Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic supplementary Information

A waste-minimized protocol for the electrochemical reductive amination and its environmental assessment.

Simone Trastulli Colangeli,[‡] Filippo Campana,[‡] Francesco Ferlin,^{*} Luigi Vaccaro ^{*}

Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy, web: <u>http://greensoc.chm.unipg.it/</u>

[‡] The authors have contributed equally

Table of contents

1. General Remarks	ESI – 2
2. General Procedures	ESI – 3
3. E-factor calculations	ESI – 4
4. E-factor table	ESI – 9
5. Ecoscale data	ESI – 10
6. LCA data and charts	ESI – 15
7. Characterization Data	ESI – 26
8. References	ESI – 48
9.Copies of the NMR spectra	. ESI – 48

1. General Remarks

General Remarks: Unless otherwise stated, all chemicals were purchased and used without any further purification. GLC analyses were performed by using Hewlett-Packard HP 5890 SERIES II equipped with a capillary column DB-5MS (30 m, 0.32 mm), a flame ionization detector (FID), and helium or nitrogen as gas carrier. GC-EIMS analyses were carried out by using a Hewlett-Packard HP 6890 N Network GC system/5975 mass selective detector equipped with an electron impact ionizer at 70 eV. Melting points were measured on a Büchi 510 apparatus. NMR spectra were recorded on a Bruker DRXADVANCE 400 MHz (¹H at 400 MHz, ¹³C at 100.6 MHz and ¹⁹F at 376.4 MHz) in CDCl₃, d6-DMSO, Methanol-d6. Chemical shifts are reported in ppm (δ), coupling constant (J) in Hertz, and multiplicity are reported as follows: s=singlet, bs=broad singlet, d=doublet, dd=double doublet, td=double triplet, t=triplet, m=multiplet. Elemental analysis (EA) was conducted on Elementar UNICUBE® elemental analyzer. Electrodes were polished using polishing pad and Al₂O₃ powder. The experimental apparatus consists of a reactor, a common laboratory plate used for magnetic stirring and a programmable DC power supply AXIOMET (AX-3003P). The reactor was built by adapting an aluminium electrode and a graphite electrode (surface inside the vial of 4.5 cm x 0.5 cm; electrode distance 0.6 cm) to a common vial cap. The system was then sealed externally with silicone. The reaction is carried out by adapting the aluminium electrode to the anode and the graphite electrode to the cathode.

2. General Procedures

General procedure A: In a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), aldehyde **1a-n** (3 mmol), amine **2a-k** (3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3a-w** (91-73% yield).

General procedure B: In a 8 mL vial equipped with a cap and a magnetic stirrer add ketone **1j-m** (3 mmol) and amine **2a** (3 mmol). Let the mixture stir at 90°C for 5 hours. After this time, let the reaction mixture cool to room temperature, then equip the vial with a two electrodes system (aluminium anode and graphite cathode). Add tetraethylammonium bromide (627.45 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile: water (84% w/w acetonitrile), then electrolyze the resulting mixture in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the crude product. The crude product is further purified by adding HCI (aq.) (2 eq.). Remove water under reduced pressure, then add a mixture of ethyl acetate:petroleum ether (1:9) in order to obtain hydrochloride salt product **3q-t** (62-51% yield) as white crystal.

General procedure gram-scale synthesis: In a 50mL flask equipped with a magnetic stirrer, an ice-bath and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (15 mmol), aldehyde **1c** (30 mmol), amine **2a** (30 mmol) and 30 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 1.5 A under stirring at room temperature until 3 F/ mol of current were passed (ca. 100 minutes). After reaction completion, the mixture was distilled using a simple distillation apparatus. The acetonitrile : water azeotrope was recovered at 82%. The residue was then diluted in 100 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process. The obtained mixture was then distilled and ethyl acetate was recovered at 85%, giving the product **3c** as a yellow oil (78% yield).

3. E-factor calculations

E-factor N-benzylbutan-1-amine (3a)

E-factor (without solvent recovery) = [0.31836g(1a) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.41631g(product 3a)] / <math>[0.41631g(product 3a)] = 29.34

E-factor (within solvent recovery) = [0.31836g(1a) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.41631g(product 3a) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.41631g(product 3a)] = 6.11

E-factor N-(4-fluorobenzyl)butan-1-amine (3b)

E-factor (without solvent recovery) = [0.37233g(1b) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.49482g(product 3b)] / <math>[0.49482g(product 3b)] = 24.63E-factor (within solvent recovery) = [0.37233g(1b) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.49482g(product 3b) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.49482g(product 3b)] = 5.09

E-factor N-(4-chlorobenzyl)butan-1-amine (3c)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.51603g(product 3c)] / <math>[0.51603g(product 3c)] = 23.68

E-factor (within solvent recovery) = [0.42171g(1c) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.51603g(product 3c) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.51603g(product 3c)] = 4.94

E-factor N-(3-fluorobenzyl)butan-1-amine (3d)

E-factor (without solvent recovery) = [0.37233g(1d) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.42957g(product 3d)] / [0.42957g(product 3d)] = 28.53

E-factor (within solvent recovery) = [0.37233g(1d) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.42957g(product 3d) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.42957g(product 3d)] = 6.02

E-factor N-(3-methoxybenzyl)butan-1-amine (3e)

E-factor (without solvent recovery) = [0.40845g(1e) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.43491g(product 3e)] / <math>[0.43491g(product 3e)] = 28.25

E-factor (within solvent recovery) = [0.40845g(1e) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.43491g(product 3e) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.43491g(product 3e)] = 6.02

E-factor N-(4-propoxybenzyl)butan-1-amine (3f)

E-factor (without solvent recovery) = [0.4926g(1f) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.50466g(product 3f)] / <math>[0.50466g(product 3f)] = 24.37

E-factor (within solvent recovery) = [0.4926g(1f) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.50466g(product 3f) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.50466g(product 3f)] = 5.21

E-factor N-(2-methylbenzyl)butan-1-amine (3g)

E-factor (without solvent recovery) = [0.36045g(1g) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.38826g(product 3g)] / <math>[0.38826g(product 3g)] = 31.62

E-factor (within solvent recovery) = [0.36045g(1g) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.38826g(product 3g) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.38826g(product 3g)] = 6.74

E-factor N-(naphthalen-2-ylmethyl)butan-1-amine (3h)

E-factor (without solvent recovery) = [0.46854g(1h) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.49278g(product 3h)] / <math>[0.49278g(product 3h)] = 24.92

E-factor (within solvent recovery) = $[0.46854g(\mathbf{1h}) + 0.21942g(\mathbf{2a}) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.49278g(product <math>\mathbf{3h}$) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / $[0.49278g(product \mathbf{3h})] = 5.32$

E-factor N-(4-chlorobenzyl)hexan-1-amine (3i)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.30357g(2b) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.54861g(product 3i)] / <math>[0.54861g(product 3i)] = 22.36

E-factor (within solvent recovery) = [0.42171g(1c) + 0.30357g(2b) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.54861g(product 3i) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.54861g(product 3i)] = 4.74

E-factor N-(4-chlorobenzyl)pentan-1-amine (3j)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.26151g(2c) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.50181g(product 3j)] / <math>[0.50181g(product 3j)] = 24.46

E-factor (within solvent recovery) = [0.42171g(1c) + 0.26151g(2c) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.50181g(product**3j**) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.50181g(product**3j**)] =**5.19**

E-factor N-(4-chlorobenzyl)octan-1-amine (3k)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.38775g(2d) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.62436g(product 3k)] / [0.62436g(product 3k)] = 19.67

E-factor (within solvent recovery) = [0.42171g(1c) + 0.38775g(2d) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.62436g(product 3k) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.62436g(product 3k)] = 4.18

E-factor N-(4-chlorobenzyl)-2,4,4-trimethylpentan-2-amine (3I)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.38775g(2e) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.63198g(product 3I)] / <math>[0.63198g(product 3I)] = 19.42

E-factor (within solvent recovery) = [0.42171g(1c) + 0.38775g(2e) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.63198g(product 3I) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.63198g(product 3I)] = 4.12

E-factor N-(4-chlorobenzyl)propan-2-amine (3m)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.17733g(2f) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.46287g(product 3m)] / [0.46287g(product 3m)] = 26.42

E-factor (within solvent recovery) = [0.42171g(1c) + 0.17733g(2f) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.46287g(product 3m) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.46287g(product 3m)] = 5.53

E-factor N-(4-chlorobenzyl)cyclohexan-1-amine (3n)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.29754g(2g) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.59067g(product 3n)] / [0.59067g(product 3n)] = 20.70

E-factor (within solvent recovery) = [0.42171g(1c) + 0.29754g(2g) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.59067g(product 3n) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.59067g(product 3n)] = 4.32

E-factor N-(4-chlorobenzyl)cyclopentan-1-amine (30)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.25545g(2h) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.50961g(product 3o)] / <math>[0.50961g(product 3o)] = 24.06

