Electronic Supporting Information

Highly efficient oxidative cleavage of lignin β -O-4 linkages via synergistic Co-CoO_x/N-doped carbon and recyclable hexaniobate catalysis

Jie Li,^a Pengpeng Shao,^a Weijie Geng,^a Peng Lei,^a Jing Dong,^b Yingnan Chi*^a and

Changwen Hu^a

a Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China

b College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P.R. China

*Corresponding author (chivingnan7887@bit.edu.cn)

Contents

Catalyst Characterization4
Preparation of Lignin β-O-4 Model Compounds4
Preparation of organosolv birch lignin6
Supplementary experimental results7
Table S1. Different catalysts for the oxidative cleavage of β-O-4 alcohol under aerobic conditions7
Table S2. Different catalysts for the oxidative cleavage of β-O-4 ketone under aerobic conditions8
Table S3. Oxidative cleavage of PP-ol catalyzed by different catalysts. a
Table S4. Influence of KNb_6 amount and different bases on the cleavage of PP-one. 10
Scheme S1. The preparation of Co-CoO _x NPs/N-doped carbon
Figure S1. The optimization of reaction conditions by adjusting CoMA/C $_{900}$ amount. 11
Figure S2. The optimization of reaction conditions by various oxygen pressure11
Figure S3. TEM image, the particle-size distribution histogram and HRTEM image of Co^0 , CoO and/or Co_3O_4 NPs of (a) CoMA/C ₇₀₀ , (b) CoMA/C ₈₀₀ , (c) CoMA/C ₉₀₀ , (d) CoMA/C ₁₀₀₀ 12
Figure S4. (a) N 1s and (b) C 1s XPS spectra of N-doped carbon support in CoMA/C ₉₀₀ . 13
Figure S5. N ₂ sorption isotherms of CoMA/C ₉₀₀ 13
Figure S6. The PXRD patterns of CoMA/C $_{900}$, CoMA/C $_{900}$ -H ⁺ and CoMA/C $_{900}$ -35013
Table S5. Radical trapping experiments for the catalytic cleavage of PP-ol13
Figure S7. EPR patterns in the presence of CoMA/C ₉₀₀ -H ⁺ and CoMA/C ₉₀₀ -350 with DMPO as the trapping agent14
Table S6. The effect of solvent on the oxidative cleavage of PP-ol. 14
Figure S8. The linear fit of $ln(C_t/C_0)$ against the reaction time (a) PP-ol and (b) PP-ol- α - d_1 and (c) PP-ol- β - d_2 catalyzed by CoMA/C ₉₀₀ -KNb ₆ 15
Figure S9. The measurement of apparent activation energy at 60, 70, and 80 °C. The data obtained fit to the first order kinetic15

Figure S10. FT-IR spectra of PP-ol, fresh and immersed KNb ₆ with the wavenumber range of (a) 4000-400 cm ⁻¹ and (b) 1400-400 cm ⁻¹ 16
Figure S11. The possible role of KNb_6 during the process of MeOH attacking C_α site of methyl benzoylformate (2c)16
Figure S12. The detection of CO_2 produced during reaction through a clear limewater
Figure S13. (a) Leaching test for the conversion of PP-ol to aromatic monomers over $CoMA/C_{900}$ -KNb ₆ . (b) Recycling test. (c) FT-IR and (d) PXRD of the fresh and used catalysts.
Figure S14. The detection of CO ₂ by a clear limewater when vanillyl ester and vanillic acid as substrate
Figure S15. 2D HSQC NMR spectra (in DMSO- d_6) of (a) organosolv birch lignin and (b) catalytic cleavage reaction
Figure S16. The distribution of aromatic monomeric products for dioxasolv birch lignin
^1H NMR Spectra of Lignin β -O-4 Model Compounds19
References

Catalyst Characterization

Powder X-ray diffraction (PXRD) data were collected on a Rigaku MiniFlex 600 diffractometer with a Cu-K α X-ray radiation source (λ = 1.54056 Å). Fourier-transform infrared (FT-IR) spectra were recorded at the range 4000-400 cm⁻¹ on a Bruker ALPHA spectrometer. The Co content was measured by a ThermoiCAP Q mass spectrometry. The X-ray photoelectron spectroscopy (XPS) was conducted by the Thermo scientific K α XPS equipped with a monochromatic AI K α X-ray source (1486.6 eV). The morphologies of catalysts were observed on JEM-2010 transmission electron microscope. Electric paramagnetic resonance (EPR) signals were captured on a Bruker EMXplus. Two-dimensional Nuclear Magnetic Resonance Heteronuclear Single Quantum Coherence (2D NMR HSQC) spectra were recorded on a Bruker AVANCE III HD 700 MHz spectrometer. Gel permeation chromatography (GPC) was performed with a Waters 1515 chromatography system equipped with an Agilent PL1110 column. Gas chromatography-mass spectrometry (GC-MS) was used to identify substrate and products on an Agilent 7890A GC/5975C MS.

