni₃Se₂/NF, (d)$ RuO2/NF and (e) Bare NF at different scanning rates in 1 M KOH; (f) current density as a function of scanning rate.

Fig. S9. Active site test CV curves of (a) $Ni₃S₂/ON₃Se₂/NF$, (b) $Ni₃S₂/NF$ (c) $Ni₃Se₂/NF$, (d) Bare NF at different scanning rates in $1 \text{ M KOH} + 0.33 \text{ M}$ urea; (e) current density as a function of scanning rate, (f) ECSA-normalized LSV curves.

Fig. S10. (a) The physical characterization for $Ni₃S₂(QNi₃Se₂/NF$ after OER test. The XPS survey spectrum of $Ni₃S₂(@Ni₃Se₂/NF,$ the spectra of (b) Ni 2p, (c) S 2p, and (d) Se 3d of $Ni₃S₂(a)Ni₃Se₂/NF.$

Fig. S11. (a) EIS Nyquist plots of $Ni₃S₂/NF$, $Ni₃S₂/NF$, $Ni₃S₂/NF$, $Pt/C/NF$ and Bare NF. (b) Comparisons of the EIS parameter. (c) Polarization curves were recorded initially and after 2000 CV cycles for $Ni_3S_2@Ni_3Se_2/NF$.

Fig. S12. (a) $Ni₃S₂(a)Ni₃S₂/NF polarization curves in different electrolytes, (b) XRD, (c-d) SEM$ images and (e) EDX elemental mappings of $Ni₃S₂(@Ni₃Se₂/NF before and after stability test.$

Fig. S13. The Faraday efficiency vs time plots in hydrogen production system assisted by urea electrocatalysis

Fig. S14. (a) Ni_3S_2 (211) surface structure model; and (b) the structure model of adsorption of H_2O ;

(c) Structure model of adsorption of H_2O (intermediate); (d) Structure model of adsorption of OH+H; (e) Structure model of adsorption H.

Fig. S15. (a) Ni_3Se_2 (211) surface structure model; and (b) the structure model of adsorption of H_2O ; (c) Structure model of adsorption of H_2O (intermediate); (d) Structure model of adsorption of OH+H; (e) Structure model of adsorption H.

Fig. S16. (a) Ni_3Se_2 (211)/ Ni_3S_2 (211) heterojunction surface structure model; and (b) the structure model of adsorption of H_2O ; (c) Structure model of adsorption of H_2O (intermediate); (d) Structure model of adsorption of OH+H; (e) Structure model of adsorption H.

3. Supplementary Tables:

Supplementary Table S1. Comparison of the OER activity of $N_{13}S_2@N_{13}Se_2/NF$ with other reported non-noble metal-based electrocatalysts in basic media (1 M KOH).

4. Notes and references

1. Experimental Section

1.1. Materials

Nickel nitrate hexahydrate ($Ni(NO_3)$ ²·6H₂O), vanadium trichloride (VCl₃), selenium dioxide (SeO₂), hydrazine hydrate (N₂H₄H₂O), ethanol (C₂H₅OH), hydrochloric acid (HCl), ruthenic dioxide (RuO₂) and Nafion (5 wt%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Milli-Q ultrapure water was used for all experiments. Nickel foam (NF) was used as the substrate. All chemicals were analytical grade and used as received without further purification.

1.2. Preparation of RuO² electrode on NF

A total of 1.2 mg RuO₂ powder was dispersed in 350 µL deionized water, 500 µL of ethanol, and 50 μL of 15 wt% Nafion solution through ultrasound for 30 min to form a uniform suspension. 300 μL of powder ink was loaded onto as-cleaned NF $(1×1$ cm²), followed by the dry air at room temperature (Fig. S1e). The average mass loading of $RuO₂$ on NF is about 0.4 mg·cm⁻².

1.3. General characterizations

The morphology of as-prepared catalysts was characterized by a field-emission scanning electron microscope (FESEM, JSM-7610F, 15 kV). The morphologies of samples were further confirmed by transmission electron microscope (TEM, Titan3 G2 60-300, 300 kV). The elemental distributions of the samples were characterized by the energy-dispersive X-ray spectroscopy (EDS) mapping affiliated with the TEM, and the EDS was also imaged from the TEM. Thermo Fisher Scientific K-Alpha was performed to get the X-ray photoelectron spectroscopy (XPS) data, using a monochromated source of X-rays (Mg Kα, photon energy 1253.6 eV) for excitation.