E-factor (within solvent recovery) = [0.42171g(1c) + 0.25545(2h) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.50961g(product**30**) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.50961g(product**30**)] = 5.09

E-factor N-benzyl-1-(4-chlorophenyl)methanamine (3p)

E-factor (without solvent recovery) = [0.42171g(1c) + 0.32148g(2i) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.59784g(product**3p**)] / <math>[0.59784g(product**3p**)] =**20.48**

E-factor (within solvent recovery) = [0.42171g(1c) + 0.32148g(2i) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.59784g(product**3p**) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.59784g(product**3p**)] =**4.30**

E-factor N-(1-phenylethyl)butan-1-amine (3q)

E-factor (without solvent recovery) = [0.36045g(1i) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.32976g(product 3q)] / <math>[0.32976g(product 3q)] = 37.42

E-factor (within solvent recovery) = [0.36045g(1i) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.32976g(product 3q) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.32976g(product 3q)] = 8.11

E-factor N-(1-(p-tolyl)ethyl)butan-1-amine (3r)

E-factor (without solvent recovery) = [0.40254g(1j) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.33291g(product 3r)] / <math>[0.33291g(product 3r)] = 37.19

E-factor (within solvent recovery) = [0.40254g(1j) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.33291g(product 3r) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.33291g(product 3r)] = 8.15

E-factor N-(1-(4-chlorophenyl)ethyl)butan-1-amine (3s)

E-factor (without solvent recovery) = [0.46377g(1k) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.32244g(product 3s)] / <math>[0.32244g(product 3s)] = 38.62

E-factor (within solvent recovery) = $[0.46377g(\mathbf{1k}) + 0.21942g(\mathbf{2a}) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.32244g(product <math>\mathbf{3s}$) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / $[0.32244g(product \mathbf{3s})] = \mathbf{8.64}$

E-factor N-(1-(naphthalen-1-yl)ethyl)butan-1-amine (3t)

E-factor (without solvent recovery) = [0.51063g(1I) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.36150g(product 3t)] / <math>[0.36150g(product 3t)] = 34.47

E-factor (within solvent recovery) = [0.51063g(1I) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.36150g(product 3t) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.36150g(product 3t)] = 7.73

E-factor N-butylfurfurylamine (3u)

E-factor (without solvent recovery) = [0.28827g(1m) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.34017g(product 3u)] / <math>[0.34017g(product 3u)] = 36.04

E-factor (within solvent recovery) = [0.28827g(1m) + 0.21942g(2a) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.34017g(product 3u) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.34017g(product 3u)] = 7.62

E-factor clobenzorex (3v)

E-factor (without solvent recovery) = [0.42171g(1n) + 0.40563g(2j) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.69320g(product 3v)] / <math>[0.69320g(product 3v)] = 17.64

E-factor (without solvent recovery) = [0.42171g(1n) + 0.40563g(2j) + 0.63048g(TEABr) + 2.442g(azeotrope) + 9.02g(ethyl acetate) - 0.69320g(product 3v) - 2.002g(azeotrope recovered) - 7.667g(ethyl acetate recovered)] / <math>[0.69320g(product 3v)] = 3.69

E-factor gram-scale synthesis (3c)

E-factor (without solvent recovery) = [4.2171g(1c) + 2.1942g(2a) + 3.1524g(TEABr) + 24.42g(azeotrope) + 90.20g(ethyl acetate) - 4.6263g(product 3c)] / [4.6263g(product 3c)] = 25.83

E-factor (within solvent recovery) = [4.2171g(1c) + 2.1942g(2a) + 3.1524g(TEABr) + 24.42g(azeotrope) + 90.20g(ethyl acetate) - 4.6263g(product 3c) - 20.024g(azeotrope recovered) - 76.67g(ethyl acetate recovered)] / <math>[4.6263g(product 3c)] = 4.95

4. E-factor table

3v 3.69

5. Ecoscale data

Org. Biomol. Chem., 2020, 18, 5832 (Electrochemical)

	Reagents 🗵																	
	k																	
	iden	ntifier*		name			MF*		MW		density	purity*	m	ıl 👘	g	mmoles	equiv.	
1	+ -		Benzalo	dehyde		C7H60	C	106	.12404		1.05	100%	0.05047	76	0.053	0.4994155895	Infinity	_ <u>×</u>
2	2 + - p-Toluidine		line	C7H		N	107	.15516			100%	0		0.064	0.5972647514	Infinity	🏂 🌺	
3	+ -		Tetrabu	tylammonium hydrogen sulfate		C16H3	35N . H2S	339	.53408			100%	0		0.169	0.4977409042	Infinity	XX
4	+ -		DMSO			C2H60	OS	78.1	12904		1.1	100%	5		5.5	70.396359665	Infinity	XX
5	+ -		Water			H2O		18.0	01528		1	100%	10		10	555.08435061	Infinity	
6	+ -		Ethyl ac	cetate		C4H80	02	88.1	0632		0.902	100%	5		4.51	51.188155401	Infinity	8 X
	Products 🗵		~			~												
		identifier	*:	name:			MF*:			MW:	9	:	mmoles:	g th	eor:	yield:		
				Reductive Amination Product			C14	H15N		197	.28	0.097	0.4916869	424 0		0		
	Conditions 🗵																	
	Reagents			Name	r	nmoles	eq.	Вр	Ha	zard	Price							
		Benzaldel	hyde		5.1	.4	Infinity	179		_	•							
		p-Toluidin	ie		6.1	5	Infinity	200	¥_ :	.	00							
		Tetrabuty	lammoniu	ım hydrogen sulfate	5.1	.3	Infinity				00							
		DMSO			72	5.73	Infinity	189			00							
		Water			57	22.51	Infinity				80							
		Ethyl acet	tate		52	7.71	Infinity	75	*		0.							
	Yield	98										-1						
Pr	rice / availability											-19		-				
	Safety											-15		-				
	Technical setup	Possible it	ems			Selected	litems											
		Pressure	equipme	ent, > 1 atm		Unconv Any ad	entional a	activat pecial	ion tech	nniqu are	ie 🔺	-3						
		Any addi (Inert) da	itional spe as atmosr	obere]				9.000.00		Ŧ							
Terr	nperature / time	Possible it	ems			Selected	l items	re < '	24h									
		Cooling t	to 0°C			Room	emperatu	10, 1	11 ×			-1						
We do	and an if and	Cooling,	< 0°C	Ŧ					Ψ.									
Workup	and purification	Possible it Sublimat	ion			Selected Remov	l items al of solve	ent wit	h bp < 1	150°(C 🔺	10		_				
		Liquid - li	iquid extra	action or washing		Liquid -	liquid ext	togra	n or wa	shing		-13						
	EcoScale	Classical	onionial	ography				nogra	pily			48			_		_	_

Org.Lett. 2023, 25, 432 (Electrochemical)

	Reagents 🗵																
🗆 Lir	nk																
	ide	ntifier*		name		N	1F*		мw	de	ensity	purity*	ml	g	mmoles	equiv.	
1	+ -		Benzald	dehyde		C7H6C)	106.1	2404	1.05		100%	0.04	0.042	0.3957632973	Infinity	
2	+ - Aniline		C6H7N		93.12	828	1.021	3	100%	0.036228	0.037	0.397301442€	Infinity				
3	+ -		Triethyla	amine		C6H15	N	101.1	918	0.728	3	100%	0.054945	0.04	0.3952889463	Infinity	🚅 👌 桑 🗙
4	+ -		Tetrabut	tylammonium tetrafluo	oroborate	C16H3	6N . BF4	329.2	72152			100%	0	0.066	0.2004420950	Infinity	
5	+ -		Water			H2O		18.01	528	1		100%	1.3	1.3	72.160965580	Infinity	
6	+ -		1,4-Diox	xane		C4H8C)2	88.10	632	1.03		100%	2.7	2.781	31.564137510	Infinity	👌 🗙 🗙
7	+ -		Dichloro	omethane		CH2CI	2	84.93	288	1.325	5	100%	30	39.75	468.01662677	Infinity	
	Products 🗵																
		identifier*	*:	name:			MF*:			MW:	<u>g</u> :	. n	moles:	g theor:	yield:		
				Reductive Amination	Product		C13	H13N		183.25	0	.052).2837653478	0	0		
	Conditions 🗵																
	Reagents			Name	r	nmoles	eq.	Вр	Haz	zard I	Price						
		Benzaldeh	nyde		7.6	51	Infinity		_	Ğ	O						
		Aniline			7.6	4	Infinity	181	*	6	0						
		Triethylam	nine		7.6	;	Infinity	90	8		9						
		Tetrabutyl	lammoniu	ım tetrafluoroborate	3.8	15	Infinity			6	6						
		Water			13	87.71	Infinity			6	0						
		1,4-Dioxa	ne		60	7	Infinity	101	٢	6	0						
		Dichlorom	ethane		90	00.31	Infinity	39		6	0						
	Yield	71										-14.5					
P	Price / availability											-22					
	Safety											-20					
	Technical setup Possible items Sel Any additional special glassware Ins (Inert) gas atmosphere		ected iter truments conventi	ected items truments for controlled addition of chemi conventional activation technique			icals 🛓	-4									
Ter	Temperature / time Possible items Heating, > 1h		Selected Room te	items emperatur	re, < 1h				-								
		Cooling, < 0°C								U							
Workup	o and purification	Possible ite	ems ion			Selected Adding	items solvent										
		Liquid - li	quid extra	action or washing		Remova	al of solve	nt with	bp < 1	50°C	ŀ	-13					
	EcoScale	Classical	chromate			Liquid -	iiquid exti	acilOII	or was	sining 🔹		26.5		_			

