Supporting Information

Flow Electrosynthesis of Phosphinamides and Phosphoramidates through P–N Coupling

Table of contents

1. Experimental
1.1. General experimental S4
1.2. Ion electrochemical reactor
2. Batch electrochemical procedure
3. Optimisation of batch electrochemical parameters
4. Optimisation of flow electrochemical parameters at constant current (galvanostatic reaction)
5. Control experiments for chemoselectivity
6. Mechanistic experiments
7. Control experiments
8. Scale-up of the reaction
(a) Reaction set-up for gram-scale synthesis
(b) Galvanostatic reaction (at constant current) S26
(c) Potentiostatic reaction (at constant voltage)S27
9. Computational study S29
9.1. Optimisation and determination of molecular orbitals
10. General flow electrochemical procedure S30
10.1. General procedure for electrochemical phosphinamide synthesis (GP1):
10.2. Synthesis and spectral characterisation of phosphinamides:
Synthesis of <i>N,P,P</i> -triphenylphosphinic amide (6a) ^{1,8}
Synthesis of <i>N</i> -(4-methoxyphenyl)- <i>P,P</i> -diphenylphosphinic amide (6b) ^{2,8}
Synthesis of N-(4-(methylthio) phenyl)-P,P-diphenylphosphinic amide (6c)
Synthesis of <i>N</i> -(2-bromo-4-methoxyphenyl)- <i>P,P</i> -diphenylphosphinic amide (6d) ⁶ S32
Synthesis of N-(2-bromo-4-methylphenyl)-P,P-diphenylphosphinic amide (6e) ⁶ S32
Synthesis of <i>N</i> -(2-bromo-4-(tert-butyl)phenyl)- <i>P,P</i> -diphenylphosphinic amide (6f) ⁷ S33

Synthesis of <i>N</i> -(2-bromo-4-(trifluoromethoxy) phenyl)- <i>P</i> , <i>P</i> -diphenylphosphinic am (6g) ⁶	ide S33
Synthesis of N-(4-iodophenyl)-P,P-diphenylphosphinic amide (6h)	S34
Synthesis of N-(4-nitrophenyl)-P,P-diphenylphosphinic amide (6i)	S34
Synthesis of <i>P,P</i> -diphenyl- <i>N</i> -(4-(trifluoromethyl)phenyl)phosphinic amide (6j) ²⁰	S35
Synthesis of N-([1,1'-biphenyl]-2-yl)-P,P-diphenylphosphinic amide (6k) ⁸	S35
Synthesis of <i>P,P</i> -diphenyl- <i>N</i> -(<i>o</i> -tolyl) phosphinic amide (6I) ⁸	S36
Synthesis of N-(2, 4-dimethylphenyl)-P,P-diphenylphosphinic amide (6m) ²	S36
Synthesis of N-(3-methoxyphenyl)-P,P-diphenylphosphinic amide (6n) ⁹	S37
Synthesis of N-(2, 6-diethylphenyl)-P,P-diphenylphosphinic amide (60)	S37
Synthesis of N-(2, 3-dihydro-1H-inden-4-yl)-P,P-diphenylphosphinic amide (6p)	S38
Synthesis of P,P-diphenyl-N-(5,6,7,8-tetrahydronaphthalen-1-yl) phosphinic amide ((6q) S38
Synthesis of <i>N,N</i> -diethyl- <i>P,P</i> -diphenylphosphinic amide (7a) ¹⁰	S39
Synthesis of morpholinodiphenylphosphine oxide (7b) ¹¹	S39
Synthesis of <i>N,N</i> -diallyl- <i>P,P</i> -diphenylphosphinic amide (7c)	S40
Synthesis of <i>P</i> , <i>P</i> -diphenyl- <i>N</i> -(pyridin-2-ylmethyl) phosphinic amide (7d)	S40
Synthesis of diphenyl (4-(pyridin-2-yl) piperazin-1-yl)phosphine oxide (7e)	S41
Synthesis of (1 <i>H</i> -indol-1-yl)diphenylphosphine oxide (7f) ¹²	S41
Synthesis of (2,5-dimethyl-1 <i>H</i> -indol-1-yl)diphenylphosphine oxide (7g)	S42
Synthesis of (4-methoxy-1 <i>H</i> -indol-1-yl)diphenylphosphine oxide (7h)	S42
Synthesis of phenyl diphenylphosphinate (8a) ¹³	S43
Synthesis of pentyl diphenylphosphinate (8b) ¹⁴	S43
Synthesis of N-(2-hydroxyphenyl)-P,P-diphenylphosphinic amide (9a)	S44
Synthesis of 2-aminophenyl diphenylphosphinate (9b)	S44
Synthesis of N-(2-chloro-4-hydroxyphenyl)-P,P-diphenylphosphinic amide (10a)	S45
Synthesis of N-(2-chloro-4-hydroxyphenyl)-P,P-diphenylphosphinic amide (10b)	S45
Synthesis of N-(2-aminophenyl)-P,P-diphenylphosphinic amide (11a)	S46
Synthesis of N,N'-(1,2-phenylene)bis(P,P-diphenylphosphinic amide) (11b)	S46
Synthesis of 2-hydroxyphenyl diphenylphosphinate (12)	S47
Synthesis of N-(2-methyl-1H-indol-5-yl)-P,P-diphenylphosphinic amide (13)	S47
Synthesis of 2-methyl-1 <i>H</i> -indol-5-yl diphenylphosphinate (14)	S48

Synthesis of (9 <i>H</i> -carbazol-9-yl)diphenylphosphine oxide (15) ²¹	S48
Synthesis of S-phenyl diphenylphosphinothioate (16) ²²	S49
Synthesis of ethyl 4-((diphenylphosphoryl)amino) benzoate (17) ²	S49
Synthesis of 4-acetamidophenyl diphenylphosphinate (18)	S50
Synthesis of diphenyl (4-methoxyphenyl) phosphoramidate (19a)	S50
Synthesis of diphenyl mesitylphosphoramidate (19b)	S51
Synthesis of dibenzyl (4-methoxyphenyl) phosphoramidate (20a)	S51
Synthesis of dibenzyl (3-methoxyphenyl)phosphoramidate (20b)	S52
Synthesis of diethyl (4-methoxy-2-methylphenyl) phosphoramidate (21a) ⁶	S52
Synthesis of diethyl (4-methoxyphenyl)phosphoramidate (21b) ¹⁵	S53
Synthesis of diethyl (2,6-diisopropylphenyl)phosphoramidate (21c)	S53
11. Crystal structure determination	S54
12. NMR Spectra	S58
13. References	202

1. Experimental

1.1. General experimental

All solvents are used after drying and reagents were used as received without purification.

Thin-layer chromatography (TLC)

Thin-layer chromatography (TLC) was performed on pre-coated aluminium sheets of Merck silica gel 60 F254 (0.20 mm) and visualised by UV radiation (254 nm).

Column chromatography

Automated column chromatography was performed on a Biotage[®] Isolera Four using Biotage[®] cartridges SNAP Ultra 25 g.

NMR spectra

¹H NMR, ¹³C NMR and ³¹P NMR spectra were measured on Bruker DPX 400 or 500 apparatus and were referenced to the residual proton solvent peak (¹H NMR: CDCl₃: δ = 7.26 ppm; DMSO-d₆: δ = 2.50 ppm) and solvent ¹³C signal (CDCl₃: δ = 77.2 ppm). Chemical shifts δ were reported in ppm, multiplicity of the signals was declared as followed: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sex = sextet, hep = septet, dd = doublet of doublets, m = multiplet, b = broad; and coupling constants (J) in Hertz.

IR spectra

IR spectra were recorded on a Shimadzu FTIR Affinity-1S apparatus. Wavenumbers are quoted in cm⁻¹.

Mass spectrometry

Mass spectrometric measurements were performed by R. Jenkins, R. Hick, T. Williams and S. Waller at Cardiff University on a Water LCR Premier XEtof. Ions were generated by Electron Ionisation (EI) and Electron Spray (ES). The molecular ion peaks values quoted for either molecular ion [M]⁺, molecular ion plus hydrogen [M+H]⁺ or molecular ion plus sodium [M+Na]⁺.

Melting points

Melting points were measured using a Gallenkamp variable heater with samples in open capillary tubes.

Electrochemical flow reactor

The electrochemical reactions were carried out in a galvanostatic mode using a Vapourtec Ion Electrochemical flow reactor.

Cyclic voltammogram

The cyclic voltammogram studies were performed using an Orygalys OGF500 Potentiostat/Galvanostat with OGFPWR power supply

S4

1.2. Ion electrochemical reactor

The undivided Ion electrochemical reactor developed by Vapourtec Ltd was used to carry out the oxidative coupling of phosphine oxides and amines. The body of the microreactor consists of two stainless steel parts (e, f), each part can accommodate a (50 mm × 50 mm) electrode (a, b), the two electrodes are separated by a 500 μ m thickness fluorinated ethylene propylene (FEP) spacer (c) and then on top of electrodes stainless steel spacer (d) is used followed by a clamp is used to assemble the reactor (h) (Figure S1)

Figure S1: Vapourtec Ion electrochemical reactor, (a) graphite electrode (50×50 mm), (b) platinum electrode (50×50 mm), (c) spacer (0.5 mm thickness), (d) stainless stain separator, (e, f) body of the reactor containing plug for anode, cathode, inlet and outlet, (g) body of reactor for temperature required reactions, (h) clamp to assemble the reactor, (i) peristaltic pump for large scale reaction.

2. Batch electrochemical procedure

Figure S2. Batch electrochemical reaction set-up: (a) Electrasyn cap, (b) electrochemical cell (5 mL), (c) electrodes holder, (d) electrodes (cathode (Pt), anode (Gr)), (e) Electrasyn reaction set-up.

3. Optimisation of batch electrochemical parameters

Scheme S1. Flow electrochemical reaction.

Table S1. Optimisation of batch reaction conditions.

Conditions ^a	6a Yield (%) ^b
Optimisation of electrode	
Pt as the cathode and GC as the anode	10
Pt as the cathode and Gr as the anode	13
Optimisation of current	
30 mA	10
20 mA	23
15 mA	34
10 mA	36
Optimisation of solvent	
$CH_3CN:H_2O$ as solvent	7
MeOH as solvent	Trace
EtOH as solvent	No product

a. Standard reaction conditions: Undivided batch electrochemical cell, Pt cathode and glassy carbon (Gr) as anode, 4 (30 mg, 0.15 mmol) and 5a (14 mg, 0.15 mmol) in MeCN (5 mL), KI 20 mol% (5 mg, 0.15 mmol) as electrolyte, and constant current: 10 mA, charge: 3.5 F/mol, 900 rpm.
b. Yield determined by ¹H NMR spectroscopy using dodecane as internal standard.

4. Optimisation of flow electrochemical parameters at constant current (galvanostatic reaction)

Figure S3. Flow rection setup

a. Standard reaction conditions: Undivided flow cell, Pt cathode and graphite (Gr) as anode, interelectrode distance: 0.5 mm, **4** (0.03 M) and **5a** (0.03 M) in MeCN (10 mL), KI 30 mol% (0.009 M) as electrolyte, and flow rate: 0.05 mL min⁻¹, constant current: 7 mA, charge: 3 F/mol, retention time: 12 min. b. Yield determined by ¹H NMR spectroscopy using dodecane as internal standard.

Table S2. Deviation from the standard conditions at constant current (galvanostatic reaction).

Ph-	$P_{P-Ph}^{O} + H_{N}^{Ph}$	(→ Ph−l	O Ph ⊐−N ⊃h H
	4 5a		6a
Optimisation	Conditions		6a Yield (%)
	No deviation	76	
	without electricity *RT, no inert a	No reaction	
Electrode	Pt (platinum) as the anode		43
	GC (glassy carbon) as the anod	е	67
	Gr (graphite) as the anode		71
	GC as the cathode		39
	Gr as the cathode		33
	SS (stainless steel) as the catho	de	55
	Cu (copper) as the cathode		56
F/mol	2.5 F/mol, 20 mol% KI, 6 mA		43
	3.5 F/mol, 20 mol% KI, 8.4 mA	A Contraction of the second se	40
Flow rate		Retention	
		time	
	0.025 mL/min, 20 mol% KI, 3 mA	24 min	53
	0.08 mL/min, 20 mol% Kl, 11.6 mA	7.5 min	35
	0.1 mL/min, 20 mol% KI, 14 mA	6 min	29
Electrolyte	KI (30 mol%)		71
	tetrabutylammonium bromide	9	20, complex
			reaction mixture
	tetramethylammonium chlorid	le	traces, complex
			reaction mixture
	tetramethylammonium iodide	2	23, complex
			reaction mixture
	ammonium iodide		31, complex
			reaction mixture,
			deep dark
			coloured solution
	tetramethylammonium iodide	9	insoluble

mol% of KI	without KI	10
	10 mol% Kl	43
	30 mol% Kl	76
	35 mol% Kl	65
	40 mol% KI	52
Solvent	CH ₃ CN:H ₂ O as solvent	19
	MeOH as solvent	traces
	EtOH as solvent	0
Concentration	0.225 mmol 4 , 0.225 mmol 5a , 0.0225 M	26
	0.1 mmol 4 , 0.1 mmol 5a , 0.02 M	28
Temperature	30 °C	55
	40 °C	14, degradation
		of starting
		material, black
		precipitate
		observed
	50 °C	traces,
		degradation of
		starting material,
		black precipitate
		observed

Table S3. Optimisation at constant voltage (potentiostatic) under flow conditions.

