Supporting Information

High-efficient green catalytic conversion for waste CS₂ by non-noble metal cage-based MOFs: an access to high-valued thiazolidine-2-

thione

Wenyu Ding,[‡] Xinyu Tang,[‡] Sheng Jin, Zhao Li, Dongwei Xu, Xiaomin Kang^{*} and Zhiliang Liu^{*}

Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.

E-mail: kangxm@imu.edu.cn, cezlliu@imu.edu.cn

‡ These authors contributed equally to this work.

Table of Contents

Table S1. Crystal data and structure refinement for compound 1.

Table S2. Bond lengths (Å) and bond angles (°) for compound 1.

Figure S1. Image of as-synthesized compound 1.

Figure S2. SEM images of compound 1.

Figure S3. (a)The coordination environment of compound 1; (b) The **pacs** topology of compound 1.

Figure S4. XPS spectra of 1: a) XPS survey spectrum; b) Co 2p XPS spectrum.

Figure S5. FT-IR spectra of compound 1 and ligands.

Figure S6. PXRD pattern of compound 1.

Figure S7. Thermogravimetric analysis of compound 1.

Figure S8. The PXRD patterns of the compound **1** after immersing in various organic solvents.

Figure S9. The N₂ adsorption of compound 1 (77 K).

Figure S10. The adsorption average pore diameter of compound 1.

Figure S11. Catalyst filtration test for the cycloaddition of aziridines and CS₂.

Figure S12. TOF values of different catalysts for the cycloaddition of CS_2 with 1-ethyl-2-phenylaziridine.

Figure S13. The three-dimensional size of 1-ethyl-2-phenylaziridine is $10.2 \times 7.2 \times 6.1$ Å³, and the three-dimensional size of 3-ethyl-5-phenylthiazolidine-2-thione is $12.7 \times 7.0 \times 6.0$ Å³.

Figure S14. The three-dimensional size of 1-propyl-2-phenylaziridine is $11.0 \times 8.1 \times 5.9$ Å³, and the three-dimensional size of 3-propyl-5-phenylthiazolidine-2-thione is $14.1 \times 7.3 \times 6.1$ Å³.

Figure S15. The three-dimensional size of 1-benzyl-2-phenylaziridine is $13.7 \times 7.1 \times 7.0$ Å³, and the three-dimensional size of 3-benzyl-5-phenylthiazolidine-2-thione is $14.2 \times 8.2 \times 7.2$ Å³.

Figure S16. The three-dimensional size of 1-isobutyl-2-phenylaziridine is $11.0 \times 8.1 \times 6.0$ Å³, and the three-dimensional size of 3-isobutyl-5-phenylthiazolidine-2-thione is $14.2 \times 7.3 \times 6.1$ Å³.

Figure S17. The three-dimensional size of 1-butyl-2-phenylaziridine is $11.4 \times 8.6 \times 6.4$ Å³, and the three-dimensional size of 3-butyl-5-phenylthiazolidine-2-thione is $15.4 \times 7.2 \times 6.0$ Å³.

Figure S18. The three-dimensional size of 1-methoxyethyl-2-phenylaziridine is $11.2 \times 8.5 \times 6.4$ Å³, and the three-dimensional size of 3-methoxyethyl-5-phenylthiazolidine-2-thione is $15.2 \times 7.1 \times 6.0$ Å³.

Figure S19. The three-dimensional size of 1-ethyl-2-(4-fluorophenyl)-aziridine is 10.8 \times 7.2 \times 6.16 Å³, and the three-dimensional size of 3-ethyl-5-(4-fluorophenyl)-thiazolidine-2-thione is 13.4 \times 7.1 \times 5.9 Å³.

Figure S20. The three-dimensional size of 1-ethyl-2-(4-chlorophenyl)-aziridine is 11.5 \times 7.3 \times 6.2 Å³, and the three-dimensional size of 3-ethyl-5-(4-chlorophenyl)-thiazolidine-2-thione is 14.7 \times 7.1 \times 5.8 Å³.

Figure S21. The three-dimensional size of 1-ethyl-2-(4-methyl)-aziridine is $11.3 \times 7.2 \times 6.2$ Å³, and the three-dimensional size of 3-ethyl-5-p-tolylthiazolidine-2-thione is $12.8 \times 7.1 \times 5.9$ Å³.

Figure S22. SEM images of compound 1 after 10 cycles of reaction.

Figure S23. The PXRD patterns of compound 1 after recycling.

Table S3. The ICP result of 1 after catalytic recycling (filter liquor).

Figure S24. The XPS analysis of compound 1 as a catalyst for the cycloaddition reaction of CO_2 with 1-ethyl-2-phenylaziridine after ten catalysis recycling.

Figure S25. The FT-IR spectra of compound 1 and ten-times-reused 1.

Figure S26. ¹H NMR spectroscopy of digested compound 1 in the presence or absence of CS_2 (H₂O/DMSO = 0.1/0.55 mL).

Figure S27. PXRD pattern of compound Co(II/III).