1.4. Electrochemical Test

All the electrochemical tests were proceeded in a standard three-electrode system by a CHI660E electrochemical station (CH Instruments, Inc., Shanghai) at room temperature. For detail, $Ni₃S₂(QNi₃S₂/NF$ was directly used as the working electrode, a graphite carbon rod was used as the counter electrode, and a mercury oxide electrode (Hg/HgO) was used as the reference electrode. All electrochemical measurements were carried out in a 1 M KOH solution. The measured potentials were transformed to a reversible hydrogen electrode (RHE) according to the equation: E_{RHE} = $E_{Hg/HgO}$ + 0.059×pH + 0.098. The pH of 1 M KOH is measured to be 13.74. The OER measurements were recorded by linear sweep voltammetry (LSV) at a scan rate of 5 mV s⁻¹. Electrocatalytic stability was investigated by performing successive cyclic voltammetry (CV) sweeps in the voltage

range of 0-1.1 V at a scan rate of 40 mV/s. All polarization curves were corrected by *i-R* losses. The plots of electrochemical impedance spectroscopy (EIS) were measured with 5 mV amplitude in a frequency of 0.01 Hz \sim 100 kHz.

To obtain the effective electrochemical active surface area (ECSA) of electrocatalysts, a series of cyclic voltammetry (CV) measurements were executed first at various scan rates $(5, 10, 15 \text{ mV s}^{-1})$ etc.). By plotting the difference of current density (J) between the anodic and cathodic sweeps (Janodic−Jcathodic) against the scan rate, a linear trend was constructed. Then, the geometric doublelayer capacitance (C_{dl}) was easily calculated.

2. **Supplementary Figures:**

Fig. S1. Optical image of (a) the bare NF, (b) Ni_3S_2/NF , (c) Ni_3Se_2/NF , (d) $Ni_3S_2@Ni_3Se_2/NF$ and

(e) $RuO₂/NF$, respectively.

Fig. S2. The SEM images of bare NF (a) with low magnification, (b) with high magnification.

Fig. S3. The EDS spectrum of $Ni₃S₂(@Ni₃S₂/NF electrode.$

Fig. S4. Comparison of overpotentials of different current densities under OER test in 1 M KOH

electrolyte.

Fig. S5. (a) comparisons of the EIS parameter and (b) Polarization curves were recorded initially and after 2000 CV cycles for $Ni₃S₂(@Ni₃Se₂/NF of urea test in 1 M KOH + 0.33 M urea.$

Fig. S6. Comparisons of the EIS parameter of OER test in 1.0 M KOH.

Fig. S7. Electrocatalytic stability. (a-b) Polarization curves and Nyquist plots of $Ni₃S₂(@Ni₃Se₂/NF$ electric catalyst initially as well as after 2000 CV cycles; (c) Chronopotentiometry curve of the Ni₃S₂@Ni₃Se₂/NF [recorded](mailto:Ni3S2@ni3se2/NF%20recorded%20at%201.68) at 1.67 V for 100 h; (d) Time-dependent concentration of dissolved Ni and Se in 1 M KOH.

Fig. S8. Active site test CV curves of (a) $Ni₃S₂/NF$, (b) $Ni₃Se₂/NF$, (c) $Ni₃S₂(@Ni₃Se₂/NF, (d)$

RuO2/NF and (e) Bare NF at different scanning rates in 1 M KOH; (e) current density as a function of scanning rate.

Fig. S9. Active site test CV curves of (a) $Ni₃S₂(@Ni₃Se₂/NF, (b) Ni₃S₂/NF (c) Ni₃Se₂/NF, (d) Bare$

NF at different scanning rates in 1 M KOH + 0.33 M urea; (e) current density as a function of scanning rate; (f) ECSA-normalized LSV curves.

Fig. S10. (a) The physical characterization for $Ni₃S₂(Q)Ni₃Se₂/NF$ after OER test. The XPS survey spectrum of $Ni₃S₂(@Ni₃Se₂/NF,$ the spectra of (b) Ni 2p, (c) S 2p, and (d) Se 3d of Ni₃S₂@Ni₃Se₂/NF.