(Ph-I	0 "	N ⁷ Ph	Gr(+)/Pt(-)	O P → Ph-P-N Ph H	h - Ph-	O P-OH Ph
	4	5a		6a		22
	Cond	itions	6a Yield (%)	22 Yield (%)	4 Yield (%)	
	Optimisatio	n of voltage				
	Voltage	Current				
	(∨)	(mA)				
	0.73	1	5	6	87	
	1	1	8	trace	85	
	1.5	1	15	trace	82	
	2	2	59	-	36	
	2.25	4	70	5	12	
	2.5	6	64	17	-	
	2.75	8	62	3	25	
	3	10	63	2	24	

a. Standard reaction conditions: Undivided flow cell, platinum (Pt) cathode and graphite (Gr) as anode, interelectrode distance: 0.5 mm, **4** (0.03 M) and **5a** (0.03 M) in MeCN (10 mL), KI 30 mol% (0.009 M) as electrolyte, and flow rate: 0.05 mL min⁻¹, retention time: 12 min. b. Yield determined by ³¹P NMR spectroscopy using triphenylphosphine as an internal standard.

Table S4. Optimisation at constant voltage (potentiostatic) in batch conditions.

O Ph-P-Ph + H	H.N.Ph	$\begin{array}{c} & O & Ph \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $
4	5a	6a
Voltage (V)	Time (h)	6a Yield (%)
0.73	1	
0.73	3	no product, starting material
0.73	5	recovered
0.73	12	
0.73	24	
1	3	no product, starting material
1	12	recovered
1.5	3	no product, starting material
1.5	12	recovered
2	3	trace
2.5	3	25
2.5	5	27
2.5	12	31
3	3	29

a. Reaction conditions: Undivided electrasyn cell (5 ml), platinum (Pt) as cathode and graphite (Gr) as anode, **4** (30 mg, 0.15 mmol) and **5a** (14 mg, 0.15 mmol) in MeCN (5 mL), KI 30 mol% (8 mg) as electrolyte, rpm 700 b. Yield determined by ³¹P NMR spectroscopy using triphenylphosphine as an internal standard.

Table S5. Optimisation of flow parameters for indole substrate at constant current (Galvanostatic reaction).

O Ph-P-Ph H 4	+		<u> </u>	F	O N−P(Ph)₂ 7f
Optimisation		Conditio	ons		7f Yield (%)
		No devia	tion		79
Flow rate	Flow rate	Current	Reacti	on time	
	(mL/min)	(mA)	(n	nin)	
	0.025	3.6		24	30
	0.03	4.3	20 12		45
	0.05	7.2			35
	0.1	14.4		6	13
F/mol	F/mol	Flow rate	Current	Reaction	
		(mL/min)	(mA)	time	
	1	0.04	2	15	traces
	1.5		3		35
	2		4		40
	2.5		5		64
	3.5		7		53
mmol of		0.15			79
Indole		0.30			53
		0.45			45

a. Standard reaction conditions: Undivided flow cell, Pt cathode and graphite (Gr) as anode, interelectrode distance: 0.5 mm, **4** (0.03 M) and indole (0.03 M) in MeCN (10 mL), KI 30 mol% (0.009 M) as electrolyte, and flow rate: 0.04 mL min⁻¹, charge: 3 F/mol, reaction time: 15 min. b. Yield determined by ³¹P NMR spectroscopy using triphenylphosphine as an internal standard.

Table S6. Optimisation of flow parameters for indole substrate at constant voltage (potentiostatic reaction).

C Ph-F	D Ph +		ź	• 5	0 N−P(Ph) ₂ 7f	C + Ph-" F 2) '-OH 'h 22
	Constant	Flow rate	Current	7f Yield (%)	22 Yield (%)	4 Yield (%)	
	cell voltage	(mL/min)	(mA)				
	(∨)						
	2.2	0.04	4	42	trace	-	
	2.3	0.04	5	52	-	-	
	2.4	0.04	6	58	-	-	
	3	0.04	7	69	-	11	
	3.5	0.04	8	60	-	7	
	4	0.04	9	51	-	-	

a. Standard reaction conditions: Undivided flow cell, Pt cathode and graphite (Gr) as anode, interelectrode distance: 0.5 mm, **4** (0.03 M) and indole (0.03 M) in MeCN (10 mL), KI 30 mol% (0.009 M) as electrolyte, and flow rate: 0.04 mL min⁻¹, Retention time: 15 min. b. Yield determined by ³¹P NMR spectroscopy using triphenylphosphine as an internal standard.

Table S7. Optimisation of flow parameters for 1,2-diaminobenzene.

a. Standard reaction conditions: Undivided flow cell, platinum (Pt) cathode and graphite (Gr) as anode, interelectrode distance: 0.5 mm, **4** (0.03 M) and **2a'** (0.06 M) in MeCN (10 mL), KI 30 mol% (0.009 M) as electrolyte, and flow rate: 0.05 mL min⁻¹, retention time: 12 min. b. Yield determined by ¹H NMR using triphenylphosphine as internal standard.

O Ph—P— Ph 4	H + HO-2a''	O Ph−P−O Ph 12a	HO + Pi	Ph - Pr - Pr $Ph - Pr - Pr$ $Ph - Pr$ $Ph - Pr$ $Ph - Pr - Pr$ $Ph - Pr - Pr$ $Ph - Pr - Pr$	+ $Ph-P-OH$ Ph 22
Optimization	Conditions		Yield (%)	Yield (%)	Yield (%) 22
			12 a	12b	
Concentrati	4 (0.04 M), 2a'' (0.03 N	1)	20	-	74
on	4 (0.05 M), 2a'' (0.03 N	1)	42	-	51
	4 (0.06 M), 2a'' (0.03 N	1)	23	trace	6 (passivation of
					electrode surface
					resulted in increase of
					voltage)
	4 (0.03 M), 2a'' (0.04 N	1)	41	trace	15 (passivation of
					electrode surface)
	4 (0.03 M), 2a'' (0.05 M	1)	trace	-	65 (passivation of
					electrode surface)
F/mol	4 F/mol, 30 mol% KI, 19.2	mA	decomp	osition and ir	crease in voltage
	5 F/mol, 30 mol% KI, 24 ı	mA	decomp	osition and ir	crease in voltage
	6 F/mol, 30 mol% KI, 28.9	mA	decomp	osition and ir	crease in voltage
Flow rate		Reaction			
		time			
	0.045 mL/min, 30 mol% KI, 13	13.3 min	8	-	46
	mA, 3 F/mol				
	0.04mL/min, 30 mol% KI, 11	15 min	26	-	24
	mA, 3 F/mol				
	0.035 mL/min, 30 mol% KI, 10	17 min	18	trace	72
	mA, 3 F/mol				
	0.03 mL/min, 30 mol% KI, 9	20 min	Passivation	of electrode s	urface led to blocking
	mA, 3 F/mol				

Table S8. Optimisation of flow parameters for catechol.

5. Control experiments for chemoselectivity

6. Mechanistic experiments

(i) Cyclic Voltammetry (CV)

All CVs were taken in MeCN, using a GC carbon disk (immersed surface area: 0.03 cm^2), Pt wire counter electrode, 0.01 M Ag/AgNO_3 reference at a scan rate of n = 100 mV s^{-1} , electrolyte ⁿBu₄NClO₄ (0.1 M), **4** (0.03 M), **5a** (0.03 M), KI (0.009 M).

(ii) Randles-Sevcik equation

The Randles-Sevcik equation³ is a fundamental equation in electrochemistry that describes the relationship between the current (I) and the scan rate (v) in cyclic voltammetry experiments for a reversible redox reaction occurring at an electrode. It is expressed as:

$$I_p = nFAD^{1/2} v^{1/2}C$$

Where,

- I_P is the peak current,
- n is the number of electrons transferred in the redox reaction,
- F is the Faraday constant (96,485 C/mol),
- A is the electrode area,
- D is the diffusion coefficient of the electroactive species,
- v is the scan rate, and
- C is the concentration of the electroactive species.

The Randles-Sevcik equation describes the relationship between the peak current and the square root of the scan rate in cyclic voltammetry experiments and is used to analyse the electrochemical behaviour of redox-active species at an electrode surface.

Figure S4. (a) Linear fit of peak current v/s square root of scan rate (diffusion control process) corresponding to 1st oxidation peak of graph (c), (b) CV at different scan rate of second oxidation peak illustrating the variation in peak current and shift in potential (c) linear fit of peak current v/s square root of scan rate (diffusion control process).

(iii) Dunn equation- defined by the linear relationship between log (peak current) v/s log (scan rate) and slope comes near 0.5, it demonstrates a diffusion controlled process.

Figure S5. Dunn method, log (peak current) v/s log (scan rate)

7. Control experiments

(a) Control experiments

(b) Mass spectra

(i) Reaction of aniline **5a** in the presence of KI without **4** using standard conditions.

Figure S6. Mass spectrum of *N*-iodoaniline **23** formed as an intermediate.

Figure S7. Mass spectrum of phenyl hypoiodite **25** formed as an intermediate.

Figure S8. Mass spectrum of 1-iodo-1*H*-indole **24** formed as an intermediate.

Reaction of **4** in presence of KI without **5a** using standard conditions.

Figure S9. Mass spectrum of diphenylphosphinic acid 22.

(c) Evidence for evolution of hydrogen gas at the cathode

Figure S10. Formation of bubbles at cathode (Pt) indicating the evolution of H_2 as product during the batch electrolysis of **4** and **5a** under batch conditions.

a. Batch electrochemical conditions: undivided Electrasyn setup, cell (5 mL), platinum (Pt) cathode and graphite (Gr) as anode, **4** (0.03 M) and **5a** (0.03 M) in MeCN (5 mL), KI (30 mol%), current: 7 mA, time: 90 min.

Unsuccessful experiments:

Observation: Voltage increased after 30 min of the reaction, which is due to the passivation of the surface of electrode, resulted in a blockage of the outlet. This passivation seems to be due to a fragmentation of the graphite electrode surface. This observation implies that the electrode material is not suitable for substrate **5'**.

Observation: Voltage increased up to 32 V after 45 min of the reaction, which is due to the passivation of the surface of electrode, resulting in a blockage of the outlet. This passivation seems to be due to a fragmentation of the graphite electrode surface. This observation implies that the electrode material is not suitable for substrate **6'**.

8. Scale-up of the reaction

(a) Reaction set-up for gram-scale synthesis

Figure S11. Reaction setup for scale-up

(b) Galvanostatic reaction (at constant current)

The electrolysis was performed in an undivided cell using a Vapourtec Ion Electrochemical Flow Reactor (reactor volume = 0.6 mL, spacer 0.5 mm) using a Graphite (Gr) electrode as the anode and a platinum (Pt) electrode as the cathode (active surface area: $2 \times 12 \text{ cm}^2$). A solution of diphenylphosphine oxide **4** (1 g, 4.95 mmol) and aniline **5a** (452 µL, 4.95 mmol) in acetonitrile (165 mL) with KI (30 mol%, 1.48 mmol, 246 mg) was stirred for 15 min at room temp. to prepare a homogenous reaction mixture. The reactor was assembled and connected to the syringe pump with a flow rate of 0.05 mL/min and the current was set at 7.2 mA. Then, the solution was pumped into a PTFE coil (1 mm internal diameter) to the inlet of the electrochemical reactor through peristaltic pump. The product was collected into a reagent bottle as shown in the figure below after 18 min for 55 hr 7 min. The collected product was purified by flash column chromatography (solvent system: cyclohexane/ethyl acetate 30:70, v/v) to get the pure product with an isolated yield of 899 mg of **6a** (62%). Also the reaction yield was monitored via ³¹ P NMR throughout the reaction at different time intervals.