J. Org. Chem. 2019, 84, 1421 (with NaBH4)

Green Chem., 2021, 23, 5625 (in flow with Et3SiH)

This work (Electrochemical)

Reagents 🗵											
Link											
ide	ntifier [*] name		MF*	MW	density	purity*	ml	g	mmoles	equiv.	
1 + -	4-Fluorobenzaldehyde		C7H5FO	124.114503	1.15	100%	3.23777	3.723435	30	Infinity	
2 + -	n-Butylamine		C4H11N	73.13804	0.74	100%	2.965055	2.194141	30	Infinity	🚅 👌 🗙
3 + -	Tetraethylammonium bromide		C8H20BrN	210.1575		100%	0	3.15	14.988758431	Infinity	
4 + -	Acetonitrile		CH3CN	41.05252	0.781	100%	32.151088	25.11	611.65550860	Infinity	👌 桑 🗙 🗙
5 + -	Water		H2O	18.01528	1	100%	4.89	4.89	271.43624745	Infinity	
6 + -	Ethyl acetate		C4H8O2	88.10632	0.902	100%	100	90.2	1023.7631080	Infinity	8 🗙
Products 🗵											
	identifier*: name:		MF*:	MV	/: g:	mr	moles: g t	heor: yie	id:		
	Reductive Amination Produ	ict	C11	H16FN 18	4.1.25	.24 23	3.393103448 0	0			
Conditions 🗵											
Reagents	Name	mmol	es eq.	Bp Hazard	Price						
	4-Fluorobenzaldehyde	7.07	Infinity		00						
	n-Butylamine	7.07	Infinity 7	8 💧	۲						
	Tetraethylammonium bromide	3.53	Infinity		۲						
	Acetonitrile	144.25	Infinity 8	1 👌 👱							
	Water	54.01	Infinity								
	Ethyl acetate	241.45	Infinity 7	5 💧	۲						
Yield	78				-	.11					
Price / availability					-	.5					
Safety						-20					
Technical setup	Possible items		Selected items			20					
	Any additional special glassware		Unconventional a	ctivation technic	que 🔺	3					
	(inert) gas atmosphere Glove box	-	Any additional sp	ecial glassware	-	-					
Temperature / time	Possible items		Selected items								
	Heating, > 1h		Room temperatur	re, < 24h ▲	-	.1					
	Cooling to 0°C			~							
Workup and purification	Possible items		Selected items								
	Cooling to room temperature		Simple filtration Removal of solve	nt with bn < 150	ec â	6					
	Simple filtration		Liquid - liquid extr	action or washi	ng 🔻						
EcoScale						54					

6. LCA data and charts

Goal and scope definition

The main aim of the herein presented LCA analysis is to assess the potential environmental impact associated to two different reducing agent (NaBH₄ and triethylsilane) and three organic electrolytes (tetraethylammonium bromide, tetrabutylammonium hydrogen sulfate, tetrabutylammonium tetrafluoroborate). To give further insight about the electrochemical method developed, Aluminium used as electrode was assessed as well.

The functional unit was defined as 1 g of the desired target product. At the same time, the system boundary was determined based on a cradle-to-gate approach, considering the emissions and resource exploitation for both the extraction and manufacturing of all materials and energy and the respective process's emissions to water, air, and soil. Moreover, it was assumed that all the processes analysed were performed at one location. The environmental effects caused by transport to provide raw materials, and the impacts of chemical factories have been included.¹

Inventory analysis

While setting up the LCA analysis, new inventories for different materials had to be created to be included in the model. Given the presence of many data gaps in the literature procedures taken as reference, some assumptions were adopted to construct the dataset.

Generally, for the inventories' construction, a retrosynthetic approach was used, and when not possible because of missing database data or too uncertain secondary data, similar compounds were adopted (e.g., triethylamine instead of t-butylamine, CaCl₂ instead of MgSO₄ or NaSO₄, NaHCO₃ instead of Na₂CO₃).

The energy utilized in the procedures under investigation for heating, stirring, evaporating, and pumping is not measured or documented. For these reasons, thermodynamics assumptions considering a proportional watt (W) absorption per hour of heating plates (for T> 25 °C procedures such as reactions and distillations or stirring), heating bath (fixed temperature of 50 °C) and vacuum pump were considered.

When using secondary data to create inventories, if the isolated product yield is missing, a 100% value is assumed. General assumptions were made regarding process energy (0.0002 MJ per g of the compound) and electricity consumption (0.000333 KWh per g of the compound) for all unavailable compounds that had to be specifically modeled.²

Moreover, when solvent or additive amounts for solutions preparation or purification steps were missing, the volumes were considered based on our expertise.

The emissions to air during the synthetic processes (0.20% volatile input materials) and air (CO₂), water (river), and sludge emissions after wastewater treatment were calculated as well; No emissions to the soil were determined since no agricultural destination of the digested sludge was considered. In this wastewater treatment, 65.80% of the organic compounds were retained in the sludge, 24.50% were oxidized and emitted to air in the form of CO₂, and the remaining 9.70% were released into the river.^{3,4}

Impact assessment

The impact assessment was modelled with SimaPro v9.6.0.1 software, using ReCiPe 20165 Midpoint (H) and Endpoint (H) and. Precisely, 18 impact categories were considered when ReCiPe 2016 method was used (Global warming; Stratospheric ozone depletion; Human carcinogenic; Human non-carcinogenic toxicity; Fine particulate matter; Ionizing radiation; Ozone formation, Human health; Terrestrial acidification; Freshwater eutrophication; Marine eutrophication; Freshwater ecotoxicity; Water consumption; Land use; Fossil resource scarcity; Mineral resource scarcity; Ozone formation, terrestrial ecosystems; Terrestrial ecotoxicity; Marine ecotoxicity).⁵

Midpoint impact categories and endpoint damage areas (Human health, Ecosystems, and Resources) were analysed from a hierarchical perspective over a 100-year period. Long-term emissions, which affect scenarios beyond 100 years, were excluded due to their high uncertainties and their relationship to heavy metal toxicity. Therefore, they are not particularly relevant in organic chemical processing. The results are presented and analysed in midpoints, and the results are weighted and normalized in endpoint damage areas to compare our approach against others by a single indicator as a benchmark of the global environmental impact. In this process, midpoint characterization results are converted to intermediate units to be weighted and normalized to represent, in millipoints (mPts), the relative impact of the results according to their severity in a global context.

Inventories

Inventories for the synthesis processes

	Quantity for	Process	Wastewater treatment emissions (g)					
Inputs	1 g of product	air emissions (g)	CO₂ to air	Compounds to river	Sludge to landfill			
tetrabutylammonium								
hydroxide	1.070153	-	-	-	-			
H ₂ SO ₄	0.404499	0.000809	-	-	-			
H ₂ O	1.605229	0.00321	-	1.602018542	-			
H ₂ O (reaction side								
product)	0.0742356	-	-	0.0742356	-			
Chemical factory	4xE-13 p	-	-	-	-			
Electricity	0.338257 KWh	-	-	-	-			

 Table S1. Synthesis of tetrabutylammonium hydrogen sulfate (patent US3816533)

	Quantity for	Process	Wastewater treatment emissions (g)					
Inputs	1 g of product	air emissions (g)	CO ₂ to air	Compounds to river	Sludge to landfill			
Tetrabutylammonium								
hydroxide	0.788046	-	-	-	-			
H ₂ O ^a (x TBAH 40%)	1.182069	0.002364	-	1.179704862	-			
HBF ₄	0.26665	0.000533	-	-	-			
H ₂ 0 ^b	0.26665	0.000533	-	0.2661167	-			
Chemical factory	4xE-13 p	-	-	-	-			
Electricity	0.389592 KWh	-	-	-	-			

^aAmount calculated to obtain a 40% v/v tetrabutylammonium hydroxide solution; ^bAmount calculated to obtain a 50% v/v HBF₄ solution;

Table S3. Synthesis of triethylsilane (patent CN102050833)