Fig. S11. (a) EIS Nyquist plots of Ni₃S₂@Ni₃Se₂/NF, Ni₃S₂/NF, Ni₃Se₂/NF, Pt/C/NF and Bare NF. (b) Comparisons of the EIS parameter. (c) Polarization curves were recorded initially and after 2000

CV cycles for $Ni₃S₂(@Ni₃Se₂/NF.$

Fig. S12. (a) Ni₃S₂@Ni₃Se₂/NF polarization curves in different electrolytes, (b) XRD, (c-d) SEM images and (e) EDX elemental mappings of $Ni₃S₂(@Ni₃Se₂/NF before and after stability test.$

Fig. S13. The Faraday efficiency vs time plots in hydrogen production system assisted by urea electrocatalysis

Fig. S14. (a) Ni_3S_2 (211) surface structure model; and (b) the structure model of adsorption of H_2O ; (c) Structure model of adsorption of H2O (intermediate); (d) Structure model of adsorption of OH+H; (e) Structure model of adsorption H.

Fig. S15. (a) $Ni_3Se_2(211)$ surface structure model; and (b) the structure model of adsorption of H_2O ; (c) Structure model of adsorption of H2O (intermediate); (d) Structure model of adsorption of OH+H; (e) Structure model of adsorption H.

Fig. S16. (a) $Ni₃Se₂$ (211)/ $Ni₃S₂$ (211) heterojunction surface structure model; and (b) the structure model of adsorption of H₂O; (c) Structure model of adsorption of H₂O (intermediate); (d) Structure model of adsorption of OH+H; (e) Structure model of adsorption H.

Supplementary Tables:

Supplementary Table S1 Comparison of the OER activity of $\text{Ni}_3\text{S}_2\textcircled{a}\text{Ni}_3\text{Se}_2/\text{NF}$ **with other**

reported non-noble metal-based electrocatalysts in basic media (1 M KOH).

4. Notes and references

[1] M. Ramadoss, Y. F. Chen, Y. Hu, B. Wang, R. Jeyagopal, K. Marimuthu, X. Q. Wang, D. X. Yang, Hierarchically porous nanoarchitecture constructed by ultrathin CoSe₂ embedded Fe-CoO nanosheets as robust electrocatalyst for water oxidation, J. Mater. Sci. Technol. 78 (2021) 229-237.

[2] C. Zhang, W. Xu, S. T. Li, X. Z. Wang, Z. Y. Guan, M. L. Zhang, J. Wu, X. X. Ma, M. L. Wu, Y. F. Qi, Core-shell heterojunction engineering of Ni_{0.85}Se-O/CN electrocatalyst for efficient OER, Chem. Eng. J. 454 (2023) 140291.

[3] Q. R. Wang, C. Wang, X. Q. Du, X. S. Zhang, Combinational modulations of NiSe₂ nanodendrites by phase engineering and iron-doping towards efficient oxygen evolution reaction, Int. J. Hydrogen Energy, 51 (2024) 1154-1166.

[4] Y. Z. Huang, J. C. Huang, K. S. Xu, R. Geng, Constructing NiSe₂@MoS₂ nanoheterostructures on a carbon fiber paper for electrocatalytic oxygen evolution, RSC Adv. 11 (2021) 26928-26936.

[5] J. Zhou, L. W. Yuan, J. W. Wang, L. L. Song, Y. You, R. Zhou, J. J. Zhang, J. Xu, Combinational modulations of $NiSe₂$ nanodendrites by phase engineering and irondoping towards an efficient oxygen evolution reaction, J. Mater. Chem. A. 8 (2020) 8113-8120.

[6] J. Yu, W. J. Li, G. B. Kao, C. Y. Xu, R. R. Chen, Q. Liu, J. Y. Liu, H. S. Zhang, J. Wang, In-situ growth of CNTs encapsulating P-doped NiSe₂ nanoparticles on carbon framework as efficient bifunctional electrocatalyst for overall water splitting, J. Energy Chem. 60 (2021) 111-120.

[7] C. Zhang, T. Li, Q. Z. Wei, Z. H. Cheng, J. Wu, X. X. Ma, Z. H. Chen, K. Y. Liu,

T. Zhang, J. H. Liu, Fe-doped NiSe₂ nanoparticles as efficient and stable electrocatalysts for oxygen evolution reaction, Chem. Phys. Lett. 808 (2022) 140126.