(i) Figure S12. Electrodes after electrolysis at constant current.

(c) Potentiostatic reaction (at constant voltage)

The electrolysis was performed in an undivided cell using a Vapourtec Ion Electrochemical Flow Reactor (reactor volume = 0.6 mL, spacer 0.5 mm) using a Graphite (Gr) electrode as the anode and a platinum (Pt) electrode as the cathode (active surface area: $2 \times 12 \text{ cm}^2$). A solution of diphenyl-phosphine oxide **4** (1 g, 4.95 mmol) and aniline **5a** (452 µL, 4.95 mmol) in acetonitrile (165 mL) with KI (30 mol%, 1.48 mmol, 246 mg) was stirred for 15 min at room temp. to prepare a homogenous reaction mixture. The reactor was assembled and connected to the syringe pump with a flow rate of 0.05 mL/min and the voltage was set at 2.25 V. Then, the solution was pumped into a PTFE coil (1 mm internal diameter) to the inlet of the electrochemical reactor through peristaltic pump. The product was collected into a reagent bottle as shown in the figure below after 18 min for 55 h and 7 min. The collected product was purified by flash column chromatography (solvent system: cyclohexane/ethyl acetate 30:70, v/v) to get the pure product **6a** with an isolated yield of 924 mg (64%). The reaction yield was monitored via ³¹ P NMR throughout the reaction at different time interval using triphenylphosphine as internal standard.

(ii) Figure S13. Electrodes after electrolysis at constant cell voltage (potentiostatic reaction): no passivation observed on the electrodes surface.

Figure S14. NMR yield at different time intervals for gram scale synthesis using triphenylphosphine as an internal standard.

9. Computational study

ORCA/5.0.0 was used to fully optimise all the structures reported in this paper at the B3LYP level of density functional theory (DFT). The def2-SVP basis set was used for all atoms. Frequency calculations were carried out at the same level of theory as those for the structural optimisation.

9.1. Optimisation and determination of molecular orbitals

Figure S15. HOMO-LUMO energy gap of (a) indole and (b) phenol substrate with and without KI.

10. General flow electrochemical procedure

10.1. General procedure for electrochemical phosphinamide synthesis (GP1):

The electrolysis was performed in an undivided cell using a Vapourtec Ion Electrochemical Flow Reactor (reactor volume = 0.6 mL, spacer 0.5 mm) using a Graphite (Gr) electrode as the anode and a platinum (Pt) electrode as the cathode (active surface area: $2 \times 12 \text{ cm}^2$). A solution of diphenylphosphine oxide **4** (60 mg, 0.30 mmol) and amine (0.30 mmol) in acetonitrile (10 mL) with KI (30 mol%, 15 mg) was placed in volumetric flask stirred at room temp. to prepare a homogenous reaction mixture and filled in a syringe. The reactor was assembled and connected to the syringe pump with a flow rate of 0.05 mL/min and the current was set at 7.2 mA. Then, the solution was pumped into a PTFE coil (1 mm internal diameter) to the inlet of the electrochemical reactor. The product was collected into a glass vial after 18 min for 200 min (10 mL) and purified by flash column chromatography (solvent system: petroleum ether/ethyl acetate 30:70, v/v) to get the pure product.

10.2. Synthesis and spectral characterisation of phosphinamides:

Synthesis of N,P,P-triphenylphosphinic amide (6a)^{1,8}

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), aniline (28 μ L, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6a**. The compound **6a** was purified by flash column chromatography using petroleum ether and ethyl

acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 64 mg, 0.22 mmol, 73%. Crystals were grown from a saturated solution of **6a** in CH_3CN at room temperature.

m.p.: 229-231 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.91−7.87 (m, 4H), 7.55−7.51 (m, 2H), 7.48−7.44 (m, 4H), 7.11 (m, 2H), 6.96 (m, 2H), 6.89 (m, 1H), 5.23 (d, J = 9.4 Hz, 1H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 140.7, 132.8 (d, J = 2.9 Hz), 132.4 (d, J = 10.0 Hz), 131.8, 129.7, 129.2 (d, J = 13.0 Hz), 122.3, 118.9 (d, J = 6.6 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ = 18.4 (s) ppm

HRMS (ESI) m/z: calcd for $C_{18}H_{15}NOP$ [M-H] ⁺ 292.0891, found: 292.0891

IR (neat): 598, 691, 727, 1186, 1217, 1489, 1740, 2886, 3019, 3075 cm⁻¹

NMR spectroscopic data matches the literature data.⁸

Synthesis of N-(4-methoxyphenyl)-P,P-diphenylphosphinic amide (6b)^{2,8}

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 4-methoxy aniline (37 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6b**. The compound **6b** was purified by flash column chromatography using

petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a dark brown solid. Yield: 80 mg, 0.25 mmol, 83%.

m.p.: 141–142 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.91–7.86 (m, 4H), 7.54–7.50 (m, 2H), 7.47–7.43 (m, 4H), 6.98–6.95 (m, 2H), 6.70 (d, *J* = 8.9 Hz, 2H), 5.12 (d, *J* = 8.8 Hz, 1H), 3.70 (s, 3H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 155.5, 133.6 (d, J = 1.4 Hz), 132.9, 132.6 (d, J = 2.9 Hz), 132.5 (d, J = 9.9 Hz), 129.1 (d, J = 12.9 Hz), 121.1 (d, J = 6.2 Hz), 115.1, 55.8 (d, J = 4.0 Hz) ppm ³¹P NMR (202 MHz, CDCl₃): δ = 18.6 ppm HRMS (ESI) m/z: calcd for C₁₉H₁₉NO₂P [M+H]⁺ 324.1153, found: 324.1156 IR (neat): 582, 692, 734, 767, 935, 1118, 1226, 1400, 1508, 1587, 2835, 2905, 3095 cm⁻¹ NMR spectroscopic data matches the literature data.^{2,8}

Synthesis of *N*-(4-(methylthio) phenyl)-*P*,*P*-diphenylphosphinic amide (6c)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (30 mg, 0.15 mmol), 4-(methylthio)aniline (19 μ L, 0.15 mmol) and KI (30 mol%, 8 mg) in CH₃CN (5 mL) to afford **6c**. The

compound **6c** was purified by flash column chromatography using petroleum ether and ethyl acetate (30:70) as the solvent system. The product was obtained as a colourless solid. Yield: 40 mg, 0.12 mmol, 80%.

m.p.: 200-202 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.92–7.84 (m, 4H), 7.56–7.52 (m, 2H), 7.47 (m, 4H), 7.13–7.05 (m, 2H), 6.98–6.92 (m, 2H), 5.24 (d, *J* = 6.2 Hz, 1H), 2.39 (s, 3H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 138.3, 132.4 (d, J = 2.8 Hz), 132.0 (d, J = 10.1 Hz), 130.6, 129.2, 128.9 (d, J = 13.0 Hz), 119.2 (d, J = 6.4 Hz), 29.7, 17.2 ppm

 ^{31}P NMR (202 MHz, CDCl₃): δ = 18.6 ppm

HRMS (ESI) m/z: calcd for $C_{19}H_{19}NOPS [M+H]^+$ 340.0925, found: 340.0923

IR (neat): 509, 551, 691, 727, 937, 1107, 1177, 1273, 1437, 1493, 1599, 2849, 2918, 3019, 3096 cm⁻¹

Synthesis of N-(2-bromo-4-methoxyphenyl)-P,P-diphenylphosphinic amide (6d)⁶

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2-bromo-4-methoxyaniline (40 μ L, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6d**. The compound **6d** was purified by flash column

chromatography using petroleum ether and ethyl acetate (40:60, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 89 mg, 0.225 mmol, 75%.

m.p.: 137–139 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.92–7.87 (m, 4H), 7.54–7.50 (m, 2H), 7.46 (m, 4H), 7.33–7.31 (m, 1H), 7.06 (dd, *J* = 2.8, 0.7 Hz, 1H), 6.62 (dd, *J* = 8.9, 2.9 Hz, 1H), 5.56 (d, *J* = 10.1 Hz, 1H), 3.69 (s, 3H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 155.0, 132.2, 132.1, 131.8 (d, J = 10.0 Hz), 131.7, 131.1, 128.8 (d, J = 13.0 Hz), 120.5, 117.8, 114.1, 55.6 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 19.0 ppm HRMS (ESI) m/z: calcd for C₁₉H₁₈BrNO₂P [M+H] ⁺ 402.0291, found: 402.0291 IR (neat): 579, 645, 755, 783, 953, 1121, 1493, 1591, 2835, 3047 cm⁻¹ NMR spectroscopic data matches the literature data.⁶

Synthesis of N-(2-bromo-4-methylphenyl)-P,P-diphenylphosphinic amide (6e)⁶

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2-bromo-4-methylaniline (110 μ L, 0.90 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6e**. The compound **6e** was purified by flash column chromatography using

petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a brown solid. Yield: 90 mg, 0.235 mmol, 78%.

m.p.: 160–162 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.82 (m, 4H), 7.47–7.43 (m, 2H), 7.38 (m, 4H), 7.22 (s, 1H), 7.16 (d, J = 8.3 Hz, 1H), 6.76 (dd, J = 8.2, 1.5 Hz, 1H), 5.68 (d, J = 10.3 Hz, 1H), 2.11 (s, 3H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 135.8, 132.9, 132.7, 132.4 (d, J = 2.8 Hz), 131.9 (d, J = 10.1 Hz), 131.1, 129.2, 128.9 (d, J = 13.0 Hz), 119.3 (d, J = 3.7 Hz), 113.2 (d, J = 9.0 Hz), 20.3 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 18.9 ppm HRMS (ESI) m/z: calcd for C₁₉H₁₈BrNOP [M+H]⁺ 386.0309, found: 386.0309 IR (neat): 692, 783, 997, 1071, 1246, 1591, 1688, 2799, 3049 cm⁻¹ NMR spectroscopic data matches the literature data.⁶

Synthesis of N-(2-bromo-4-(tert-butyl)phenyl)-P,P-diphenylphosphinic amide (6f)⁷

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2-Bromo-4-(*tert*-butyl)aniline (103 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10

mL) to afford **6f**. The compound **6f** was purified by flash column chromatography using petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 104 mg, 0.244 mmol, 82%.

m.p.: 151–153 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.93–7.88 (m, 4H), 7.56–7.52 (m, 2H), 7.48 (m, 4H), 7.23 (d, J = 8.5 Hz, 1H), 7.07–7.03 (m, 1H), 5.77 (d, J = 10.1 Hz, 1H), 1.22 (s, 9H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 146.3, 135.7, 132.4 (d, J = 2.8 Hz), 131.8 (d, J = 10.1 Hz), 131.3, 129.3, 128.9 (d, J = 13.1 Hz), 125.6, 118.7 (d, J = 3.8 Hz), 113.1 (d, J = 8.9 Hz), 34.2, 31.2 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 18.9 ppm HRMS (ESI) m/z: calcd for C₂₂H₂₃BrNOP [M+H]⁺ 428.0771, found: 428.0771 IR (neat): 571, 940, 1241, 1435, 3055 cm⁻¹ NMR spectroscopic data matches the literature data.⁷

Synthesis of N-(2-bromo-4-(trifluoromethoxy) phenyl)-P,P-diphenylphosphinic amide (6g)⁶

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (30 mg, 0.15 mmol), 2-bromo-4-(trifluoromethoxy)aniline (114 mg, 0.45 mmol) and KI (30 mol%, 8 mg)

in CH₃CN (5 mL) to afford **6g**. The compound **6g** was purified by flash column chromatography using petroleum ether and ethyl acetate (40:60, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 28 mg, 0.062 mmol, 40%.

m.p: 155–158 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.89 (m, 4H), 7.59–7.56 (m, 2H), 7.50 (m, 4H), 7.40 (d, J = 2.7 Hz, 1H), 7.36 (d, J = 9.0 Hz, 1H), 6.95 (dd, J = 8.9, 2.7 Hz, 1H), 5.84 (d, J = 9.9 Hz, 1H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 143.3, 137.7, 132.7 (d, J = 2.9 Hz), 131.8 (d, J = 10.2 Hz), 130.6, 129.9 (d, J = 13.1 Hz), 125.5, 121.5, 119.3 (d, J = 3.8 Hz), 112.8 (d, J = 8.8 Hz), 29.7 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 19.6 ppm HRMS (ESI) m/z: calcd for C₁₉H₁₅BrF₃NO₂P [M+H]⁺ 455.9910, found: 455.9910 IR (neat): 579, 655, 937, 1072, 1246, 1437, 1585, 1687 2836, 3055 cm⁻¹ NMR spectroscopic data matches the literature data.⁶ Synthesis of *N*-(4-iodophenyl)-*P*,*P*-diphenylphosphinic amide (6h)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (30 mg, 0.15 mmol), 4-iodoaniline (98 mg, 0.45 mmol) and KI (30 mol%, 8 mg) in CH₃CN (5 mL) to afford **6h**. The compound

6h was purified by flash column chromatography using petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 30 mg, 0.072 mmol, 48%. m.p.: 228–230 °C ¹H NMR (500 MHz, CDCl₃): δ = 7.89–7.84 (m, 4H), 7.55 (m, 2H), 7.50–7.46 (m, 4H), 7.44–7.41 (m, 2H), 6.78–6.75 (m, 2H), 5.26 (d, J = 9.5 Hz, 1H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 140.5, 138.5, 132.9, 132.7 (d, J = 10.0 Hz), 132.3, 129.4 (d, J = 13.0 Hz), 120.9 (d, J = 6.5 Hz), 84.9 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 19.0 ppm HRMS (ESI) m/z: calcd for C₁₈H₁₆INOP [M+H] ⁺ 419.9902, found: 419.9902 IR (neat): 579, 937, 1246, 1585, 2800, 3055 cm⁻¹

Synthesis of N-(4-nitrophenyl)-P,P-diphenylphosphinic amide (6i)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 4-nitroaniline (62 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6i**. The desired compound **6i** was purified by flash column chromatography

using cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The desired product obtained as a semi yellow solid. Yield: 37 mg, 0.11 mmol, 37%.