	Quantity for 1	Process air	Wastewater treatment emissions (g)					
Inputs	g of product	emissions (g)	CO ₂ to air	Compounds to river	Sludge to landfill			
Ethylmagnesium								
bromide	5.601156 g	-	-	1.339407 ^b	1.339407 ^b			
Trichlorosilane	1.456075 g	0.002912	0.077673ª	0.030752	0.208607			
Diethyl ether	11.703123 g	0.023406	0.023406	2.867264	7.700652			
Chemical factory	4xE-13 p	-	-	-	-			
Electricity	1.843875 KWh	-	-	-	-			

^aAs trichlorosilane; ^b 50% of the unreacted material

	Quantity for	Process	Wastewater treatment emissions (g)					
Inputs	1 g of product	air emissions (g)	CO₂ to air	Compounds to river	Sludge to landfill			
Bromoethane	0.89848 g	0.00179696	0.08204315	0.03248239	0.22034446			
Triethylamine	0.523364 g	0.001046728	-	-	-			
Acetonitrile	1.1231 g	0.0022462	0.2751595	0.1089407	0.7389998			
Chemical factory	4xE-13 p	-	-	-	-			
Electricity	0.198922 KWh	-	-	-	-			

 Table S4. Synthesis of tetraethylammonium bromide (patent FR3095437 A1)

Inventories for the needed compounds in the synthesis processes

Table S5. Synthesis of trichlorosilane (directly taken from: *Sustainable Production and Consumption* 2023, **41**, 156–166)

	Quantity for	Process	Wastewater treatment emissions (g)					
Inputs	1 g of product	air emissions (g)	CO₂ to air	Compounds to river	Sludge to landfill			
Silicon	0.25	-	-	-	0.1			
Air compressed	0.00045 m3	-	-	-	-			
H ₂ O	6.136363	-	-	-	-			
Hydrochloric acid	1.670454	-	-	-	-			
Transport lorry (16-		-	-	-	-			
32 ton)	1xE-4 tKm							
Transport train	6.00E-04	-	-	-	-			
	tkm							
Chemical factory	4xE-13 p	-	-	-	-			
Heat from steam	0.0002 MJ	-	-	-	-			
Electricity	0.000333 KWh	-	-	-	-			

Table S6. Synthesis of HBr (patent 6036936)

	Quantity for	Process	Wastewater treatment emissions (g)					
Inputs	1 g of product	air emissions (g)	CO₂ to air	Compounds to river	Sludge to landfill			
H ₂	0.012501	-	-	-	-			
Br ₂	0.987742	-	-	-	-			
Transport lorry (16-		-	-	-	-			
32 ton)	1xE-4 tKm							
Transport train	6.00E-04	-	-	-	-			
	tkm							
Chemical factory	4xE-13 p	-	-	-	-			
Heat from steam	0.0002 MJ	-	-	-	-			
Electricity	0.000333 KWh	-	-	-	-			

	Quantity for	Process	Wastewate	Wastewater treatment emissions (g)				
Inputs	1 g of product	air emissions (g)	CO₂ to air	Compounds to river	Sludge to landfill			
HBr	0.886025	0.000286	0.035146 ^b	0.013914	0.094392			
EtOH	0.445152	0.00089	0.005688	0.002252	0.015276			
H_2SO_4	0.890305	-	-	0.890305°	-			
H ₂ O ^a	0.961351	0.001922	-	0.959429	-			
H ₂ O (reaction side product)	0.16524	_	_	0.16524	_			
Transport lorry (16- 32 ton)	1xE-4 tKm	-	-	-	-			
Transport train	6.00E-04 tkm	-	-	-	-			
Chemical factory	4xE-13 p	-	-	-	-			
Heat from steam	0.0002 MJ	-	-	-	-			
Electricity	0.000333 KWh	-	-	-	-			

 Table S7. Synthesis of Bromoethane (DOI: 10.15227/orgsyn.001.0003)

^aFrom HBr; ^bAs HBr; ^cAs sodium sulfate

Table S8. S	ynthesis of et	nylmagnesium	ı bromide ((patent CN102050833)	ļ
	1	, ,			

	Quantity for	Process	Wastewater treatment emissions (g)			
Inputs	1 g of product	air emissions CO₂ to air (g)		Compounds to river	Sludge to landfill	
Bromoethane	0.963105	0.001926	-	-	-	
Magnesium	0.214692	0.000429	-	-	-	
Diethyl ether	2.564267	0.005128	0.628245	0.248733	1.687287	
Transport lorry (16-		-	-	-	-	
32 ton)	1xE-4 tKm					
Transport train	6.00E-04	-	-	-	-	
	tkm					
Chemical factory	4xE-13 p	-	-	-	-	
Heat from steam	0.0002 MJ	-	-	-	-	
Electricity	0.000333 KWh	-	-	-	-	

	Quantity	Process	Wastewater treatment emissions (g)			
Inputs	for 1 g of product	air emissions (g)	CO₂ to air	Compounds to river	Sludge to landfill	
Water	1.160512	0.002321	-	1.158191	-	
HBr	0.76923	0.00153846	0.043813595 ^b	0.017346607	0.117670	
H_2SO_4	0.993589	0.001987	0.243429°	0.096378133	0.653781562	
1-butanol	0.56923	0.001138	-	-	-	
Na ₂ CO ₃ ^a	0.032051	-	-	0.016025 ^d	0.016025 ^d	
Cacl ₂	0.01282	-	-	0.00641 ^d	0.00641 ^d	
water (reaction	0.131325					
side product)		-	-	0.131325	-	
Transport lorry		-	-	-	-	
(16-32 ton)	1xE-4 tKm					
Transport train	6.00E-04	-	-	-	-	
	tkm					
Chemical factory	4xE-13 p	-	-	-	-	
Heat from steam	0.0002 MJ	-	_	-	_	
Electricity	0.000333 KWh	-	-	-	-	

Table S9. Synthesis of 1-bromobutane (DOI: 10.15227/orgsyn.001.0003)

 a NaHCO3 used; ^{b}as HBr; ^{c}as H2SO4; $^{d}50\%$ of the material

Table S10.	Synthesis of	tetrabutylammo	nium bromide	(patent FR3095437 A	<u>(1)</u>
		,			

	Quantity Pro		Wastewater treatment emissions (g)			
Inputs	for 1 g of product	air emissions (g)	CO₂ to air	Compounds to river	Sludge to landfill	
1-Bromobutane	0.72599	0.001452	0.073734465	0.029192829	0.198029706	
Triethylamine	0.341194	0.000682	-	-	-	
Acetonitrile	0.722525	0.001445	0.177018625	0.070084925	0.47542145	
Transport lorry (16-32 ton)	1xE-4 tKm	-	-	-	-	
Transport train	6.00E-04 tkm	-	-	-	-	
Chemical factory	4xE-13 p	-	-	-	-	
Heat from steam	0.0002 MJ	-	-	-	-	
Electricity	0.000333 KWh	-	-	-	-	

	Quantity	Process	Wastewater treatment emissions (g)			
Inputs	for 1 g of product	air emissions (g)	CO₂ to air	Compounds to river	Sludge to landfill	
Tetrabutylammonium			-	-	-	
bromide	1.242373	-				
Potassium		-	-			
hydroxide	0.621186			0.202472ª	0.202472ª	
Methanol	3.105932	0.006212	0.76095334	0.301275404	2.043703256	
H ₂ O	2.795339	0.005591		2.789748	-	
KBr (reaction side		-	-			
product)	0.458652			0.229326ª	0.229326 ª	
Transport lorry (16-		-	-	-	-	
32 ton)	1xE-4 tKm					
Transport train	6.00E-04	-	-	-	-	
	tkm					
Chemical factory	4xE-13 p	-	-	-	-	
Heat from steam	0.0002 MJ	-	-	-	-	
Electricity	0.000333 KWh	-	-	-	-	

 Table S11. Synthesis of tetrabutylammonium hydroxide (patent FR3095437 A1)

^a50% of the unreacted material or produced side product

Table S12. Synthesis of tetrafluoroboric acid	(DOI: 10.1055/b-0035-111176)
---	------------------------------

Inputo	Quantity for 1	Process air	Wastewater treatment emis (g)		emissions
inputs	g of product	emissions (g)	CO ₂ to air	Compounds to river	Sludge to landfill
Boric acid	0.704226	0.001408	-	-	-
Hydrofluoric acid	0.905434	0.001811	-	-	-
H ₂ O	0.603623	0.001207	-	0.602415754	-
Transport lorry (16-32 ton)	1xE-4 tKm	-	-	-	-
Transport train	6.00E-04 tkm	-	-	-	-
Chemical factory	4xE-13 p	-	-	-	-
Heat from steam	0.0002 MJ	-	-	-	-
Electricity	0.000333 KWh	-	-	-	-

Endpoint and Midpoint characterization

Scheme S1. Endpoint characterization for tetrabutylammonium hydrogen sulfate detailing the single score portion due the other components

Scheme S2. Midpoint characterization to impact categories for the synthesis of tetrabutylammonium hydrogen sulfate