[8] Z. M. Tian, Y. X. Liu, Q. C. Xu, Y. Y. Shi, C. X. Ma, B. Peng, G. Y. Liu, J. N. Yang, W. J. Zheng, Fe-doped NiSe₂ nanoarrays to boost electrocatalytic oxygen evolution reaction, Electrochim. Acta. 425 (2022) 140711.

[9] C. J. Xuan, Q. N. Xu, L. Han, B. S. Hou, Electronic structure exquisite modulation of NiSe₂ interface via rationally controlling Fe doping for boosting electrochemical oxygen evolution activity, Chem. Eng. J. 464 (2023) 142620.

[10] R. Zhang, W. S. Liu, F. M. Zhang, Z. D. Yang, G. L. Zhang, X. C. Zeng, COF-C4N Nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis, Appl. Catal. B Environ. 325 (2023) 122366.

[11] B. Chen, P. Hu, F. Yang, X. J. Hua, F. F. Yang, F. Zhu, R. Y. Sun, K. Hao, K. S. Wang, Z. Y. Yin, In situ porousized $MoS₂$ nano islands enhance HER/OER bifunctional electrocatalysis, Small. 19 (2023) 2207177.

[12] H. Singh, M. M. Hines, S. Chakravarty, M. Nath, Multi-walled carbon nanotube supported manganese selenide as a highly active bifunctional OER and ORR electrocatalyst, J. Mater. Chem. A. 10 (2022) 6772-6784.

[13] D. Cao, J. Shao, Y. H. Cui, L. P. Zhang, D. J. Cheng, Interfacial engineering of copper-nickel selenide nanodendrites for enhanced overall water splitting in alkali condition, Small. 19 (2023) 2301613.

[14] Y. F. Zhao, X. F. Lu, Z. P. Wu, Z. H. Pei, D. Y. Luan, X. W. D. Lou, Supporting Trimetallic Metal-Organic Frameworks on S/N‐Doped Carbon Macroporous Fibers for Highly Efficient Electrocatalytic Oxygen Evolution, Adv. Mater. 35 (2023) 2207888.

[15] K. R. Park, D. T. Tran, T. T. Nguyen, N. H. Kim, J. H. Lee, Copper-Incorporated heterostructures of amorphous NiSex/Crystalline NiSe₂ as an efficient electrocatalyst for overall water splitting, Chem. Eng. J. 422 (2021) 130048.

[16] W. Q. Zhang, J. Ying, H. W. Liu, Biomineralization of Sulfate-Reducing Bacteria In Situ-Induced Preparation of Nano Fe₂O₃ - Fe(Ni)S/C as High-Efficiency Oxygen Evolution Electrocatalyst, Small. 20 (2023) 2307808.

[17] H. F. Fan, D. X. Jiao, J. C. Fan, D. W. Wang, B. Zaman, W. Zhang, L. Zhang, W. Zheng, X. Q. Cui, Kinetically and thermodynamically expediting elementary steps via high-valence Cr-incorporated of nickel selenide for water electrolysis, Nano Res. 17 (2023) 1199-1208.

[18] Y. F. Zhao, Y. Guo, X. F. Lu, D. Y. Luan, X. J. Gu, X. W. D. Lou, Exposing Single Ni Atoms in Hollow S/N-Doped Carbon Macroporous Fibers for Highly Efficient Electrochemical Oxygen Evolution, Adv. Mater. 34 (2022) 2203442.

[19] X. Jia, H. J. Kang, X. X. Yang, Y. L. Li, K. Cui, X. H. Wu, W. Qin, G. Wu, Amorphous Ni (Ⅲ)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water, Appl. Catal. B Environ. 312 (2022) 121389.

[20] Y. Z. Zhao, Z. L. Zhang, L. Liu, Y. Wang, T. Wu, W. J. Qin, S. J. Liu, B. R. Jia, H. Y. Wu, D. Y. Zhang, X. H. Qu, G. G. Qi, E. P. Giannelis, M. L. Qin, S. J. Guo, S and O co-coordinated Mo single sites in hierarchically porous tubes from sulfur– enamine copolymerization for oxygen reduction and evolution, J. Am. Chem. Soc. 144 (2022) 20571-20581.