¹H NMR (500 MHz, CDCl₃): δ = 8.06 − 8.01 (m, 1H), 7.89 −7.83 (m, 2H), 7.62 −7.56 (m, 1H), 7.50 (m, 2H), 7.07 −7.03 (m, 1H), 5.92 (d, *J* = 9.9 Hz, 1H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 147.4, 142.5, 133.4 (d, J = 2.7 Hz), 132.3 (d, J = 10.3 Hz), 130.4, 129.6

(d, *J* = 13.3 Hz), 126, 118 (d, *J* = 6.6 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ = 19.6 ppm

HRMS (ESI) m/z: calcd for $C_{18}H_{16}N_2O_3P$ [M+H]⁺ 339.0899, found: 39.0907

IR (neat): 727, 904, 1124, 1170, 1358, 1423, 1537, 3080 cm⁻¹

Synthesis of *P*,*P*-diphenyl-*N*-(4-(trifluoromethyl)phenyl)phosphinic amide (6)²⁰

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 4-(trifluoromethyl)aniline (72 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6j**. The desired compound **6j** was purified by flash column

chromatography using cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The desired product obtained as a light brown solid. Yield: 47 mg, 0.13 mmol, 43%. m.p.: 160-162 0 C ¹H NMR (400 MHz, CDCl₃): δ = 7.91–7.85 (m, 4H), 7.59–7.53 (m, 2H), 7.48 (m, 4H), 7.23–7.20 (m, 2H), 7.18– 7.12 (m, 2H), 5.53 (d, *J* = 9.3 Hz, 1H) ppm ¹³C NMR (101 MHz, CDCl₃): δ = 141.5, 133 (d, *J* = 2.9 Hz), 132.4 (d, *J* = 10.1 Hz), 131.1, 130.3, 129.4 (d, *J* = 13.0 Hz), 121.8 (d, *J* = 6.0 Hz), 118.9 (d, *J* = 3.9 Hz) ppm ³¹P NMR (202 MHz, CDCl₃): δ = 18.9 ppm HRMS (ESI) m/z: calcd for C₁₉H₁₆NOF₃P [M+H] ⁺ 362.0922, found: 362.0923 IR (neat): 518, 725, 1128, 1170, 1421, 1595, 1743, 2879, 3080 cm⁻¹ NMR spectroscopic data matches the literature data.²⁰

Synthesis of N-([1,1'-biphenyl]-2-yl)-P,P-diphenylphosphinic amide (6k)⁸

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), [1,1'-biphenyl]-2-amine (48 µL, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6k**. The compound **6k** was purified by flash column chromatography using petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a light pink

solid. Yield: 93 mg, 0.255 mmol, 85%.

m.p.: 149–151 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.59–7.55 (m, 5H), 7.29–7.27 (m, 4H), 7.22 (m, 2H), 7.21–7.17 (m, 4H), 7.08 (d, J = 8.2 Hz, 1H), 6.99 (dt, J = 7.5, 1.2 Hz, 1H), 6.89 (td, J = 7.9, 1.6 Hz, 1H), 6.79–6.75 (m, 1H), 5.33 (d, J = 9.9 Hz, 1H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 138.6, 137.4, 132.6, 132.2 (d, J = 2.8 Hz), 131.7 (d, J = 10.0 Hz), 131.6, 131.1 (d, J = 8.1 Hz), 130.3, 129.2 (d, J = 6.7 Hz), 128.9 (d, J = 13.0 Hz), 128.6, 127.9, 121.9, 118.4 (d, J = 4.2 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ = 18.0 ppm

HRMS (ESI) m/z: calcd for C₂₄H₂₁NOP [M+H]⁺370.1359, found: 370.1361

IR (neat): 607, 719, 770, 1011, 1182, 1209, 1275, 1300, 1445, 1503, 1736, 2925, 3057, 3366 cm⁻¹ NMR spectroscopic data matches the literature data.⁸

Synthesis of P,P-diphenyl-N-(o-tolyl) phosphinic amide (61)⁸

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), o-toluidine (48 μ L, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6**I. The compound **6**I was purified by flash

column chromatography using petroleum ether and ethyl acetate (40:60, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 66 mg, 0.214 mmol, 71%.

m.p.: 154–156 °C ¹H NMR (500 MHz, CDCl₃): δ = 7.89 (m, 4H), 7.53 (m, 2H), 7.46 (m, 4H), 7.20 (dd, J = 8.6, 3.2 Hz, 1H), 7.13 – 7.10 (m, 1H), 6.94 (m, 1H), 6.84 (t, J = 5.0 Hz, 1H), 5.05 – 5.01 (d, 1H), 2.28 (s, 3H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 138.8, 132.8, 132.4 (d, J = 2.9 Hz), 132.0 (d, J = 9.9 Hz), 130.6, 129.0 (d, J = 13.0 Hz), 127.2, 125.6 (d, J = 8.1 Hz), 122.2, 119.0 (d, J = 4.2 Hz), 18.0 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 18.5 ppm HRMS (ESI) m/z calcd for C₁₉H₁₉NOP [M+H]⁺ 308.1203, found: 308.1204 IR (neat): 770, 816, 932, 951, 1121, 1159, 1275, 1288, 1379, 1579, 1734, 2890, 2980, 3366 cm⁻¹ NMR spectroscopic data matches the literature data.⁸

Synthesis of N-(2, 4-dimethylphenyl)-P,P-diphenylphosphinic amide (6m)²

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2,4-dimethylaniline (56 μ L, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6m**. The compound **6m** was purified by flash column chromatography using

petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 70 mg, 0.22 mmol, 74%.

m.p.: 160–162 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.91–7.86 (m, 4H), 7.53–7.49 (m, 2H), 7.47–7.43 (m, 4H), 7.10 (d, J = 8.1 Hz, 1H), 6.93 (d, J = 2.0 Hz, 1H), 6.74 (d, J = 8.3, 1H), 4.93 (d, J = 8.7 Hz, 1H), 2.25 (s, 3H), 2.19 (s, 3H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 136.3, 133, 132.7, 132.3, 132.0 (d, J = 4.5 Hz), 131.6, 129.2 (d, J = 12.9 Hz), 127.9, 126.3, 119.7 (d, J = 4.1 Hz), 20.9, 18.2 ppm

³¹P NMR (202 MHz, CDCl₃): δ = 18.6 ppm

HRMS (ESI) m/z: calcd for $C_{20}H_{21}NOP$ [M+H] $^+$ 322.1361, found: 322.1358
NMR spectroscopic data matches the literature data.²

Synthesis of *N*-(3-methoxyphenyl)-*P*,*P*-diphenylphosphinic amide (**6n**)⁹

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 3-methoxy aniline (56 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6n**. The

compound **6n** was purified by flash column chromatography using petroleum ether and ethyl acetate (40:60, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 74 mg, 0.23 mmol, 76%.

m.p.: 212-213 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.90 (m, 4H), 7.54 (m, 2H), 7.47 (m, 4H), 7.04 (t, J = 8.2 Hz, 2H), 6.58– 6.53 (m, 1H), 6.46 (d, J = 10.0 Hz, 1H), 5.24 (d, J = 9.1 Hz, 1H), 3.65 (s, 3H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 161.1, 148.1, 139.8, 130.5, 110, 108.3, 107, 104.3, 101.5, 99.3, 55.5 ppm

³¹P NMR (202 MHz, CDCl₃): δ = 18.2 ppm

HRMS (ESI) m/z: calcd for $C_{19}H_{18}NO_2P$ [M+H]⁺ 324.1140, found: 324.1141

IR (neat): 519, 947, 1293, 1560, 2963, 3095 cm⁻¹

NMR spectroscopic data matches the literature data.⁹

Synthesis of *N*-(2, 6-diethylphenyl)-*P*,*P*-diphenylphosphinic amide (**60**)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2,6-diethylaniline (67 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **60**. The compound **60** was purified by flash column chromatography using petroleum ether and ethyl acetate

(30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 71 mg, 0.204 mmol, 68%.

m.p.: 161–163 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.81–7.73 (m, 4H), 7.52–7.47 (m, 2H), 7.40 (m, 4H), 7.09–7.04 (m, 1H), 7.00 (d, J = 7.5 Hz, 2H), 4.52 (s, 1H), 2.71 (q, J = 7.5 Hz, 4H), 1.10 (t, J = 7.5 Hz, 6H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 141.7 (d, J = 3.3 Hz), 134.3 (d, J = 4.3 Hz), 132.8, 131.9 (d, J = 2.7 Hz), 131.8 (d, J = 9.6 Hz), 128.9 (d, J = 12.9 Hz), 128.4 (d, J = 12.7 Hz), 126.4, 25.2, 14.5 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 21.4 ppm HRMS (ESI) m/z calcd for C₂₂H₂₅NOP [M+H] ⁺ 350.1674, found: 350.1673 IR (neat): 420, 592, 746, 800, 916, 1122, 1186, 1257, 1327, 1435, 3161 cm⁻¹

S37

Synthesis of N-(2, 3-dihydro-1H-inden-4-yl)-P,P-diphenylphosphinic amide (6p)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2,3-dihydro-1*H*-inden-4-amine (60 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6p**. The compound **6p** was purified by flash column chromatography using petroleum ether and ethyl

acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 75 mg, 0.225 mmol, 75%.

m.p.: 172–174 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.91–7.86 (m, 4H), 7.55–7.51 (m, 2H), 7.46 (m, 4H), 6.91–6.86 (m, 2H), 6.80 (m, 1H), 4.98 (d, J = 9.0 Hz, 1H), 2.93 (t, J = 7.5 Hz, 2H), 2.80 (t, J = 7.4 Hz, 2H), 2.11 (q, J = 7.5 Hz, 2H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 145.5, 136.5, 132.4 (d, J = 2.9 Hz), 132.2 (d, J = 2.9 Hz), 131.9 (d, J = 10.0 Hz), 131.7 (d, J = 16.2 Hz), 128.9 (d, J = 13.0 Hz), 127.4, 118.1, 115.7 (d, J = 4.1 Hz), 33.4, 29.8, 24.6 ppm

³¹P NMR (202 MHz, CDCl₃): δ = 18.4 ppm

HRMS (ESI) m/z: calcd for C₂₁H₂₁NOP [M-H]⁺ 334.1361, found: 334.1361

IR (neat): 403, 422, 492, 596, 619, 716, 810, 951, 1022, 1067, 1279, 1310, 1327, 1485, 1589, 2206, 3630, cm⁻¹

Synthesis of P,P-diphenyl-N-(5,6,7,8-tetrahydronaphthalen-1-yl) phosphinic amide (6q)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 5,6,7,8-tetrahydronaphthalen-1-amine (66 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **6q**. The compound **6q** was purified by flash column chromatography using petroleum

ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 86 mg, 0.25 mmol, 85%.