Scheme S3. Endpoint characterization for tetrabutylammonium tetrafluoroborate detailing the single score portion due the other components

Scheme S4. Midpoint characterization to impact categories for the synthesis of tetrabutylammonium tetrafluoroborate

Scheme S5. Endpoint characterization for triethylsilane detailing the single score portion due the other components

Scheme S6. Midpoint characterization to impact categories for the synthesis of triethylsilane

Scheme S7. Endpoint characterization for tetraethylammonium bromide detailing the single score portion due the other components

Scheme S8. Midpoint characterization to impact categories for the synthesis of tetraetylammonium bromide

7. Characterization Data

Chem. Name	N-benzylbutan-	I-amine (3a)					
Lit. Ref.	N. Shankaraiah Reddy, L. S. Sa 7026.	N. Markandontos and A. K	eya, V. Srin (amal, <i>J. Ol</i>	ivasulu, K. Sreekanth, Ch. S. rg. <i>Chem</i> ., 2011, 76 , 7017–			
O Ia	1 + n-BuNH 2 2a	C(-) - A Et ₄ NBr CH ₃ CN:H ₂ O 300mA, r.t., 2	l(+) 1 eq (az.) 1M 2.75F/mol	N n-Bu H 3a			
				WW: 163.26			
Method:							
two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (630.48 mg, 3 mmol), benzaldehyde 1a (318.36 mg, 3 mmol), butylamine 2a (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product 3a as a yellow oil (416.3 mg, 85% yield).							
Mol. Formula	C ₁₁ H ₁₇ N	m.p.	oil				
	δ value:	No. H	Mult	J value/Hz			
	7.21-7.38	5	m				
	3.81	2	S				
	2.65	2	t	7.2			
	1.53	2	р	7.2			
	1.37	2	h	7.3			
	0.94	3	t	7.3			
¹³ C NMR (100.6 Hz, CE	¹³ C NMR (100.6 Hz, CDCl ₃) δ: 140.5, 128.4, 128.1, 126.9, 54.1, 49.2, 32.2, 20.5, 14.1.						
GC-EIMS (m/z, %): 163	GC-EIMS (m/z, %): 163(6), 120(81), 118(11), 92(14), 91(100), 65(12).						

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (630.48 mg, 3 mmol), 4-fluorobenzaldehyde **1b** (372.33 mg, 3 mmol), butylamine **2a** (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3b** as a yellow oil (494.8mg, 91% yield).

Elemental analysis: Calc: C: 72.89; H: 8.90; F: 10.48; N: 7.73; Found: C: 72.88; H: 8.92; F: 10.48; N: 7.72

Mol. Formula	C ₁₁ H ₁₆ FN	m.p.	oil		
	δ value:	No. H	Mult	J value/Hz	
	7.31	2	dd	8.4, 5.5	
	7.02	2	t	8.6	
¹ H NMR (400 MHz	3.78	2	s		
	2.64	2	t	7.2	
	1.79	2	s (broad)		
	1.52	2	р	7.1	
	1.38	2	р	7.4	
	0.93	3	t	7.3	
¹³ C NMR (100.6 Hz, CE)Cl₃) δ: 161.9 (J _{C-F} =	244.5Hz), 13	6.0 (J _{C-F} =3.1Hz), 12	9.7 (J _{C-F} =8.0Hz),	
115.1 (J _{C-F} =21.2Hz), 53.2, 49.1, 32.1, 20.5, 14.0.					
¹⁹ F NMR (376 MHz, CDCl ₃) δ: - 116.1					
GC-EIMS (m/z, %): 18	1(7), 136(69), 109(1	100).			

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (630.48 mg, 3 mmol), 4-chlorobenzaldehyde **1c** (421.71 mg, 3 mmol), butylamine **2a** (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3d** as a yellow oil (516.0mg, 87% yield).

Elemental analysis: Calc: C: 66.83; H: 8.16; Cl: 17.93; N: 7.08; Found: C: 66.82; H: 8.19; Cl: 17.92; N: 7.07

Mol. Formula	C ₁₁ H ₁₆ CIN	m.p.	oil			
	δ value:	No. H	Mult	J value/Hz		
	7.28	4	m			
¹ U NMP (400 MU 7	3.75	2	S			
	2.61	2	t	7.2		
	1.50	2	р	7.1		
	1.36	2	h	7.2		
	0.92	3	t	7.3		
¹³ C NMR (100.6 Hz, CDCI ₃) δ: 139.1, 132.5, 129.4, 128.4, 53.3, 49.1, 32.2, 20.5, 14.0.						
GC-EIMS (m/z, %): 197(6), 156(16), 154(53), 127(32), 125(100), 89(11).						

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 3-fluorobenzaldehyde **1d** (372.33 mg, 3 mmol), butylamine **2a** (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3d** as a yellow oil (429.6mg, 79% yield).

Elemental analysis: Calc: C: 72.89; H: 8.90; F: 10.48; N: 7.73; Found: C: 72.88; H: 8.93; F: 10.46; N: 7.72

Mol. Formula	C ₁₁ H ₁₆ FN	m.p.	oil		
	δ value:	No. H	Mult	J value/Hz	
	7.26	1	m		
	7.07	2	m		
¹ H NMR (400 MHz	6.93	1	m		
	3.77	2	s		
	2.61	2	t	7.2	
	1.50	2	р	7.1	
	1.37	2	h	7.2	
	0.92	3	t	7.4	
¹³ C NMR (100.6 Hz, CD)Cl₃) δ: 163.0 (J _{C-F} =	245.4Hz), 14	3.3 (J _{C-F} =6.8Hz), 12	9.7 (J _{C-F} =8.2Hz),	
123.5 (J _{C-F} =2.8Hz), 114.8 (J _{C-F} =21.2Hz), 113.6 (J _{C-F} =21.1Hz), 53.5, 49.1, 32.2, 20.4, 14.0.					
¹⁹ F NMR (376 MHz, CDCl ₃) δ: - 113.6					
CC EIMS (m/z 0/): 10/	1/5) 126/66) 100/1	100)			

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 3-methoxybenzaldehyde **1e** (408.45 mg, 3 mmol), butylamine **2a** (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3e** as a yellow oil (434.9mg, 75% yield).

mental analysis: Calc: C: 74.57; H: 9.91; N: 7.25; Found: C: 74.56; H: 9.91; N: 7.24
--

Mol. Formula	C ₁₂ H ₁₉ NO	m.p.	oil	
	δ value:	No. H	Mult	J value/Hz
	7.20	1	t	8.0
	6.87	2	m	
	6.76	1	dd	8.2, 2.6
¹H NMR (400 MHz, CDCl₃)	3.76	3	s	
	3.73	2	s	
	2.59	2	t	
	1.88	1, broad		
	1.47	2	m	
	1.33	2	h	7.2
	0.90	3	t	7.3
¹³ C NMR (100.6 Hz, CDCl ₃) δ: 159.7, 142.2, 129.3, 120.4, 113.5, 112.4, 55.1, 54.0, 49.1, 32.2,				

20.5, 14.0.

GC-EIMS (m/z, %): 193(11), 150(20), 121(100), 78(12).

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-propoxybenzaldehyde **1f** (492.60 mg, 3 mmol), butylamine **2a** (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 3 F/mol of current were passed (ca. 50 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3f** as a yellow oil (504.7mg, 76% yield).

Elemental analysis: Calc: C: 75.97; H: 10.47; N: 6.33; Found: C: 75.97; H: 10.48; N: 6.32

Mol. Formula	C ₁₄ H ₂₃ NO	m.p.	oil		
	δ value:	No. H	Mult	J value/Hz	
	7.23	2	d	8.1	
	6.87	2	d	8.1	
	3.92	2	t	6.5	
¹H NMR (400 MHz, CDCl₃)	3.72	2	s		
	2.62	2	t	7.2	
	1.82	2	h	7.2	
	1.50	2	р	7.3	
	1.36	2	h	7.3	
	1.05	3	t	7.4	
	0.93	3	t	7.3	
¹³ C NMR (100.6 Hz, CDCI ₂) δ 158.2 132.4 129.3 114.4 69.5 53.5 49.1 32.2 22.6 20.5					

14.0, 10.5.

GC-EIMS (m/z, %): 221(8), 178(17), 149(100), 121(35).