Table S4. Comparison of yields of two isomeric [Co₃] cluster-based MOFs under optimized reaction conditions.

Figure S28. Recycling test of catalyst Co(II/III) in the CS_2 cycloaddition with 1-ethyl-2-phenylaziridine.

Figure S29. Catalyst filtration experiments of compound 1 and Co (II/III).

Figure S30. The DFT full optimized geometry of compound 1.

	1
Empirical formula	$C_{61}H_{74}Co_3N_8O_{22}$
Formula weight	1448.04
Temperature (K)	296.15
Crystal system	Hexagonal
Space group	P6 ₃ /mmc
<i>a</i> (Å)	17.0841(8)
<i>b</i> (Å)	17.0841(8)
<i>c</i> (Å)	14.9800(9)
α (°)	90
β (°)	90
γ (°)	120
Volume (Å ³)	3786.4(4)
Z	2
$ ho_{calc}$ (g/m ³)	1.270
$\mu (\mathrm{mm}^{-1})$	0.721
F (000)	1506.0
$R_{ m int}$	0.0977
GOF on F^2	1.023
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0379, wR_2 = 0.1001$
Final <i>R</i> indexes [all data]	$R_1 = 0.0493, wR_2 = 0.1062$
Largest diff. peak and hole (e $Å^{-3}$)	0.59/-0.41

 Table S1. Crystal data and structure refinement for compound 1.

Bond distances			
Co1-O1	2.0330(4)	C7-C8 ⁴	1.375(3)
Co1-O2 ¹	2.0723(13)	C7-C8	1.375(3)
Co1-O2 ²	2.0723(13)	C3-C2	1.490(5)
Co1-O2	2.0722(13)	C3-C4 ²	1.369(4)
Co1-O2 ³	2.0722(13)	C3-C4	1.369(4)
Co1-N1	2.163(3)	C1-C2 ⁵	1.367(3)
O2-C6	1.2347(18)	C1-C2	1.367(3)
N1-C5 ²	1.328(4)	C8-C8 ⁶	1.381(4)
N1-C5	1.328(4)	C5-C4	1.393(4)
C6-C7	1.507(3)		

Table S2. Bond lengths (\AA) and bond angles $(^{\circ})$ for compound 1.

Symmetry transformations used to generate equivalent atoms:

¹-1+Y-X,+Y,-1/2-Z; ²-1+Y-X,+Y,+Z; ³+X,+Y,-1/2-Z; ⁴-Y,-X,+Z; ⁵1-Y,2+X-Y,+Z; ⁶-1+Y,1+X,-1-Z

Bond Angles			
O1-Co1-O2 ¹	92.43(4)	C5-N1-Co1	122.09(18)
O1-Co1-O2	92.43(4)	C5 ³ -N1-Co1	122.09(18)
O1-Co1-O2 ²	92.43(4)	C5 ³ -N1-C5	115.8(4)
O1-Co1-O2 ³	92.43(4)	O2-C6-O2 ⁶	126.4(2)
O1-Co1-N1	180.00	O2-C6-C7	116.79(12)
O2-Co1-O2 ²	175.14(8)	O2 ⁶ -C6-C7	116.79(12)
O2-Co1-O2 ³	90.30(11)	C8 ⁶ -C7-C6	120.98(13)
O2 ¹ -Co1-O2 ²	90.30(11)	C8-C7-C6	120.98(13)
O2 ¹ -Co1-O2 ³	175.14(8)	C8 ⁶ -C7-C8	118.0(3)
O2 ¹ -Co1-O2	89.50(11)	C4-C3-C2	121.43(19)
O2 ² -Co1-O2 ³	89.50(11)	C4 ³ -C3-C2	121.43(19)
O2-Co1-N1	87.57(4)	C4 ³ -C3-C4	117.1(4)
O2 ³ -Co1-N1	87.57(4)	C2-C1-C2 ⁷	119.9(4)
O2 ² -Co1-N1	87.57(4)	C1 ⁸ -C2-C3	119.9(4)
O2 ¹ -Co1-N1	87.57(4)	C1-C2-C3	119.9(4)
Co1 ⁴ -O1-Co1	120.0	C1-C2-C1 ⁸	120.1(4)
Co1-O1-Co1 ⁵	120.0	C7-C8-C8 ⁹	120.97(13)
Co1 ⁴ -O1-Co1 ⁵	120.0	N1-C5-C4	123.9(3)

Symmetry transformations used to generate equivalent atoms:

¹+X,+Y,-1/2-Z; ²-1+Y-X,+Y,-1/2-Z; ³-1+Y-X,+Y,+Z; ⁴-1+Y-X,-X,-1/2-Z; ⁵-Y,1+X-Y,+Z; ⁶-Y,-X,+Z; ⁷1-Y,2+X-Y,+Z; ⁸-1+Y-X,1-X,-1/2-Z; ⁹-1+Y,1+X,-1-Z

Figure S1. Image of as-synthesized compound 1.

Figure S2. SEM images of compound 1.

Figure S3. (a)The coordination environment of compound 1; (b) The pacs topology of compound 1.