m.p.: 185–187 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.89 (m, 4H), 7.62 (m, 2H), 7.42 (m, 4H), 7.02 (d, J = 8.0 Hz, 1H), 6.84 (t, J = 7.8 Hz, 1H), 6.67 (d, J = 7.6 Hz, 1H), 5.01 (d, J = 9.0 Hz, 1H), 2.74 (t, J = 6.3 Hz, 2H), 2.56 (t, J = 6.5 Hz, 2H), 1.88 (m, 2H), 1.76 (m, 2H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 138.4 (d, J = 12.3 Hz), 132.9, 132.3 (d, J = 2.8 Hz), 132.0 (d, J = 10.0 Hz), 131.9, 129 (d, J = 12.9 Hz), 126.0, 124.7 (d, J = 7.9 Hz), 123.2, 116.2 (d, J = 4.3 Hz), 30.1, 24.6, 23.2, 22.7 ppm

³¹P NMR (202 MHz, CDCl₃): δ = 18.5 ppm HRMS (ESI) m/z: calcd for C₂₂H₂₃NOP [M+H] ⁺ 348.1517, found: 348.1516 IR (neat): 519, 692, 717, 727, 748, 770, 849, 878, 934, 978, 1036, 1107, 1125, 1186, 1198, 1439, 1464, 1491, 1584, 2818, 2924, 3059 cm⁻¹

Synthesis of *N*,*N*-diethyl-*P*,*P*-diphenylphosphinic amide (**7a**)¹⁰

O CH₂CH₃ P-N CH₂CH₃ Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), diethylamine (23 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **7a**. The compound **7a** was purified by flash

column chromatography using cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a yellow semi-solid. Yield: 65 mg, 0.24 mmol, 80%.

m.p.: 123–125 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.82–7.77 (m, 4H), 7.44–7.40 (m, 2H), 7.39–7.35 (m, 4H), 2.99 (dt, J = 10.8, 7.1 Hz, 4H), 1.03 (t, J = 7.1 Hz, 6H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 132.4 (d, J = 2.9 Hz), 131.8 (d, J = 10.1 Hz), 130.5, 128.7 (d, J = 13.2 Hz), 51.7 (d, J = 6.0 Hz), 29.8 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 33.4 ppm HRMS (ESI) m/z: calcd for C₁₆H₂₁NOP [M+H] ⁺ 274.1361, found: 274.1362 IR (neat): 591, 690, 727, 1186, 1217, 1347, 2886, 3019, 3072 cm⁻¹ NMR spectroscopic data matches the literature data.¹⁰

Synthesis of morpholinodiphenylphosphine oxide (7b)¹¹

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), morpholine (26 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **7b**. The compound **7b** was purified by flash

column chromatography using cyclohexane and ethyl acetate (40:60, v/v) as the solvent system. The product was obtained as a yellow thick liquid. Yield: 71 mg, 0.25 mmol, 82%.

¹H NMR (500 MHz, CDCl₃): δ = 7.86 (m, 4H), 7.51–7.43 (m, 6H), 3.70 (m, 4H), 3.04 (m, 4H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 132.3 (d, J = 9.2 Hz), 132.0 (d, J = 2.8 Hz), 131.4, 128.7 (d, J = 12.5 Hz), 67.2 (d, J = 6.5 Hz), 45.0 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 29.2 ppm HRMS (ESI) m/z: calcd for C₁₆H₁₉NO₂P [M+H]⁺ 288.1153, found: 288.1151

IR (neat): 591, 690, 694, 727, 1024, 1186, 1202, 1357, 2886, 3045 cm⁻¹

NMR spectroscopic data matches the literature data.¹¹

Synthesis of *N*,*N*-diallyl-*P*,*P*-diphenylphosphinic amide (7c)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), diallylamine (29 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **7c**. The compound **7c** was purified by flash column chromatography using cyclohexane and ethyl acetate (40:60, v/v) as the

solvent system. The product was obtained as a colourless solid. Yield: 71 mg, 0.24 mmol, 79%.

m.p.: 158–160 °C ¹H NMR (500 MHz, CDCl₃): 7.92–7.82 (m, 4H), 7.50–7.40 (m, 6H), 5.82–5.72 (m, 2H), 5.18–5.06 (m, 4H), 3.56 (m, 4H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 134.6, 132.5, 131.9, 131.6, 128.6, 118.6, 47.9 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 30.7 ppm HRMS (ESI) m/z: calcd for C₁₈H₂₁NOP [M-H]⁺ 298.1361, found: 298.1361 IR (neat): 598, 691, 727, 1186, 1217, 1489, 1740, 2886, 3019, 3075 cm⁻¹

Synthesis of *P*,*P*-diphenyl-*N*-(pyridin-2-ylmethyl) phosphinic amide (**7d**)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), pyridin-2-ylmethanamine (49 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **7d**. The compound **7d** was purified by flash column chromatography using cyclohexane and ethyl acetate

(40:60, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 74 mg, 0.243 mmol, 81%.

m.p.: 193–195 °C

¹H NMR (500 MHz, CDCl₃): δ = 8.47 (s, 1H), 7.68–7.62 (m, 4H), 7.52 (d, J = 9.0 Hz, 1H), 7.32–7.28 (m, 2H), 7.24–7.21 (m, 4H), 7.15 (m, 1H), 7.06 (d, J = 8.1 Hz, 1H), 4.00 (s, 2H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 152.4, 148.9, 138.6, 136.9, 131.3 (d, J = 9.6 Hz), 130.2 (d, J = 2.8 Hz), 127.9 (d, J = 12.3 Hz), 122.9, 122.2, 48.9 ppm

³¹P NMR (202 MHz, CDCl₃): δ = 21.4 ppm

HRMS (ESI) m/z: calcd for $C_{18}H_{18}N_2OP [M+H]^+$ 309.1157, found: 309.1162

IR (neat): 519, 692, 727, 748, 770, 849, 878, 978, 1036, 1125, 1186, 1439, 1464, 1584, 2818, 3059 cm⁻ ¹

Synthesis of diphenyl (4-(pyridin-2-yl) piperazin-1-yl)phosphine oxide (7e)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 1-(pyridin-2yl)piperazine (49 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **7e**.The compound **7e** was purified by flash column

chromatography using cyclohexane and ethyl acetate (20:80, v/v) as the solvent system. The product obtained as a colourless liquid. Yield: 92 mg, 0.252 mmol, 84%. ¹H NMR (400 MHz, CDCl₃) δ = 8.21–8.16 (m, 1H), 7.89 (m, 4H), 7.57–7.44 (m, 7H), 6.69–6.60 (m, 2H), 3.59–3.50 (m, 4H), 3.22–3.18 (m, 4H) ppm ¹³C NMR (101 MHz, CDCl₃): δ = 160.0, 148.4, 138.0, 132.8 (d, J = 9.2 Hz), 132.4 (d, J = 2.8 Hz), 132.3, 131.0, 129.2 (d, J = 12.4 Hz), 114.3, 107.8, 92.0, 46.4 (d, J = 7.1 Hz), 45.1 ppm ³¹P NMR (162 MHz, CDCl₃): δ = 29.3 ppm HRMS (ESI) m/z: calcd for C₂₁H₂₃N₃OP [M+H]⁺ 364.1579, found: 364.1592 IR (neat): 422, 538, 646, 721, 964, 1244, 1437, 1593, 1973, 2260, 2521 cm⁻¹

Synthesis of (1*H*-indol-1-yl)diphenylphosphine oxide (7f)¹²

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 1*H*-indole (35 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **7f**. The compound **7f** was purified by flash

column chromatography using petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a pink solid. Yield: 69 mg, 0.22 mmol, 74%.

m.p.: 194–196 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.71–7.66 (m, 4H), 7.6 –7.60 (m, 3H), 7.58–7.56 (m, 1H), 7.50 (m, 4H), 7.19–7.16 (m, 1H), 7.13–7.10 (m, 1H), 6.82 (t, J = 3.3 Hz, 1H), 6.62 (m, 1H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 137.5 (d, J = 3.3 Hz), 132.1 (d, J = 2.9 Hz), 131.1 (d, J = 10.7 Hz), 130.4 (d, J = 6.5 Hz), 128.5, 127.9 (d, J = 13.5 Hz), 127.7 (d, J = 5.9 Hz), 122.4, 120.0, 121.1, 113.7, 106.2 (d, J = 6.7 Hz) ppm

³¹P NMR (202 MHz, CDCl₃): δ = 25 ppm

HRMS (ESI) m/z calcd for C_{20} H₁₇ N O P [M+H] ⁺ 318.1048, found: 318.1048

IR (neat): 519, 692, 748, 878, 978, 1036, 1107, 1186, 1198, 1439, 1491, 1584, 2924, 3059 cm⁻¹ NMR spectroscopic data matches the literature data.¹² Synthesis of (2,5-dimethyl-1*H*-indol-1-yl)diphenylphosphine oxide (7g)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2,5-dimethyl-1*H*-indole (65 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **7g**. The compound **7g** was purified by flash column chromatography using

cyclohexane and ethyl acetate (60:40, v/v) as the solvent system. The product obtained as a light brown semi solid. Yield: 72 mg, 0.21 mmol, 70%.

¹H NMR (400 MHz, CDCl₃): δ = 7.66–7.58 (m, 6H), 7.51–7.45 (m, 4H), 7.15 (m, 1H), 6.72 (dd, J = 8.6, 1.8 Hz, 1H), 6.37 (d, J = 8.6 Hz, 1H), 5.32 (s, 1H), 2.38 (s, 3H), 2.37 (s, 3H) ppm

¹³C NMR (101 MHz, CDCl₃): δ = δ 133.3 (d, J = 2.9 Hz), 132.2, 132, 129.1 (d, J = 13.5 Hz), 124.9, 121, 117.2, 116.4, 113.9, 111.8, 107.8, 21.1, 17.4 ppm

³¹P NMR (162 MHz, CDCl₃): δ = 26.7 ppm

HRMS (ESI) m/z: calcd for C₂₂H₂₁NOP [M+H]⁺ 346.1283, found: 346.1283

IR (neat): 422, 536, 646, 771, 902, 1149, 1504, 1934, 1956, 1994, 2027, 2255, 2517, 3730 cm⁻¹

Synthesis of (4-methoxy-1*H*-indol-1-yl)diphenylphosphine oxide (7h)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (90 mg, 0.45 mmol), 4-methylindole (90 mg, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **7h**. The compound **7h** was purified by flash column chromatography using

cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The product obtained as a greenish liquid. Yield: 87 mg, 0.25 mmol, 56%.

¹H NMR (500 MHz, CDCl₃): δ = 7.63–7.57 (m, 4H), 7.54 (m, 2H), 7.44–7.39 (m, 4H), 7.12 (m, 1H), 6.97 (ddd, J = 8.4, 7.9, 0.4 Hz, 1H), 6.68–6.63 (m, 2H), 6.53 (dd, J = 7.9, 0.6 Hz, 1H), 3.86 (s, 3H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 153.6 (d, J = 1.2 Hz), 140.3 (d, J = 3.7 Hz), 133.5 (d, J = 2.9 Hz), 132.5 (d, J = 10.7 Hz), 130.8, 129.8, 129.3 (d, J = 13.5 Hz), 127.7 (d, J = 5.9 Hz), 124.7, 122.3 (d, J = 6.9 Hz), 108.2 (d, J = 1.2 Hz), 104.7 (d, J = 7.0 Hz), 102.5, 55.7 ppm

³¹P NMR (162 MHz, CDCl₃): δ = 25.5 ppm

HRMS (ESI) m/z: calcd for $C_{21}H_{19}NO_2P [M+H]^+$ 348.1153, found: 348.1165

IR (neat): 422, 484, 571, 648, 694, 723, 904, 1144, 1539, 2019, 2255, 2513, 3750 cm⁻¹

Synthesis of phenyl diphenylphosphinate (8a)¹³

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), phenol (28 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **8a**. The compound **8a** was purified by flash column

chromatography using petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 75 mg, 0.25 mmol, 85%.

m.p.: 138–140 °C ¹H NMR (500 MHz, CDCl₃): δ = 7.89 (m, 4H), 7.55–7.52 (m, 2H), 7.46 (m, 4H), 7.24–7.18 (m, 4H), 7.10 –7.05 (m, 1H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 150.9 (d, J = 8.2 Hz), 132.4 (d, J = 2.8 Hz), 131.8 (d, J = 10.4 Hz), 130.5, 129.6, 128.6 (d, J = 13.5 Hz), 124.6, 120.7 (d, J = 4.8 Hz) ppm ³¹P NMR (202 MHz, CDCl₃): δ = 30.3 ppm HRMS (ESI) m/z calcd for C₁₈ H₁₆ O₂ P [M+H]⁺ 295.0888, found: 295.0885 IR (neat): 513, 532, 582, 685, 695, 701, 746, 901, 1128, 1167, 1115, 1166, 1439, 1489 cm⁻¹ NMR spectroscopic data matches the literature data.¹³

