Bio-derived solvent-based automated dispersive liquid-liquid microextraction for pretreatment of diamide insecticides in environmental water samples

Jin Liu ^{a,b}, Yuxin Wang ^{a,b}, Rui Song ^b, Yukun Yang ^c, Li Li ^{b,*}, Xu Jing ^{a,*}

^a College of Food Science and Engineering, Shanxi Agricultural University,

Taigu, Shanxi 030801, China;

^b Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College

of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China;

^c College of Life Sciences, Shanxi University, Taiyuan, Shanxi, 030006, China.

*Corresponding authors:

Li Li, E-mail: <u>sxaulili@sxau.edu.cn</u>.

Xu Jing, E-mail: <u>x.jing@vip.163.com</u>.

Number of pages: 14

Number of tables: 9

Number of figures: 3

A Waters C_{18} column (2.1 × 100 mm, 1.7 µm) was used at 40 °C with a flow rate of 0.3 mL min⁻¹ and an injection volume of 2 µL. The gradient elution conditions are detailed in Table S1. The ion source conditions included a source temperature of 550 °C and curtain gas, ion source gas 1, and ion source gas 2 delivered at 40, 55, and 55 psi, respectively. The optimized MS/MS parameters for chlorantraniliprole and flubendiamide under multiple reaction monitoring (MRM) conditions are presented in Table S2.

Time (min)	Flow (mL	Mobile Phase A (%)	Mobile Phase B (%)
	\min^{-1})		
0	0.3	95	5
0.5	0.3	80	20
0.6	0.3	60	40
1.5	0.3	40	60
1.6	0.3	20	80
2.5	0.3	5	95
4.0	0.3	5	95
4.1	0.3	95	5

 Table S1. The UHPLC-MS/MS gradient elution conditions.

Mobile Phase A: 0.01% formic acid and 2 mmol L^{-1} ammonium formate mixed in water.

Mobile Phase B: Methanol.

Diamide	Polarity	Spray	Settling	Pause	Precursor	Qualifier	Dwell	Declustering	Collision
Insecticide		Valtage (V)	Time (ms)	Time (ms)	Ion (m/z)	Ion (m/z)	Time (ms)	Potential (V)	Energy (eV)
Chlorantranilinrole	Positive	5500	50	5	374	262 (Q)	30	63	28
Chiorannanniproie	1 OSILIVC	5500	50	5	524	242 (q)	50	05	37
Flubondiamida	Nogetivo	4500	50	5	282	342 (Q)	20	02	30
Flubellulaillide	Negative	4300	30	5	382	314 (q)	30	92	37

Table S2. MS/MS optimized parameters with the multiple reaction monitoring conditions.

Diamide Insecticide & Extractant	Log P
Chlorantraniliprole	2.9
Flubendiamide	4.1
Eucalyptol	3.4
Guaiacol	1.3
Methyl laurate	5.4
Methyl linoleate	7.6

Table S3. The Log P of the two diamide insecticides and four extractants.

		γ-valerolactone
1	Acute toxicity	$LD_{50} = 8800 \text{mg kg}^{-1} \text{ (rat)}$
2	Skin irritation or corrosion	Causes mild irritant effect
3	Eye irritation or corrosion	May cause irritation
4	Skin sensitization	No sensitizing effects known
5	Germ cell mutagenicity	No effects known
6	Carcinogenicity	No classification data on carcinogenic properties of this material is available from the EPA, IARC, NTP, OSHA or ACGIH
7	Developmental toxicity and reproductive toxicity	Developmental toxicity: NOAEL = 1000 mg kg ⁻¹ day ⁻¹ Reproductive toxicity: No NOAEL available. Exposure is below the TTC
8	Specific target organ toxicity -single exposure	No effects known
9	Specific target organ toxicity -repeated exposure	No effects known
10	Aspiration hazard	No effects known

Table S4. The toxicity information of γ -valerolactone.