Figure S4. XPS spectra of 1: a) XPS survey spectrum; b) Co 2p; c) C 1s; d) N 1s; e) O 1s.

Figure S5. FT-IR spectra of compound 1 and ligands.

Figure S6. PXRD pattern of compound 1.

Figure S7. Thermogravimetric analysis of compound 1.

Figure S8. The PXRD patterns of the compound **1** after immersing in various organic solvents.

Figure S9. The N_2 adsorption of compound 1 (77 K).

Figure S10. The adsorption average pore diameter of compound 1.

Figure S11. Catalyst filtration test for the cycloaddition of aziridines and CS₂.

Figure S12. TOF values of different catalysts for the cycloaddition of CS_2 with 1-ethyl-2-phenylaziridine(1: compound1 in this work;2: $\{tBuC_6H_4CONC_6H_3(iPr)_2Eu[N(SiMe_3)_2]THF\}_2;$ 3: ion-exchange resin D301R;4:Dy24-MOF).

Figure S13. The three-dimensional size of 1-ethyl-2-phenylaziridine is $10.2 \times 7.2 \times 6.1$ Å³, and the three-dimensional size of 3-ethyl-5-phenylthiazolidine-2-thione is $12.7 \times 7.0 \times 6.0$ Å³.

Figure S14. The three-dimensional size of 1-propyl-2-phenylaziridine is $11.0 \times 8.1 \times 5.9$ Å³, and the three-dimensional size of 3-propyl-5-phenylthiazolidine-2-thione is $14.1 \times 7.3 \times 6.1$ Å³.

Figure S15. The three-dimensional size of 1-benzyl-2-phenylaziridine is $13.7 \times 7.1 \times 7.0$ Å³, and the three-dimensional size of 3-benzyl-5-phenylthiazolidine-2-thione is $14.2 \times 8.2 \times 7.2$ Å³.

Figure S16. The three-dimensional size of 1-isobutyl-2-phenylaziridine is $11.0 \times 8.1 \times 6.0$ Å³, and the three-dimensional size of 3-isobutyl-5-phenylthiazolidine-2-thione is $14.2 \times 7.3 \times 6.1$ Å³.

Figure S17. The three-dimensional size of 1-butyl-2-phenylaziridine is $11.4 \times 8.6 \times 6.4$ Å³, and the three-dimensional size of 3-butyl-5-phenylthiazolidine-2-thione is $15.4 \times 7.2 \times 6.0$ Å³.

Figure S18. The three-dimensional size of 1-methoxyethyl-2-phenylaziridine is $11.2 \times 8.5 \times 6.4$ Å³, and the three-dimensional size of 3-methoxyethyl-5-phenylthiazolidine-2-thione is $15.2 \times 7.1 \times 6.0$ Å³.

Figure S19. The three-dimensional size of 1-ethyl-2-(4-fluorophenyl)-aziridine is 10.8 \times 7.2 \times 6.16 Å³, and the three-dimensional size of 3-ethyl-5-(4-fluorophenyl)-thiazolidine-2-thione is 13.4 \times 7.1 \times 5.9 Å³.

Figure S20. The three-dimensional size of 1-ethyl-2-(4-chlorophenyl)-aziridine is 11.5 \times 7.3 \times 6.2 Å³, and the three-dimensional size of 3-ethyl-5-(4-chlorophenyl)-thiazolidine-2-thione is 14.7 \times 7.1 \times 5.8 Å³.

Figure S21. The three-dimensional size of 1-ethyl-2-(4-methyl)-aziridine is $11.3 \times 7.2 \times 6.2$ Å³, and the three-dimensional size of 3-ethyl-5-p-tolylthiazolidine-2-thione is $12.8 \times 7.1 \times 5.9$ Å³.

Figure S22. SEM images of compound 1 after 10 cycles of reaction.

Figure S23. The PXRD patterns of compound 1 after recycling.

 Table S3. The ICP result of 1 after catalytic recycling (filter liquor).

Recycle Times	Run 10
Co ²⁺ (%)	0.16

Figure S24. The XPS analysis of compound 1 as a catalyst for the cycloaddition reaction of CO_2 with 1-ethyl-2-phenylaziridine after ten catalysis recycling.

Figure S25. The FT-IR spectra of compound 1 and ten-times-reused 1.

Figure S26. ¹H NMR spectroscopy of digested compound 1 in the presence or absence of CS_2 (H₂O/DMSO = 0.1/0.55 mL).

Figure S27. PXRD pattern of compound Co(II/III).

Entry	Yield
Co(II/III)	81%
compound 1	99%

Figure S28. Recycling test of catalyst Co(II/III) in the CS_2 cycloaddition with 1-ethyl-2-phenylaziridine.

Table S4. Comparison of yields of two isomeric $[Co_3]$ cluster-based MOFs under optimized reaction conditions.

Figure S29. Catalyst filtration experiments of compound 1 and Co (II/III).

Figure S30. The DFT full optimized geometry of compound **1**. Color codes for atoms: bluish violet, Co; gray, C; red, O; blue, N; white, H.