Synthesis of pentyl diphenylphosphinate (8b)¹⁴

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), pentan-1-ol (27 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH_3CN (10 mL) to afford **8b**. The

compound **8b** was purified by flash column chromatography using cyclohexane ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 65 mg, 0.225 mmol, 75%.

```
m.p.: 166–167 °C
```

¹H NMR (400 MHz, CDCl₃): δ = 7.83–7.77 (m, 4H), 7.49 (m, 2H), 7.45–7.40 (m, 4H), 4.01 (q, J = 6.7 Hz, 2H), 1.41 (q, J = 6.7 Hz, 2H), 1.39–1.26 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 132.6, 132.4 (d, J = 2.8 Hz), 131.9 (d, J = 10.0 Hz), 131.5, 128.8 (d, J =

13.1 Hz), 65.4 (d, J = 6.1 Hz), 30.6 (d, J = 6.6 Hz), 28.1, 22.5, 14.3 ppm

³¹P NMR (202 MHz, CDCl₃): δ = 31.1 ppm

HRMS (ESI) m/z calcd for C_{17} H₂₂ O₂ P [M+H]⁺ 289.1302, found: 289.1302

IR (neat): 592, 600, 646, 729, 995, 1150, 1435, 3267, 3366 cm⁻¹

NMR spectroscopic data matches the literature data.¹⁴

Synthesis of N-(2-hydroxyphenyl)-P,P-diphenylphosphinic amide (9a)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2-aminophenol (33 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **9a**. The compound **9a** was purified by flash column chromatography using cyclohexane and ethyl acetate (30:70, v/v) as

the solvent system. The product was obtained as a colourless solid. Yield: 58 mg, 0.19 mmol, 62%. m.p.: 210–212 °C ¹H NMR (500 MHz, CDCl₃): δ = 8.90 (s, 1H), 7.94–7.86 (m, 4H), 7.55 (m, 2H), 7.48 (m, 4H), 7.02 (m, 1H), 6.97–6.88 (m, 2H), 6.71 (m, 1H), 5.06 (d, *J* = 9.8 Hz, 1H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 133.0 (d, J = 2.6 Hz), 132.4 (d, J = 10.3 Hz), 131.5 (d, J = 1.5 Hz), 130.5, 129.3, 129.2, 126.6, 124.6, 120.8, 118.6 (d, J = 4.7 Hz) ppm ³¹P NMR (202 MHz, CDCl₃): δ = 25.6 ppm HRMS (ESI) m/z: calcd for C₁₈H₁₇NO₂P [M+H]⁺ 310.0997, found: 310.0995 IR (neat): 554, 1040, 1101, 1246, 1281, 1304, 1402, 1510, 3370 cm⁻¹

Synthesis of 2-aminophenyl diphenylphosphinate (9b)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 2-aminophenol (33 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **9b**. The compound **9b** was purified by flash column chromatography using cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a

colourless solid. Yield: 24 mg, 0.075 mmol, 25%.

m.p.: 224–225 °C

¹H NMR (400 MHz, CDCl₃): δ 7.93–7.87 (m, 4H), 7.58–7.53 (m, 2H), 7.47 (m, 4H), 6.95–6.89 (m, 1H), 6.90–6.86 (m, 1H), 6.75–6.72 (m, 1H), 6.51 (m, 1H), 4.11 (s, 2H) ppm ¹³C NMR (101 MHz, CDCl₃): δ = 138.4 (d, J = 14.6 Hz), 132.4 (d, J = 2.9 Hz), 131.6 (d, J = 10.4 Hz), 131, 129.6, 128.5 (d, J = 13.4 Hz), 125.3 (d, J = 1.0 Hz), 121 (d, J = 3.7 Hz), 118.4 (d, J = 1.1 Hz), 116.8 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 32.6 ppm HRMS (ESI) m/z: calcd for C₁₈H₁₇NO₂P [M+H]⁺ 310.0991, found: 310.0992 IR (neat): 585, 1107, 1285, 1304, 1402, 1612, 3370 cm⁻¹ Synthesis of *N*-(2-chloro-4-hydroxyphenyl)-*P*,*P*-diphenylphosphinic amide (**10a**)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 4-amino-3-chlorophenol (64 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **10a**. The compound **10a** was purified by flash column chromatography using cyclohexane and ethyl acetate (40:60, v/v) as the solvent system. The product obtained as a dark brown solid.

Yield: 39 mg, 0.114 mmol, 38%.

m.p.: 198–200 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.93–7.86 (m, 4H), 7.57–7.52 (m, 2H), 7.51–7.46 (m, 4H), 7.09 (d, J = 11.0 Hz, 1H), 6.86 (d, J = 3.3 Hz, 1H), 6.46 (d, J = 8.8 Hz, 1H), 5.50 (d, J = 9.8 Hz, 1H), 4.11 (s, 1H) ppm ¹³C NMR (101 MHz, CDCl₃): δ = 153, 148.3, 133 (d, J = 2.9 Hz), 132.3 (d, J = 10.3 Hz), 131, 129.5, 129.4, 119.6 (d, J = 16.1 Hz), 117.4, 115.9 ppm ³¹P NMR (162 MHz, CDCl₃): δ = 19.7 ppm HRMS (ESI) m/z: calcd for C₁₈H₁₆NO₂PCl [M+H] ⁺ 344.0602, found: 344.0604 IR (neat): 529, 691, 754, 818, 943, 1042, 1236, 1441, 1501, 3103 cm⁻¹

Synthesis of N-(2-chloro-4-hydroxyphenyl)-P,P-diphenylphosphinic amide (10b)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 4-amino-3-chlorophenol (64 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **10b**. The compound **10b** was purified by flash column chromatography using cyclohexane and ethyl acetate (40:60, v/v) as the solvent system. The product was obtained as a colourless

solid. Yield: 48 mg, 0.14 mmol, 47%.

m.p.: 190–192 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.88–7.83 (m, 4H), 7.54 (m, 2H), 7.46 (m, 4H), 7.11 (dd, J = 2.7, 1.3 Hz, 1H), 6.92 (ddd, J = 8.8, 2.7, 1.3 Hz, 1H), 6.59 (d, J = 8.8 Hz, 1H), 4.04–3.74 (s, 2H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 142.8 (d, J = 8.4 Hz), 140.5, 133.0 (d, J = 2.9 Hz), 132.2 (d, J = 10.3 Hz), 130.5, 129 0 (d, J = 13.4 Hz), 122.2 (d, J = 4.7 Hz), 120.7 (d, J = 4.3 Hz), 119.6, 116.4 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 31.2 ppm HRMS (ESI) m/z: calcd for C₁₈H₁₆NO₂PCl [M+H]⁺ 344.0607, found: 344.0607 IR (neat): 529, 579, 691, 721, 739, 754, 818, 853, 943, 1042, 1123, 1157, 1236, 1279, 1344, 1383, 1441, 1462, 1501, 3103 cm⁻¹

Synthesis of N-(2-aminophenyl)-P,P-diphenylphosphinic amide (11a)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (90 mg, 0.45 mmol), benzene-1,2-diamine (48 mg, 0.45 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **11**. The compound **11** was purified by flash column chromatography using

cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The product obtained as a brown solid. Yield: 104 mg, 0.346 mmol, 77%.

m.p.: 163–165 °C

¹H NMR (400 MHz, CDCl₃): δ = δ 7.96–7.83 (m, 4H), 7.52–7.37 (m, 6H), 7.07–6.98 (m, 1H), 6.86–6.81 (m, 1H), 6.73–6.66 (m, 1H), 6.56–6.52 (m, 1H), 5.20 (m, 1H), 3.52 (s, 2H) ppm ¹³C NMR (101 MHz, CDCl₃): δ = 141.1 (d, J = 5.6 Hz), 132.6–132.4 (m), 131.7 (d, J = 9.8 Hz), 131.5, 129.1 (d, J = 12.9 Hz), 129.0, 128.5 (d, J = 12.2 Hz), 127.1 (d, J = 2.2 Hz), 125.8, 124.7, 120.0, 117.9 ppm ³¹P NMR (162 MHz, CDCl₃): δ = 21.8 ppm HRMS (ESI) m/z: calcd for C₁₈H₁₈N₂OP [M+H]⁺ 309.1157, found: 309.1168 IR (neat): 482, 538, 646, 721, 903, 964, 1123, 1244, 1434, 1593, 1973, 2033, 2261, 2521 cm⁻¹

Synthesis of N, N'-(1,2-phenylene)bis(P, P-diphenylphosphinic amide) (11b)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), 1, 2-diaminobenzene (65 mg, 0.6 mmol) and KI (30 mol%, 15 mg) in CH_3CN (10 mL) to afford **11b**. The desired compound **11b** was purified by flash column chromatography using

 CH_2Cl_2 and MeOH (100:1, v/v) as the solvent system. The desired product obtained as brown wax. Yield: 75 mg, 0.15 mmol, 50%.

¹H NMR (400 MHz, CDCl₃): δ = 7.83–7.79 (m, 8H), 7.44–7.41 (m, 4H), 7.36–7.32 (m, 8H), 7.10 (s, 2H), 6.95–6.95 (m, 2H), 6.60–6.56 (m, 2H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 133.3 (d, J = 6.6 Hz), 132.5 (d, J = 10.2), 132.4 (d, J = 10.0 Hz), 131.5, 129 (d, J = 12.9 Hz), 125.1, 124.9 ppm

³¹P NMR (162 MHz, CDCl₃): δ = 22.0 ppm

HRMS (ESI) m/z: calcd for $C_{30}H_{27}N_2O_2P_2$: 509.1548, found: 509.1548

IR (neat): 3460, 2970, 2341, 2185, 2023, 2024, 1737, 1369, 1219, 1064, 702, 530 cm⁻¹

Synthesis of 2-hydroxyphenyl diphenylphosphinate (12)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (90 mg, 0.45 mmol), pyrocatechol (50 mg, 0.45 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **12**. The compound **12** was purified by flash column chromatography using CH₂Cl₂ and MeOH (99:1, v/v) as the solvent system. The product obtained as a yellow liquid. Yield: 49 mg, 0.158 mmol, 35%.

¹H NMR (400 MHz, CDCl₃): δ = 8.91 (s, 1H), 7.86–7.78 (m, 4H), 7.54–7.49 (m, 2H), 7.45–7.40 (m, 4H), 6.98–6.89 (m, 2H), 6.77 (m, 1H), 6.65–6.58 (m, 1H) ppm

¹³C NMR (126 MHz, CDCl₃): δ 148.4 (d, J = 3.1 Hz), 139.4 (d, J = 9.5 Hz), 133.5 (d, J = 2.9 Hz), 132.3 (d, J = 10.7 Hz), 129.2 (d, J = 13.6 Hz), 128.5, 126.8 (d, J = 1.4 Hz), 122.8 (d, J = 4.5 Hz), 120.8, 120.1 (d, J = 1.3 Hz) ppm

³¹P NMR (162 MHz, CDCl₃): δ = 39.0 ppm

HRMS (ESI) m/z: calcd for $C_{18}H_{16}O_{3}P$ [M+H]⁺ 311.0837, found: 311.0847

IR (neat): 538, 652, 725, 903, 1204, 1377, 1495, 1738, 2257 cm⁻¹

Synthesis of *N*-(2-methyl-1*H*-indol-5-yl)-*P*,*P*-diphenylphosphinic amide (13)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (90 mg, 0.45 mmol), 2-methyl-1H-indol-5amine (87 mg, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN:EtOH (3:2 v/v, 15 mL) to afford **13**. The compound **13** was purified by flash column chromatography using cyclohexane and ethyl acetate (60:40, v/v) as the

solvent system. The product obtained as a reddish solid. Yield: 104 mg, 0.30 mmol, 67%.

m.p.: 153–155 °C

¹H NMR (400 MHz, CDCl₃): δ = 7.96–7.88 (m, 4H), 7.82 (s, 1H), 7.49 (m, 2H), 7.42 (m, 4H), 7.20 (d, *J* = 2.1 Hz, 1H), 7.05 (d, *J* = 8.5 Hz, 1H), 6.88–6.84 (m, 1H), 6.03 (s, 1H), 5.16 (d, *J* = 9.3 Hz, 1H), 2.37 (s, 3H) ppm

¹³C NMR (101 MHz, CDCl₃): δ = 136.8, 133.4, 132.6 (d, J = 1.7 Hz), 132.5 (d, J = 9.8 Hz), 132.3 (d, J = 2.7 Hz), 130.0, 129.1 (dd, J = 12.9, 3.6 Hz), 115.8, 115 (d, J = 6.4 Hz), 111.3, 110.8 (d, J = 6.3 Hz), 100.2, 27.3 ppm

³¹P NMR (162 MHz, CDCl₃): δ = 18.7 ppm

HRMS (ESI) m/z: calcd for $C_{21}H_{20}N_2OP [M+H]^+ 347.1313$, found: 347.1323

IR (neat): 409, 727, 904, 1975, 2031, 2174, 2498 cm⁻¹

Synthesis of 2-methyl-1*H*-indol-5-yl diphenylphosphinate (14)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (90 mg, 0.45 mmol), 2-methyl-1*H*-indol-5-ol (88 mg, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **14**. The compound **14** was purified by flash column chromatography using cyclohexane and ethyl acetate (30:70, v/v) as the solvent system.