		Eucalyptol
1	Acute toxicity	$LD_{50} = 2480 \text{ mg kg}^{-1} \text{ (rat)}$
2	Skin irritation or corrosion	Irritant to skin and mucous membranes
3	Eye irritation or corrosion	Irritating effect
4	Skin sensitization	No sensitizing effects known
5	Germ cell mutagenicity	No effects known
6	Carcinogenicity	No classification data on carcinogenic properties of this material is available from the EPA, IARC, NTP, OSHA or ACGIH
7	Developmental toxicity and reproductive toxicity	Developmental toxicity: NOAEL = 300 mg kg ⁻¹ day ⁻¹ Reproductive toxicity: Fertility NOAEL = 600 mg kg ⁻¹ day ⁻¹
8	Specific target organ toxicity -single exposure	No effects known
9	Specific target organ toxicity -repeated exposure	No effects known
10	Aspiration hazard	No effects known

 Table S5. The toxicity information of eucalyptol.

		QuEChERS
1	Acidification	N ₂ (LC-MS/MS)
2	Persistent organics	No
3	Bio-accumulation	No
4	Ecotoxicity	Acetonitrile: Fish $LC_{50} = 1640 \text{ mg L}^{-1}$ Methanol: <i>Pimephales promelas</i> $LC_{50} > 10000 \text{ mg L}^{-1}$ Acetic acid: <i>Oncorhynchus mykiss</i> $LC_{50} > 1000 \text{ mg L}^{-1}$ Ammonium hydroxide: <i>Daphnia magna</i> $LC_{50} = 25.4 \text{ mg L}^{-1}$
5	Energy usage/ Global warming	A small amount of energy consumption (vortex for 4min, and centrifugation for 15min) No powerful greenhouse gases
6	Eutrophication	Nitrogen element in acetonitrile, PSA, and ammonium hydroxide
7	Flammability	Acetonitrile, methanol, and acetic acid
8	Human toxicity	Acetonitrile: $LD_{50} = 2730 \text{ mg kg}^{-1}$ (rat) Methanol: $LD_{50} = 5628 \text{ mg kg}^{-1}$ (rat) Acetic acid: $LD_{50} = 4960 \text{ mg kg}^{-1}$ (rat) Ammonium hydroxide: $LD_{50} = 350 \text{ mg kg}^{-1}$ (rat)
9	Human carcinogenicity	Acetonitrile, methanol, and ammonium hydroxide
10	Ozone depletion	Regents without chlorine, bromine, and fluorine
11	Resource depletion	No relevant reagents used
12	Smog formation	No organic gas emissions
13	Mass of waste	Sample: 10 mL Acetonitrile: 15 mL Acetic acid: 0.1 mL Ammonium hydroxide: 0.1 mL MgSO ₄ : 5.2 g NaCl: 1 g PSA: 0.4 g C ₁₈ : 0.4 g Mobile phase: 5.25 mL
		Sample: 10 mI
14	water consumption	Mobile phase: $\approx 2.6 \text{ mL}$
	-	Total: 12.6 mL

Table	S6.	Detailed	indicators	used	to	evaluate	the	environmental	hazards	of	the
QuECl	nERS	S.									

		MSPE
1	Acidification	No
2	Persistent organics	No
3	Bio-accumulation	No
4	Ecotoxicity	Acetonitrile: Fish $LC_{50} = 1640 \text{ mg } L^{-1}$
5	Energy usage/ Global warming	A small amount of energy consumption (vortex for 15 min) No powerful greenhouse gases
6	Eutrophication	Nitrogen element in acetonitrile
7	Flammability	Acetonitrile
8	Human toxicity	Acetonitrile: $LD_{50} = 2730 \text{ mg kg}^{-1}$ (rat)
9	Human carcinogenicity	Acetonitrile
10	Ozone depletion	Regents without chlorine, bromine, and fluorine
11	Resource depletion	No relevant reagents used
12	Smog formation	No organic gas emissions
13	Mass of waste	Sample: 7 mL Acetonitrile: 1 mL IL-MMIPs: 0.005 g Mobile phase: 7 mL
		Total: 15.005 mL
14	water consumption	Sample: 7 mL Mobile phase: 1.75 mL
		Total: 8.75 mL