Chem. Name	N-(2-methylbenzyl)butan-1-amine (3g)				
Lit. Ref.	J. L. Jeffrey, E. 2250–2253.	S. Bartlett an	d R. Sarpong, <i>Ange</i>	ew. Chem., 2013, 125 ,	
↓ O ↓ H 1g	+ n-BuNH 2 2a	C(-) - Al(+ Et ₄ NBr 1 e CH ₃ CN:H ₂ O (a: 300mA, r.t., 3F) c,) 1M F/mol 3 g	9 177.29	
Method:					
Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 2-methylbenzaldehyde 1g (360.45 mg, 3 mmol), butylamine 2a (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 3 F/mol of current were passed (ca. 50 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product 3g as a yellow oil (388.3mg, 73% yield).					
Elemental analysis: (Calc: C: 81.30; H:	10.80; N: 7.90); Found: C: 81.29; H	H: 10.81; N: 7.90	
Mol. Formula	C ₁₂ H ₁₉ N	m.p.	oil		
	δ value:	No. H	Mult	J value/Hz	
	7.30	1	m		
	7.17	3	m		
14 NMP (400 MH-	3.77	2	S		
	2.68	2	t	7.1	
	2.36	3	S		
	1.53	2	р	7.1	
	1.38	2	h	7.3	
	0.94	3	t	7.3	
¹³ C NMR (100.6 Hz, CDCl ₃) δ:138.6, 136.2, 130.2, 128.3, 126.9, 125.9, 51.7, 49.6, 32.3, 20.6,					
19.0, 14.1.					
GC-EIMS (m/z, %): 177(14), 134(26), 105(100), 104(12).					

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 2-naphthaldehyde **1h** (468.54 mg, 3 mmol), butylamine **2a** (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 3 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3h** as a yellow oil (492.8mg, 77% yield).

Elemental analysis: Calc: C: 84.46; H: 8.98; N: 6.57; Found: C: 84.45; H: 8.97; Br: 35.32; N: 6.58

		1		
Mol. Formula	$C_{15}H_{19}N$	m.p.	OII	
	δ value:	No. H	Mult	J value/Hz
	7.84	3	m	
	7.78	1	s	
¹ H NMR (400 MHz	7.48	3	m	
CDCI3)	3.96	2	s	
	2.68	2	t	7.2
	1.55	2	р	7.2
	1.40	2	h	7.3
	0.96	3	t	7.3
¹³ C NMR (100.6 Hz, CDCl ₃) δ: 138.2, 133.5, 132.7, 128.1, 127.8, 127.7, 126.7, 126.4, 126.0,				
125.5, 54.2, 49.2, 32.3, 20.6, 14.1.				
GC-EIMS (m/z, %): 213(19), 170(79), 141(100).				

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-chlorobenzaldehyde **1c** (421.71 mg, 3 mmol), hexylamine **2b** (303.57 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3i** as a yellow oil (548.6mg, 81% yield).

Elemental analysis: Calc: C: 69.16; H: 8.93; Cl: 15.70; N: 6.20; Found: C: 69.16; H: 8.94; Cl:

15.71; N	: 6.18
----------	--------

Mol. Formula	C ₁₃ H ₂₀ CIN	m.p.	oil	
	ò value:	No. H	Mult	J value/Hz
	7.33	4	m	
¹ H NMR (400 MHz	3.65	2	s	
DMSO-d ⁶)	2.44	2	t	7.1
	1.40	2	р	6.8
	1.25	6	m	
	0.85	3	t	6.8
¹³ C NMR (100.6 Hz, DMSO-d ⁶) δ: 140.7, 131.3, 130.1, 128.4, 52.7, 49.1, 31.8, 30.0, 27.0, 22.6,				
14.4.				

GC-EIMS (m/z, %): 225(5), 156(23), 154(73), 127(34), 125(100).

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-chlorobenzaldehyde **1c** (421.71 mg, 3 mmol), pentylamine **2c** (261.48 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3j** as a yellow oil (501.8mg, 79% yield).

Elemental analysis: Calc: C: 68.07; H: 8.57; Cl: 16.74; N: 6.62; Found: C: 68.05; H: 8.58; Cl:

Mol. Formula	C ₁₂ H ₁₈ CIN	m.p.	oil	
	δ value:	No. H	Mult	J value/Hz
	7.33	4	m	
¹ H NMR (400 MHz	3.65	2	s	
CDCI ₃)	2.44	2	t	7.1
	1.41	2	р	7.2
	1.25	4	m	
	0.84	3	m	
¹³ C NMR (100.6 Hz, CDCI ₃) δ: 140.7, 131.4, 130.0, 128.4, 52.7, 49.1, 29.7, 29.6, 22.6, 14.4.				
GC-EIMS (m/z, %): 211(4), 156(19), 154(63), 127(28), 125(100).				

16.74; N: 6.63

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-chlorobenzaldehyde **1c** (421.71 mg, 3 mmol), octylamine **2a** (387.72 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3k** as a yellow oil (624.4mg, 82% yield).

Elemental analysis: Calc: C: 70.98; H: 9.53; Cl: 13.97; N: 5.52; Found: C: 70.97; H: 9.53; Cl:

13.98;	N:	5.53
--------	----	------

Mol. Formula	C ₁₅ H ₂₄ CIN	m.p.	oil	
	δ value:	No. H	Mult	J value/Hz
	7.29	4	m	
¹ H NMR (400 MHz	3.76	2	s	
CDCI ₃)	2.61	2	t	7.2
	1.51	2	р	7.1
	1.29	10	m	
	0.90	3	t	6.6
¹³ C NMR (100.6 Hz, CDCl ₃) δ: 139.1, 132.5, 129.4, 128.4, 53.3, 49.5, 31.8, 30.1, 29.5, 29.3,				
27.3, 22.7, 14.1.				

GC-EIMS (m/z, %): 253(7), 156(21), 154(64), 127(26), 125(100).

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-chlorobenzaldehyde **1c** (421.71 mg, 3 mmol), tert-octanamine **2e** (387.72 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3I** as a yellow oil (616.7mg, 83% yield).

Elemental analysis: Calc: C: 70.98; H: 9.53; Cl: 13.97; N: 5.52; Found: C: 70.98; H: 9.53; Cl: 13.99; N: 5.51

Mol. Formula	C ₁₅ H ₂₄ CIN	m.p.	oil	
	δ value:	No. H	Mult	J value/Hz
	7.29	4	m	
¹ H NMR (400 MHz,	3.71	2	s	
CDCI ₃)	1.50	2	s	
	1.22	6	s	
	1.06	9	s	
¹³ C NMR (100.6 Hz, CDCl ₃) δ: 140.0, 132.3, 129.5, 128.4, 54.7, 53.1, 45.9, 31.8, 30.9, 29.0.				
GC-EIMS (m/z, %): 253(7), 182(42), 125(100).				

Chem. Name	N-(4-chlorober	izyl)propan-2-	amine (3m)			
Lit. Ref.	D. Kim, B. Kang and S. H. Hong, <i>Org. Chem. Front.</i> , 2016, 3 , 475–479.					
CI CI 1c	$\begin{array}{c} O \\ H \\ H \\ \end{array} \\ & 10000000000000000000000000000000000$					
Method:						
Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-chlorobenzaldehyde 1c (421.71 mg, 3 mmol), isopropylamine 2f (177.33 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton and concentrated under reduced pressure, giving the product 3m as a yellow oil (462.9mg, 84% yield).						
Mol. Formula	C ₁₀ H ₁₄ CIN	m.p.	oil			
	δ value:	No. H	Mult	J value/Hz		
	7.31	4	m			
	3.64	2	S			
DWSO-u)	2.64	1	hept	6.3		
	0.96	6	d	6.2		
¹³ C NMR (100.6 Hz, DM	¹³ C NMR (100.6 Hz, DMSO-d ⁶) δ: 141.0, 131.3, 130.1, 128.4, 50.1, 47.7, 23.2.					
GC-EIMS (m/z, %): 183	3(8), 170(19), 16	8(65), 127(31), 125(100).			

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-chlorobenzaldehyde **1c** (421.71 mg, 3 mmol), cyclohexylamine **2g** (297.54 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton and concentrated under reduced pressure, giving the product **3n** as a yellow oil (590.7mg, 88% yield).

Elemental analysis: Calc: C: 69.79; H: 8.11; Cl: 15.84; N: 6.26; Found: C: 69.77; H: 8.12; Cl: 15.82; N: 6.25

Mol. Formula	C ₁₃ H ₁₈ CIN	m.p.	oil	
	δ value:	No. H	Mult	J value/Hz
	7.27	4	m	
¹ H NMR (400 MHz	3.79	2	s	
CDCI ₃)	2.47	1	tt	10.2, 3.6
	1.91	2	m	
	1.74	2	m	
	1.20	6	m	
¹³ C NMR (100.6 Hz, CDCl ₃) δ: 139.6, 132.4, 129.4, 128.5, 56.2, 50.3, 33.6, 26.2, 25.0.				
GC-EIMS (m/z, %): 223(35), 182(23), 180(71), 127(29), 125(100).				

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-chlorobenzaldehyde **1c** (421.71 mg, 3 mmol), cyclopentylamine **2h** (255.45 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3o** as a yellow oil (509.6mg, 81% yield).