The product obtained as a light brown solid. Yield: 95 mg, 0.27 mmol, 61%.

m.p.: 160-162 °C

¹H NMR (400 MHz, CDCl₃): δ = 8.29 (s, 1H), 7.93–7.87 (m, 4H), 7.51–7.45 (m, 2H), 7.44–7.38 (m, 4H), 7.24 (d, J = 0.9 Hz, 1H), 6.98 (d, J = 8.7 Hz, 1H), 6.89–6.86 (m, 1H), 6.03 (d, J = 1.1 Hz, 1H), 2.31 (s, 3H) ppm

¹³C NMR (101 MHz, CDCl₃): δ = 144.4 (d, J = 8.5 Hz), 136.9, 133.4, 132.4 (d, J = 2.9 Hz), 132.1, 132.01 (d, J = 10.3 Hz), 130.8, 129.5, 128.6 (d, J = 13.3 Hz), 114.3 (d, J = 4.4 Hz), 110.9 (t, J = 2.4 Hz), 100.5, 13.8 ppm

³¹P NMR (162 MHz, CDCl₃): δ = 29.9 ppm

HRMS (ESI) m/z: calcd for $C_{21}H_{19}NO_2P$ [M+H]⁺ 348.1153, found: 348.1159

IR (neat): 420, 729, 903, 1917, 2019, 2525 cm⁻¹

Synthesis of (9*H*-carbazol-9-yl)diphenylphosphine oxide (**15**)²¹

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), carbazole (75 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH_3CN (10 mL) to afford **15**. The desired compound **15** was purified by flash column chromatography

using cyclohexane and ethyl acetate (40:60, v/v) as the solvent system. The desired product obtained as a off white solid. Yield: 59 mg, 0.16 mmol, 53%.

m.p.: 143–145 °C

¹H NMR (400 MHz, CDCl₃): δ = 8.05–8.01 (m, 2H), 7.78–7.71 (m, 4H), 7.62 (m, 2H), 7.52–7.46 (m, 4H), 7.32 –7.26 (m, 4H), 7.19 (m, 2H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 142.0 (d, *J* = 3.6 Hz), 133.6 (d, *J* = 2.8 Hz), 132.5 (d, *J* = 10.9 Hz), 131.7, 130.7, 129.5 (d, *J* = 13.5 Hz), 126.7, 122.3, 120.3, 115.4 ppm

³¹P NMR (162 MHz, CDCl₃): δ = 26.3 ppm

HRMS (ESI) m/z: calcd for $C_{24}H_{19}NOP [M+H]^+$ 368.1204, found: 368.1205

IR (neat): 650, 725, 904, 1456, 1508, 1543, 1560, 2249, 2376, 2985 cm⁻¹

NMR spectroscopic data matches the literature data.²¹

Synthesis of S-phenyl diphenylphosphinothioate (16)²²

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), thiophenol (61 μ L, 0.60 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **16**. The desired compound **16** was purified by flash column chromatography

using cyclohexane and ethyl acetate (40:60, v/v) as the solvent system. The desired product obtained as an off white solid. Yield: 40 mg, 0.13 mmol, 44%.

m.p.: $87-89 \,^{\circ}$ C ¹H NMR (400 MHz, CDCl₃): $\delta = 7.87-7.81$ (m, 4H), 7.52–7.48 (m, 2H), 7.44 (m, 6H), 7.26–7.22 (m, 1H), 7.21–7.16 (m, 2H) ppm ¹³C NMR (126 MHz, CDCl₃): $\delta = 135.5$ (d, J = 3.9 Hz), 132.9, 132.4 (d, J = 3.1 Hz), 132.1, 131.7 (d, J = 10.3Hz), 129.2 (d, J = 1.8 Hz), 129.1 (d, J = 2.2 Hz), 128.6 (d, J = 13.1 Hz), 126.2 (d, J = 5.2 Hz) ppm ³¹P NMR (162 MHz, CDCl₃): $\delta = 41.6$ ppm HRMS (ESI) m/z: calcd for C₁₈H₁₆OPS [M+H]⁺ 311.0659, found: 311.0658 IR (neat): 526, 653, 700, 904, 1114, 1195, 1440, 1546, 2256, 2978 cm⁻¹ NMR spectroscopic data matches the literature data.²²

Synthesis of ethyl 4-((diphenylphosphoryl)amino) benzoate (17)²

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), ethyl 4-aminobenzoate (74 mg, 0.45 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **17**. The compound **17** was purified by flash column chromatography using petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 74 mg, 0.204 mmol, 68%.

m.p.: 253–254 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.90–7.82 (m, 6H), 7.57–7.54 (m, 2H), 7.48 (m, 4H), 7.02–6.97 (d, 2H), 5.53 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 166.6, 145.2, 133 (d, J = 2.8 Hz), 132.3 (d, J = 10.1 Hz), 131.6, 131.2, 129.4 (d, J = 13.0 Hz), 124.2, 118.0 (d, J = 6.6 Hz), 61.1, 14.7 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 18.7 ppm HRMS (ESI) m/z: calcd for C₂₁H₂₁NOP [M+H]⁺ 366.1201, found: 366.1201 IR (neat): 598, 625, 796, 833, 968, 1169, 1240, 1371, 1449, 1508, 1609, 1616, 2347, 3327 cm⁻¹ NMR spectroscopic data matches the literature data.²

S49

Synthesis of 4-acetamidophenyl diphenylphosphinate (18)

Synthesised in accordance with General Procedure 1 using diphenylphosphine oxide (60 mg, 0.30 mmol), N-(4-hydroxyphenyl)acetamide (45 mg, 0.30 mmol) and KI (30 mol%, 15 mg) in CH₃CN (10 mL) to afford **18**. The compound **18** was purified by flash column chromatography using petroleum ether and ethyl acetate (30:70, v/v) as the solvent system. The product was obtained as a colourless solid. Yield: 77 mg, 0.219 mmol, 73%.

m.p.: 202–204 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.94 (s, 1H), 7.80 (m, 4H), 7.48 (m, 2H), 7.42–7.38 (m, 4H), 7.29–7.25 (m, 2H), 6.99–6.96 (m, 2H), 2.04 (s, 3H) ppm ¹³C NMR (126 MHz, CDCl₃): δ = 168.7, 146.8 (d, J = 8.4 Hz), 135.1, 132.8 (d, J = 2.9 Hz), 131.9 (d, J = 10.5 Hz), 130.3, 128.8 (d, J = 13.5 Hz), 121.5, 121.3 (d, J = 4.6 Hz), 24.5 ppm ³¹P NMR (202 MHz, CDCl₃): δ = 31.0 ppm HRMS (ESI) m/z: calcd for C₂₀H₁₉NO₃P [M-H] ⁺ 352.1103, found: 352.1102 IR (neat): 523, 689, 729, 1107, 1437, 1589, 2880, 2957, 3061, 3630 cm⁻¹

Synthesis of diphenyl (4-methoxyphenyl) phosphoramidate (19a)

Synthesised in accordance with General Procedure 1 using diphenyl phosphonate (86 μ L, 0.45 mmol), 4-methoxyaniline (74 mg, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **19a**. The compound **19a** was purified by flash column chromatography using cyclohexane and ethyl acetate (10:90) as the solvent system. The product obtained

as a colourless solid. Yield: 123 mg, 0.35 mmol, 78 %.

m.p.: 141–142 °C

¹H NMR (500 MHz, CDCl₃): δ = 7.36–7.31 (m, 4H), 7.29–7.26 (m, 4H), 7.24–7.19 (m, 2H), 7.14–7.09 (m, 2H), 7.05 (d, J = 10.9 Hz, 1H), 6.91–6.87 (m, 2H), 3.85 (s, 3H) ppm

¹³C NMR (101 MHz, CDCl₃): δ = 155.3 (d, J = 0.4 Hz), 150.4, 150.4, 132.0, 129.7 (d, J = 1.1 Hz), 125.2 (d, J = 1.3 Hz), 120.4 (d, J = 4.9 Hz), 120.1 (d, J = 7.3 Hz), 114.6, 55.5 ppm

³¹P NMR (162 MHz, CDCl₃): δ = -6.1 ppm

HRMS (ESI) m/z: calcd for $C_{19}H_{19}NO_4P$ [M+H] ⁺ 356.1052, found: 356.1059

IR (neat): 492, 567, 687, 754, 833, 984, 1034, 1180, 1242, 1263, 1396, 1508, 1543, 1585, 3179 cm⁻¹

Synthesis of diphenyl mesitylphosphoramidate (19b)

Synthesised in accordance with General Procedure 1 using diphenyl phosphonate (86 μ L, 0.45 mmol), 2,4,6-trimethylaniline (85 μ L, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **19b**. The compound **19b** was purified by flash column chromatography using cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The product obtained as an off white solid.

Yield: 117 mg, 0.32 mmol, 71%. m.p.: 129–131 °C ¹H NMR (400 MHz, CDCl₃): δ = 7.31–7.26 (m, 4H), 7.19–7.12 (m, 6H), 6.86 (s, 2H), 4.60 (d, J = 8.9 Hz, 1H), 2.28 (s, 6H), 2.26 (s, 3H) ppm ¹³C NMR (101 MHz, CDCl₃): δ = 151.5 (d, J = 7.5 Hz), 136.7, 136.6 (d, J = 1.4 Hz), 131.7 (d, J = 1.8 Hz), 130.1, 129.7 (d, J = 1.9 Hz), 125.4 (d, J = 1.3 Hz), 120.8 (d, J = 4.8 Hz), 21.2, 19.4 (d, J = 1.1 Hz) ppm ³¹P NMR (162 MHz, CDCl₃): δ = -5.3 (d, J = 8.9 Hz) ppm HRMS (ESI) m/z: calcd for C₂₁H₂₃NO₃P [M+H]⁺ 368.1416, found: 368.1421 IR (neat): 446, 499, 540, 729, 906, 1192, 1159, 1541, 1942, 1935, 1960, 2027, 2234, 2517, 3711 cm⁻¹

Synthesis of dibenzyl (4-methoxyphenyl) phosphoramidate (20a)

Synthesised in accordance with General Procedure 1 using dibenzyl phosphonate (100 μ L, 0.45 mmol), 4-methoxyaniline (74 mg, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **20a**. The compound **20a** was purified by flash column chromatography using

cyclohexane and ethyl acetate (10:90, v/v) as the solvent system. The product obtained as a yellow liquid. Yield: 125 mg, 0.33 mmol, 73%.

¹H NMR (500 MHz, CDCl₃): δ = 7.22 (s, 10H), 6.88–6.84 (m, 2H), 6.70–6.65 (m, 2H), 6.02 (d, J = 9.4 Hz, 1H), 5.07–5.01 (m, 2H), 4.96 (m, 2H), 3.67 (s, 3H) ppm

¹³C NMR (126 MHz, CDCl₃): δ = 155.3, 136.2 (d, J =7.9 Hz), 132.8, 128.8, 128.7, 128.3, 119.9 (d, J = 6.9 Hz), 114.9, 68.6 (d, J = 4.7 Hz), 55.9, 27.3 ppm

³¹P NMR (202 MHz, CDCl₃): δ = 3.4 ppm

HRMS (ESI) m/z: calcd for $C_{21}H_{23}NO_4P$ [M+H] ⁺ 384.1365, found: 384.1375 IR (neat): 446, 650, 725, 997, 1217, 1244, 1377, 1512, 2253 cm⁻¹

Synthesis of dibenzyl (3-methoxyphenyl)phosphoramidate (20b)

Synthesised in accordance with General Procedure 1 using dibenzyl phosphonate (100 μ L, 0.45 mmol), 3-methylaniline (70 μ L, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **20b**. The compound **20b** was purified by flash column chromatography using

cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The product obtained as a brown liquid. Yield: 114 mg, 0.30 mmol, 68%.