Table S7. Detailed indicators used to evaluate the environmental hazards of the MSPE.

		dSPE
1	Acidification	N ₂ (LC-MS/MS)
2	Persistent organics	No
3	Bio-accumulation	No
4	Ecotoxicity	Acetonitrile: Fish $LC_{50} = 1640 \text{ mg } L^{-1}$
5	Energy usage/ Global warming	A medium amount of energy consumption (ultrasonic, centrifuge, vacuum evaporator) No powerful greenhouse gases
6	Eutrophication	Nitrogen element in acetonitrile
7	Flammability	Acetonitrile
8	Human toxicity	Acetonitrile: $LD_{50} = 2730 \text{ mg kg}^{-1}$ (rat)
9	Human carcinogenicity	Acetonitrile
10	Ozone depletion	Regents without chlorine, bromine, and fluorine
11	Resource depletion	No relevant reagents used
12	Smog formation	Evaporation of 0.2 mL acetonitrile
13	Mass of waste	Acetonitrile: 0.2 mL Sample: 1 mL MOF: 0.002 g Mobile phase: 1.6 mL
		Total: 2.802 mL
14	Water consumption	Sample: 1 mL Mobile phase: 0.534 mL
		Total: 1.534 mL

Table S8. Detailed indicators used to evaluate the environmental hazards of the dSPE.

		SPE
1	Acidification	N ₂ (UHPLC-MS/MS and gas used for drying)
2	Persistent organics	No
3	Bio-accumulation	No
4	Ecotoxicity	Methanol: <i>Pimephales promelas</i> $LC_{50} > 10000 \text{ mg } L^{-1}$
5	Energy usage/ Global warming	A high amount of energy consumption (dried under vacuum for 20 min, 40 °C water bath with a gentle stream of N_2) No powerful greenhouse gases
6	Eutrophication	Nitrogen element in N ₂ and the Oasis HLB
7	Flammability	Methanol
8	Human toxicity	Methanol: $LD_{50} = 5628 \text{ mg kg}^{-1} \text{ (rat)}$ Oasis HLB: Divinylbenzene: $LD_{50} = 4040 \text{ mg kg}^{-1} \text{ (rat)}$
9	Human carcinogenicity	Divinylbenzene and methanol
10	Ozone depletion	Regents without chlorine, bromine, and fluorine
11	Resource depletion	No relevant reagents used
12	Smog formation	Evaporation of 4 mL methanol
13	Mass of waste	Sample: 60 mL Methanol: 9.3 mL Ultrapure water: 68.3 mL Oasis HLB: 0.06 g Mobile phase: 10 mL
		1 otal: 14/.66 mL
14	Water consumption	Sample: 60 mL Ultrapure water: 68.3 mL Mobile phase: 4.42 mL
		Total: 132.72 mL

 Table S9. Detailed indicators used to evaluate the environmental hazards of the SPE.

Fig. S1. Optimization of BDS-ADLLME Parameters. The figure presents the optimization of two key BDS-ADLLME parameters: (A) sample volume and (B) sample pH value. All other experimental conditions were held constant as follows: eucalyptol was used as the extractant; the extractant and dispersant volume ratio was 1:6; the total volume of extractant and dispersant was 1000 μ L; 5 mixing cycles were employed; mixing speed was set at 430 μ L s⁻¹; sample volume was varied (A) or set at 5 mL (B); and no salt or pH buffer was added.

Fig. S2. Molecular docking results of eucalyptol with chlorantraniliprole and flubendiamide. (A) electron density distribution, and (B) binding mode of eucalyptol with chlorantraniliprole, (C) electron density distribution, and (D) binding mode of eucalyptol with flubendiamide.

Fig. S3. Green assessment of the method mentioned in method comparison by using AGREE and GAPI. (A) the QuEChERS method. (B) the MSPE method. (C) the dSPE method. (D) the SPE method.