Elemental analysis: Calc: C: 68.73; H: 7.69; Cl:16.90; N: 6.68; Found: C: 68.74; H: 7.69; Cl:

16.91; N: 6.66

Mol. Formula	C ₁₂ H ₁₆ CIN	m.p.	oil	
	δ value:	No. H	Mult	J value/Hz
	7.27	4	m	
	3.73	2	s	
¹ H NMR (400 MHz,	3.09	1	р	6.6
CDCl₃)	1.84	2	m	
	1.70	2	m	
	1.54	2	m	
	1.36	2	m	
¹³ C NMR (100.6 Hz, CDCl ₃) δ: 139.3, 132.5, 129.5, 128.4, 59.2, 52.0, 33.2, 24.1.				
GC-EIMS (m/z, %): 209(27), 182(26), 180(82), 166(14), 127(31), 125(100).				

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 4-chlorobenzaldehyde **1c** (421.71 mg, 3 mmol), benzylamine **2i** (321.48 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted with 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the product **3p** as a yellow oil (597.8mg, 86% yield).

emental analysis: Calc: C: 56.25; H: 4.20; N: 14.58; Found: C: 56.27; H: 4.19; N: 14.57

Mol. Formula	C ₉ H ₈ FNO	m.p.	1//-1/9°C	
		-		
¹ H NMR (400 MHz	δ value:	No. H	Mult	J value/Hz
CDCI ₃)	7.35	9	m	
02013)	3.81	4	d	8.9
¹³ C NMR (100.6 Hz, CD)Cl₃) δ: 140.2, 138.	9, 132.6, 129	.5, 128.5, 128.4, 128	3.2, 127.1, 53.1,
52.4.				
GC-EIMS (m/z, %): 231(42), 230(27), 142(27), 140(87), 127(29), 125(79), 106(36), 92(35),				
91(100).				

Prepared according to general procedure B: In a 8 mL vial equipped with a cap and a magnetic stirrer add acetophenone **1i** (360.45 mg, 3 mmol) and butylamine **2a** (219.42 mg, 3 mmol). Let the mixture stir at 90°C for 5 hours. After this time, let the reaction mixture cool to room temperature, then equip the vial with a two electrodes system (aluminium anode and graphite cathode). Add tetraethylammonium bromide (627.45 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile), then electrolyze the resulting mixture in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the crude product. The crude product is further purified by adding HCl(aq.) (2 eq.). Remove water under reduced pressure, then add a mixture of ethyl acetate : petroleum ether (1 : 9) in order to obtain hydrochloride salt product **3q** (397.6mg, 62% yield) as white crystal.

Elemental analysis: Calc: C: 67.43; H: 9.43; Cl: 16.58; N: 6.55; Found: C: 67.42; H: 9.44; Cl: 16.58; N: 6.55

Mol. Formula	$C_{12}H_{20}CIN$	m.p.	142-144°C	
	δ value:	No. H	Mult	J value/Hz
	7.51	5	m	
	4.40	1	q	6.9
¹ H NMR (400 MHz,	2.96	1	m	
MeOH-d⁴)	2.74	1	m	
	1.70	5	m	
	1.38	2	h	7.5
	0.95	3	t	7.4
¹³ C NMR (100.6 Hz, MeOH-d ⁴) δ: 136.4, 129.3, 129.1, 127.3, 58.3, 45.5, 27.8, 19.4, 18.3, 12.4.				

Prepared according to general procedure B: In a 8 mL vial equipped with a cap and a magnetic stirrer add 4-methylacetophenone 1j (402.54 mg, 3 mmol) and butylamine 2a (219.42 mg, 3 mmol). Let the mixture stir at 90°C for 5 hours. After this time, let the reaction mixture cool to room temperature, then equip the vial with a two electrodes system (aluminium anode and graphite cathode). Add tetraethylammonium bromide (627.45 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile), then electrolyze the resulting mixture in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the crude product. The crude product is further purified by adding HCI(aq.) (2 eq.). Remove water under reduced pressure, then add a mixture of ethyl acetate : petroleum ether (1:9) in order to obtain hydrochloride salt product **3r** (396.3mg, 58% yield) as white crystal.

Elemental analysis: Calc: C: 68.55; H: 9.74; Cl: 15.56; N: 6.15; Found: C: 68.53; H: 9.75; Cl:

	-			
Mol. Formula	$C_{13}H_{22}CIN$	m.p.	150-152°C	
	δ value:	No. H	Mult	J value/Hz
	7.35	4	m	
	4.33	1	m	
¹ H NMR (400 MHz	2.92	1	ddd	12.5, 10.1, 5.8
MeOH-d⁴)	2.73	1	ddd	12.3, 10.0, 6.0
	2.39	3	s	
	1.66	5	m	
	1.38	2	h	7.4
	0.95	3	t	7.4
¹³ C NMR (100.6 Hz, Me	•OH-d⁴) δ: 139.5, 1	33.3, 129.7, <i>1</i>	127.3, 58.0, 45.3, 27	.8, 19.8, 19.5, 18.3,
12.5.				

15.56; N: 6.16

Prepared according to general procedure B: In a 8 mL vial equipped with a cap and a magnetic stirrer add 4-chloroacetophenone **1k** (463.77 mg, 3 mmol) and butylamine **2a** (219.42 mg, 3 mmol). Let the mixture stir at 90°C for 5 hours. After this time, let the reaction mixture cool to room temperature, then equip the vial with a two electrodes system (aluminium anode and graphite cathode). Add tetraethylammonium bromide (627.45 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile), then electrolyze the resulting mixture in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the crude product. The crude product is further purified by adding HCl(aq.) (2 eq.). Remove water under reduced pressure, then add a mixture of ethyl acetate : petroleum ether (1 : 9) in order to obtain hydrochloride salt product **3s** (379.7 mg, 51% yield) as white crystal.

Elemental analysis: Calc: C: 58.07; H: 7.72; Cl: 28.57; N: 5.64; Found: C: 58.06; H: 7.72; Cl: 28.57; N: 5.65

Mol. Formula	C ₁₂ H ₁₉ Cl ₂ N	m.p.	163-165°C	
	δ value:	No. H	Mult	J value/Hz
	7.54	4	m	
	4.43	1	m	
¹ H NMR (400 MHz,	2.97	1	ddd	12.2, 10.1, 5.9
CDCI ₃)	2.76	1	m	
	1.69	5	m	
	1.39	2	h	7.5
	0.96	3	t	7.6
¹³ C NMR (100.6 Hz, CDCl ₃) δ: 135.2, 135.1, 129.3, 129.2, 57.6, 45.6, 27.9, 19.5, 18.3, 12.6.				

Prepared according to general procedure B: In a 8 mL vial equipped with a cap and a magnetic stirrer add 1-acetonaphthone **1I** (510.63 mg, 3 mmol) and butylamine **2a** (219.42 mg, 3 mmol). Let the mixture stir at 90°C for 5 hours. After this time, let the reaction mixture cool to room temperature, then equip the vial with a two electrodes system (aluminium anode and graphite cathode). Add tetraethylammonium bromide (627.45 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile), then electrolyze the resulting mixture in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of current were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton using compressed air to speed up the process and concentrated under reduced pressure, giving the crude product. The crude product is further purified by adding HCl(aq.) (2 eq.). Remove water under reduced pressure, then add a mixture of ethyl acetate : petroleum ether (1 : 9) in order to obtain hydrochloride salt product **3t** (419.5 mg, 53% yield) as white crystal.

Elemental analysis: Calc: C: 72.85; H: 8.41; Cl: 13.44; N: 5.31; Found: C: 72.83; H: 8.42; Cl:

Mol. Formula	C ₁₆ H ₂₂ CIN	m.p.	177-179°C	
	δ value:	No. H	Mult	J value/Hz
	8.23	1	d	8.6
	7.99	2	d	8.2
	7.82	1	d	7.2
	7.63	3	m	
¹ H NMR (400 MHz,	5.40	1	q	6.7
MeOH-d⁴)	3.09	1	m	
	2.86	1	m	
	1.82	3	d	6.7
	1.70	2	m	
	1.36	2	h	7.4
	0.92	3	t	7.3
¹³ C NMR (100.6 Hz, MeOH-d ⁴) δ: 134.1, 133.0, 130.7, 129.5, 129.0, 127.1, 126.2, 125.2, 123.5,				
121.7, 52.8, 45.9, 28.0, 19.5, 18.8, 12.4.				