¹H NMR (400 MHz, CDCl₃): δ = 7.30 (s, 10H), 7.13–7.08 (m, 1H), 6.60–6.49 (m, 3H), 6.12 (d, J = 9.3 Hz, 1H), 5.14 (dd, J = 11.6, 7.6 Hz, 2H), 5.05 (dd, J = 11.6, 7.5 Hz, 2H), 3.67 (s, 3H) ppm ¹³C NMR (101 MHz, CDCl₃): δ = 160.9 (d, J = 6.8 Hz), 141.0, 136.2 (d, J = 7.8 Hz), 130.5, 128.9 (d, J = 6.5

Hz), 128.5, 110.7 (d, J = 7.7 Hz), 108.1, 104.0 (d, J = 7.3 Hz), 68.9 (d, J = 4.8 Hz), 55.6, 27.4 ppm

³¹P NMR (162 MHz, CDCl₃): δ = 2.5 ppm

HRMS (ESI) m/z: calcd for C₂₁H₂₃NO₄P [M+H] ⁺ 384.1365, found: 384.1375 IR (neat): 409, 495, 538, 694, 745, 1001, 1163, 1206, 1605, 1960, 1981, 1995, 2023, 2243, 2513 cm⁻¹

Synthesis of diethyl (4-methoxy-2-methylphenyl) phosphoramidate (21a)⁶

Synthesised in accordance with General Procedure 1 using diethyl phosphonate (60 μ L, 0.45 mmol), 2-methyl-4-methylaniline (78 μ L, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **21a**. The

compound **21a** was purified by flash column chromatography using cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The product obtained as a brown solid. Yield: 92 mg, 0.34 mmol, 76%.

m.p.: 130–132 °C

¹H NMR (400 MHz, CDCl₃): δ = 7.11 (d, J = 8.3 Hz, 1H), 6.67 (d, J = 8.7 Hz, 2H), 4.79 (d, J = 8.7 Hz, 1H), 4.18–4.00 (m, 4H), 3.74 (s, 3H), 2.22 (s, 3H), 1.29 (m, 6H) ppm

¹³C NMR (101 MHz, CDCl₃): δ = 155.5, 131.1, 128.6 (d, J = 10.1 Hz), 120.1 (d, J = 1.6 Hz), 116.7, 112.2,

63.2 (d, J = 5.1 Hz), 55.9, 18.6, 16.5 (d, J = 7.1 Hz) ppm

³¹P NMR (162 MHz, CDCl₃): δ = 3.03 (q, J = 8.2 Hz) ppm

HRMS (ESI) m/z: calcd for C₁₂H₂₁NO₄P [M+H]⁺ 274.1208, found: 274.1216

IR (neat): 783, 962, 1022, 1209, 1501, 1558, 1978, 2162, 2517, 3215, 3713 cm⁻¹

Synthesis of diethyl (4-methoxyphenyl)phosphoramidate (21b)¹⁵

Synthesised in accordance with General Procedure 1 using diethyl phosphonate (62 μ L, 0.45 mmol), 4-methylaniline (74 mg, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **21b**. The compound **21b**

was purified by flash column chromatography using cyclohexane and ethyl acetate (30:70, v/v) as the solvent system. The product obtained as reddish brown solid. Yield: 82 mg, 0.32 mmol, 71%. m.p.: 63–65 °C ¹H NMR (400 MHz, CDCl₃): $\delta = \delta$ 6.9–6.87 (m, 2H), 6.75–6.68 (m, 2H), 6.35–6.28 (m, 1H), 4.14–3.94 (m, 4H), 3.69 (s, 3H), 1.23 (t, J = 7.0, 0.8 Hz, 6H) ppm ¹³C NMR (101 MHz, CDCl₃): $\delta = 155.1$, 133.4, 119.3 (d, J = 7.1 Hz), 115.0, 63.0 (d, J = 4.9 Hz), 55.9, 16.5 (d, J = 7.2 Hz) ppm ³¹P NMR (162 MHz, CDCl₃): $\delta = 3.1$ (m, 1H) ppm HRMS (ESI) m/z: calcd for C₁₁H₁₉NO₄P [M+H] ⁺ 260.1052, found: 260.1053 IR (neat): 409, 538, 648, 725, 827, 976, 1026, 1215, 1510 cm⁻¹ NMR spectroscopic data matches the literature data.¹⁵

Synthesis of diethyl (2,6-diisopropylphenyl)phosphoramidate (21c)

Synthesised in accordance with General Procedure 1 using diethyl phosphonate (60 μ L, 0.45 mmol), 2,6-diisopropylaniline (114 μ L, 0.60 mmol) and KI (30 mol%, 22 mg) in CH₃CN (15 mL) to afford **21c**. The compound **21c** was purified by flash column chromatography using cyclohexane and ethyl acetate (30:70, v/v) as the

solvent system. The product obtained as light brown liquid. 90 mg, 0.29mmol, 64%. ¹H NMR (400 MHz, CDCl₃): δ = 7.17–6.97 (m, 3H), 4.91 (d, J = 8.4 Hz, 1H), 4.22–4.02 (m, 4H), 3.00–2.80 (m, 2H), 1.32 (t, J = 7.1 Hz, 6H), 1.24 (dd, J = 12.7, 6.9 Hz, 12H) ppm ¹³C NMR (101 MHz, CDCl₃): δ = 136.7, 130.5, 124.7, 124.2, 63.3, 28.1, 24.6, 23.2, 16.6 ppm ³¹P NMR (162 MHz, CDCl₃): δ = 2.9 ppm IR (neat): 422, 461, 648, 725, 905, 1389, 2254 cm⁻¹

11. Crystal structure determination

Single-crystal X-ray diffraction data were collected on an Agilent SuperNova Dual Atlas diffractometer, equipped with a mirror monochromator and using Mo radiation. An Oxford Cryosystems cooling apparatus was used for temperature regulation. The data were processed using CrysAlisPro¹⁶ and the crystal structures were solved using SHELXT¹⁷ and refined using SHELXL¹⁷. Non-hydrogen atoms were refined with anisotropic displacement parameters. In the final cycles of refinement, hydrogen atom geometry was idealized, and a riding model was used with U_{iso} set at 1.2 or 1.5 times the value of U_{eq} for the atom to which the hydrogen atoms are bonded. Crystal and structure refinement data are shown in Table S9.

Table S9. Crystal and structure refinement data.

Compound	6a	22	8a	17	9a
Empirical formula	$C_{18}H_{16}NOP$	$C_{12}H_{11}O_2P$	$C_{18} H_{15} O_2 P$	$C_{21}H_{20}NO_3P$	$C_{18}H_{16}NO_2P$
Formula weight	293.29	218.18	294.27	365.35	309.29
Temperature (K)	296(2)	200(2)	200(2)	200(2)	200(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	Pca2 ₁	P 2 ₁ /c	P2 ₁ /n	P 2 ₁ /c	P21/c
a (Å)	16.9837(12)	11.4422(6)	9.2605(4)	10.5388(6)	15.6012(12)
b (Å)	9.6048(6)	6.0033(3)	11.3986(5)	19.0742(9)	9.0207(5)
c (Å)	9.6892(7)	15.6542(9)	14.1564(5)	9.8492(5)	11.7490(9)
α (°)	90.	90	90	90	90
b (°)	90	100.064(5)	93.665(3)	107.023(5)	107.452(8)
g (°)	90	90	90	90	90
Volume (Å ³)	1580.55(19)	1058.76(10)	1491.25(11)	1893.13(18)	1577.4(2)
Z	4	4	4	4	4
Density (cal)	1.233	1.369	1.311	1.282	1.302
(Mg/m ³)					
Abs. coeff. (mm ⁻¹)	0.172	0.234	0.185	0.165	0.180
Crystal size (mm ³)	0.50x0.37x	0.49x0.27x	0.70x0.27x	0.35x0.19x	0.20x0.05x0.04
	0.29	0.13	0.10	0.08	
Refs collected	7472	8963	13775	10099	14047
Independent refs	3179	2558	3683	4550	3903
R(int)	0.0259	0.0344	0.0301	0.0243	0.0729
Parameters	190	137	190	240	200
Goodness-of-fit on F ²	1.086	1.115	1.069	1.058	1.037
R1 [I>2ơ(I)]	0.0454	0.0406	0.0570	0.0460	0.0620
wR2 [I>2σ(I)]	0.0927	0.0914	0.1411	0.1085	0.1278
Absolute structure parameter	0.05(6)	-	-	-	-
Largest diff. peak / hole (e.Å ⁻³)	0.190 / -0.261	0.279 / -0.408	1.392 / -0.460	0.303 / -0.364	.279 / -0.448

Figure S16: Structure of compound **6a**. The structure has been reported¹⁸ with CSD code VATSOZ, CCDC 2367670.

Figure S17: Structure of compound **22**. The structure has been reported¹⁹ with CSD code DPPHIN10, CCDC 2367668.

Figure S18: Structure of compound **8a**, CCDC 2367671.

Figure S19: Structure of compound **17**, CCDC 2367667.

Fiure S20: Structure of compound **9a**, CCDC 2367669.

12. NMR Spectra

13. References

- 1. C. Tan, X. Liu, H. Jia, X. Zhao, J. Chen, Z. Wang and J. Tan, *Chem. Eur. J.*, 2022, **26**, 881–887.
- 2. K. C. Yu, H. Li, Y. H. Tu, H. Zhao and X. G. Hu, *Org. Lett.*, 2022, **24**, 9130–9134.
- 3. K. Ngamchuea, S. Eloul, K. Tschulik and R. G. Compton, *J. Solid State Electrochem.*, 2014, **18**, 3251–3257.
- 4. R. Ali, T. Patra and T. Wirth, *Faraday Discuss.*, 2023, **247**, 297–301.
- 5. M. Elsherbini, B. Winterson, H. Alharbi, A. A. Folgueiras-Amador, C. Genot and T. Wirth, *Angew. Chem. Int. Ed.*, 2019, **58**, 9811–9815.
- 6. Z. Lin, W. Wang, S. Yan and W. Duan, *Angew. Chem. Int. Ed.*, 2015, **54**, 6265–6269.
- L. Liu, A. Zhang, Y. Wang, F. Zhang, Z. Zuo, W. Zhao, C. Feng and W. Ma, *Org. Lett.*, 2015, **17**, 2046– 2049.
- 8. Y. Wu, K. Chen, X. Ge, P. Ma, Z. Xu, H. Lu and G. Lia, Org. Lett., 2020, 22, 6143–6149.
- 9. Y. Xu, Q. Su, W. Dong, Z. Peng and D. An, *Tetrahedron*, 2017, **73**, 4602–4609.
- 10. Y. Wang, P. Qian, J. H. Su, Y. Li, A M. Bi, Z. Zha and Z. Wang, Green Chem., 2017, 19, 4769–4773.
- 11. C. Tan, X. Liu, H. Jia, X. Zhao, J. Chen, Z. Wang and J. Tan, *Chem. Eur. J.*, 2022, **26**, 881–887.
- 12. X. Dong, R. Wang, W. Jin and C. Liu, *Org. Lett.*, 2020, **22**, 3062–3066.
- 13. N. Kiss and G. Keglevich, *Pure Appl. Chem.*, 2019, **91**, 59–65.
- 14. L. Deng, Y. Wang, H. Mei, Y.Pan and J. Han, J. Org. Chem., 2019, 84, 949–956.
- 15. B. Kaboudin, M. Karimi and H. Zahedi, Org. Prep. Proc. Int., 2008, 40, 399–404.
- 16. CrysAlisPro, Rigaku OD and Yarnton, England, 2022-24.
- 17. G. M. Sheldrick, Acta Crystallogr. Sect. A , 2015, 71, 3-8.
- 18. S. Priya, M. S. Balakrishna and S. M. Mobin, *Polyhedron*, 2005, **24**, 1641–1650.
- H. Li, W. Yan, P. Ren, H. Hu, R. Sun, M. Liu, Z. Fu, S. Guo and H. Cai, *RSC Adv.*, 2022, **12**, 32350– 32354.
- 20. Y. Xu, Q. Su, W. Dong, Z. Peng and D. An, *Tetrahedron*, 2017, **73**, 4602–4609.
- 21. R. Wang, X. Dong, Y. Zhang, B. Wang, Y. Xia, A. Abdukader, F. Xue, W. Jin and C. Liu, *Chem. Eur. J.*, 2021, **27**, 14931–14935.
- 22. J. Wang, X. Huang, Z. Ni, S. Wang, J. Wu and Y. Pan, *Green Chem.*, 2015, **17**, 314–319.