13.46; N: 5.30

Chem. Name	N-butylfurfurylamine (3u)									
Lit. Ref.	P. Galletti, A. I Tagliavini, <i>New</i>	Montecavalli, <i>J. Chem.</i> , 20	F. Moretti, A 009, 33 , 1859.	. Pasteris, C. Samorì and E.						
0 0 1m	+ BuNH ₂ 2a	C(-) Et ₄ NE CH ₃ CN:H ₂ 300mA, r	- Al(+) Br 1 eq O (az.) 1M .t., 3F/mol	O NHBu 3u MW: 153.23						
Method:										
Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), furfural 1m (288.27 mg, 3 mmol), butylamine 2a (219.42 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 3 F/mol of c urrent were passed (ca. 50 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton and concentrated under reduced pressure, giving the product 3u as a yellow oil (340.2 mg, 74% yield).										
Mol. Formula	C ₉ H ₁₅ NO	m.p.		0.04, 11. 9.00, N. 9.10						
	δ value:	No. H	Mult	J value/Hz						
	7.34	1	m							
	6.30	1	m							
	6.16	1	d	3.3						
	3.77	2	s							
DWSO-a')	2.60	2	t	7.2						
	1.47	2	р	7.1						
	1.33	2	h	7.1						
	0.90	3	t	7.3						
¹³ C NMR (100.6 Hz, DI	MSO-d⁶)	, 141.7, 110.	1, 106.7, 48.8	, 46.2, 32.1, 20.4, 14.0.						
GC-EIMS (m/z, %): 15	3(5), 110(37), 81((100).								

Prepared according to general procedure A: in a 8mL vial equipped with a magnetic stirrer and a two electrodes system (aluminium anode and graphite cathode) tetraethylammonium bromide (627.45 mg, 3 mmol), 2-chlorobenzaldehyde **1n** (421.71 mg, 3 mmol), 1-phenylpropan-2-amine **2j** (405.63 mg, 3 mmol) and 3 mL of azeotropic mixture of acetonitrile : water (84% w/w acetonitrile) were consecutively added and the resulting mixture was electrolyzed in CCE at 300 mA under stirring at room temperature until 2.75 F/mol of c urrent were passed (ca. 45 minutes). After reaction completion the mixture was concentrated under reduced pressure. The residue was diluted in 10 mL of ethyl acetate, then it was filtered on cotton and concentrated under reduced pressure, giving the product **3v** as a yellow oil. The hydrochloride salt is obtained by adding HCl(aq.) (2 eq.). Remove water under reduced pressure, then add a mixture of ethyl acetate : petroleum ether (1 : 9) in order to obtain hydrochloride salt product **3v** (693.2 mg, 78% yield) as white crystal.

Elemental analysis: Calc: C: 73.98; H: 6.98; Cl: 13.65; N: 5.39; Found: C: 73.99; H: 6.98; Cl: 13.66; N: 5.37

		-								
Mol. Formula	C ₁₆ H ₁₈ CIN	m.p.	oil							
	δ value:	No. H	Mult	J value/Hz						
	7.78	1	dd	7.1, 2.1						
	7.56	1	dd	7.5, 1.6						
	7.47	2	m							
¹ H NMR (400 MHz,	7.35	5	m							
MeOH-d⁴)	4.50	2	s							
	3.69	1	m							
	3.42	1	dd	13.1, 4.0						
	2.85	1	dd	13.1, 10.4						
	1.36	3	d	6.3						
¹³ C NMR (100.6 Hz. Me	¹³ C NMR (100.6 Hz, MeOH-d ⁴) δ [.] 136 1 134 5 132 2 131 2 129 8 129 4 129 1 128 6 127 7									

127.0, 56.4, 45.6, 38.7, 14.7.

GC-EIMS (m/z, %): 170(21), 168(78), 127(30), 125(100), 91(29), 89(26).

8. References

J. Osorio-Tejada, F. Ferlin, L. Vaccaro and V. Hessel, *Green Chem.*, 2022, **24**, 325–337.

2 G. Wernet, S. Hellweg and K. Hungerbühler, *Int. J. Life Cycle Assess.*, 2012, **17**, 720–728.

R. Hischier, S. Hellweg, C. Capello and A. Primas, *Int. J. Life Cycle Assess.*, 2005, **10**, 59–
67.

4 D. G, Ecoinvent Rep. No. 13. Dübend. Swiss Cent. Life Cycle Invent.

5 M. A. J. Huijbregts, Z. J. N. Steinmann, P. M. F. Elshout, G. Stam, F. Verones, M. Vieira, M. Zijp, A. Hollander and R. van Zelm, *Int. J. Life Cycle Assess.*, 2017, **22**, 138–147.

9. Copies of the NMR spectra

N-benzylbutan-1-amine **3a**

N-(4-fluorobenzyl)butan-1-amine **3b**

`N´ H F

N-(4-fluorobenzyl)butan-1-amine **3b**

20 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 0

ESI – 53

Ν́ Η CI

N-(4-chlorobenzyl)butan-1-amine **3c**

F. `Ń H

N-(3-fluorobenzyl)butan-1-amine **3d**

F N´ H N-(3-fluorobenzyl)butan-1-amine

3d

20 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 0

ESI – 58

.24 .22 .88 .88 .86	.94 .92	<u>5</u>	62.62	.60	86. 2	ģ 🐯	.81	.79	5	5. 57	v Z G	5. 84.	.48	.46	.40	89. X	0 i 0	Ξ.	0.	.05	.03	.95	.93	.9
N N 9 9	mm	mm	2 2	2	- -		—	—	-	, –,			-	-	-	, –,		 ·	—	-	, -	0	0	0
$\forall \forall$											<u>ل</u>				5	\mathbf{h}						_		_

`Ν΄ Η PrO *N*-(4-propoxybenzyl)butan-1-amine 3f

-3.77 -2.70 -2.66 -2.66 -2.66 -2.66 -2.36 -2.66 -1.57 -1.53 -1.49 -1.49 -1.33

N H

N-(2-methylbenzyl)butan-1-amine **3g**

	 138.58 136.19 130.24 128.28 126.87 125.91 		 	
N-(2-methylbenzyl)butan-1-amine 3g				

-3.96 -3.96 -3.96 -2.70 -2.67 -2.67 -2.67 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53

N´ H

N-(naphthalen-2-ylmethyl)butan-1-amine **3h**

	138.18 133.54 132.70 127.71 126.68 126.68 126.61 125.54		 	
N-(naphthalen-2-ylmethyl)butan-1-amine 3h				
		1		

ESI – 67

— 140.69	131.34 130.05 128.38	 ~31.77 ~29.99 ~27.02 ~22.60	—14.37

N-(4-chlorobenzyl)hexan-1-amine **3i**

—7.33

-3.65

-2.45 -2.42 -2.42 -2.42 -1.41 -1.41 -1.39 -1.39 -1.27 -1.27 -1.27 -0.85 -0.83

—140.71	131.35 	 $<^{29.72}_{29.58}$	-22.59	—14.39
ļ	117 1	Y	1	I

N H CI

N-(4-chlorobenzyl)pentan-1-amine **3j**

فيتدنده بالماسية ويقر الفاغاف عدف

محافظهم

a Visio Suntania

H CI

N-(4-chlorobenzyl)octan-1-amine **3k**

1.52 1.50 1.25 1.06

—3.71

—7.29

`N′ H Cl-

N-(4-chlorobenzyl)-2,4,4-trimethylpentan-2-amine **3**I

-140.04	- 129.54 - 129.54 - 128.44	~54.67 ~53.09 —45.93 31.74 ~29.03					
$ \begin{array}{c} \downarrow \downarrow$							
210 200 190 180 170 160 150 140	0 130 120 110 100 90 80 70 60 ppm	50 40 30 20 10 0 -10					

N H CI

N-(4-chlorobenzyl)propan-2-amine **3m**

N H CI N-(4-chlorobenzyl)cyclohexanamine

3n

	 — 56.15 — 50.28	— 33.57 ~ 26.17	~ 25.00
CI N-(4-chlorobenzyl)cyclohexanamine 3n			

Ĥ CI

N-(4-chlorobenzyl)cyclopentanamine **30**

Н CI

N-benzyl-1-(4-chlorophenyl)methanamine **3p**

N-benzyl-1-(4-chlorophenyl)methanamine **3p**

	-136.37 $\begin{pmatrix} 129.29\\ 127.27 \end{pmatrix}$		
N-(1-phenylethyl)butan-1-amine			
Зq			
210 200 190 180 170 160 150	140 130 120 110 100 90 80 70 6 ppm	50 50 40 1	30 20 10 0 -10

N H CI

N-(1-(4-chlorophenyl)ethyl)butan-1-amine **3s**

$$\int_{C_1} \int_{C_1} \int_{C$$

· ·			·	. 1 .	·			1 1	·	·	·	'	'			'	'	'		1 1			
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											ppm												

N-(1-(naphthalen-1-yl)ethyl)butan-1-amine **3t**

.34	.31 .30 .15 .15	.77	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
\sim	$\circ \circ $	ŝ	00011111111117555
	$\searrow \not \checkmark$		

H N Ō

N-(furan-2-ylmethyl)butan-1-amine **3u**

1.02	1.70	5.74	21	05	42	96
4		00			ċ	
U)	2	1 0	ਲੇ ਦੇ		0	(*)
	<u> </u>		V V	(1)	CN .	-

N-(furan-2-ylmethyl)butan-1-amine **3u**

· · · ·				· ·		, , , ,	· · · ·		'	'	'	'	·	'	·	·	'	·	·	·	·	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

3v