Preparation of Lignin β-O-4 Model Compounds

Synthesis of 2-(2-Methoxyphenoxy)-1-phenylethanol^[1]: (i) To a solution of guaiacol (0.9 g, 7.3 mmol) in 15 mL acetone, K_2CO_3 (1.04 g, 7.5 mmol) was added and stirred for 30 min. Then, 2-bromoacetophenone (1.4 g, 7 mmol) was added. After reaction for 24 h, the filtrate was collected and concentrated by rotary evaporator in vacuum. The solid was added into EtOAc, washed with 5% NaOH solution and water. The organic phase was collected, dried over anhydrous Na₂SO₄ and evaporated in vacuum. The obtained powder was recrystallized in ethanol.

(ii) The above powder (0.212 g, 1 mmol) was dissolved completely into a mixed solution of THF/H₂O (4:1 volume ratio, 5 mL), and NaBH₄ (76 mg, 2 mmol) was added

and stirred at room temperature. After 1 h, excess saturated NH₄Cl aqueous solution (3 mL) was poured into the reaction mixture. Then, the liquid was extracted with EtOAc, washed with brine and dried over anhydrous Na₂SO₄. The organic phase was concentrated to obtain 2-(2-Methoxyphenoxy)-1-phenylethanol. Similarly, the synthetic steps of other methoxy group substituted 2-Phenoxy-1-phenylethanol were the same as that of 2-(2-Methoxyphenoxy)-1-phenylethanol, except that the starting materials were different.

$$\underbrace{HCHO, K_2CO_3}_{\text{EtOH/Acetone}} \underbrace{O}_{OH} \underbrace{HCHO, K_2CO_3}_{OH} \underbrace{O}_{OH} \underbrace{HCHO_4}_{THF/H_2O} \underbrace{O}_{OH} \underbrace{O}_{$$

Synthesis of 2-phenoxy-1-phenylpropane-1,3-diol^[1]: 2-phenoxyacetophenone was prepared by the above similar method. A mixed EtOH/acetone (1:1, 30 mL) solution containing 2-phenoxyacetophenone (1.27 g, 6.0 mmol), HCHO (36 wt%, 11 mmol) and K_2CO_3 (0.9 g, 6.5 mmol) was stirred for 4 h and evaporated. The residue was dissolved in EtOAc and washed with water and brine. The organic phase was concentrated and purified by column chromatography with petroleum ether/EtOAc. Then the ketone, 1phenyl-3-hydroxy-2-phenoxy propan-1-one, was reduced with NaBH₄ in THF/H₂O to obtain diol.

Synthesis of 2-methyl-2-phenoxy-1-phenylpropan-1-ol^[2]: 2-phenoxyacetophenone (1.0 g, 4.8 mmol) was added to a three-neck bottle with anhydrous THF (26 mL). The bottle was placed in an ice bath, and in an Ar atmosphere NaH (0.64 g, 15.9 mmol, 60 wt% in mineral oil) was slowly added under stirring. After 15 min, CH₃I (0.99 g, 15.9 mmol) was dropped slowly. The mixture was heated at 40 °C for 4 h, followed by 30 mL of water and EtOAc. The extracted organic phase was washed with brine, dried over anhydrous Na₂SO₄, evaporated by rotary, and purified by column chromatography. Finally, 2-methyl-2-phenoxy-1-phenylpropan-1-ol was obtained by a similar reduction process in EtOH solvent.

Preparation of organosolv birch lignin^[3]

A 500 mL round-bottom flask was charged with 1,4-dioxane (144 mL) and the dilute HCl (2 mol/L, 16 mL), and birch sawdust (20 g) was added. The mixture was heated to 80 °C under argon atmosphere for 1 h. The filtrate was collected and concentrated in vacuum. The grume was fully dissolved in acetone/water (9:1, 25 mL) and precipitated by the slowly addition into 250 mL of water. After being dried in air, the crude lignin was redissolved in acetone/methanol (9:1, 25 mL) and gradually added into Et₂O (200 mL) with a quick stir. The organosolv birch lignin was collected by filtration and dried in air, affording 1.47 g solid sample with a yield of 7.35%. Lignin purity was measured by national renewable energy laboratory (NREL) method with the acid insoluble lignin content of 73%. This exacted lignin was used in subsequent experiments without further processing.

Supplementary experimental results

entry	catalysts	base catalysts	reaction system	O ₂	temp. (°C)	time (h)	conv. (%)	yield of phenols (%)	yield of benzoates (%)	ref.
1	(i) AcNH-TEMPO/ HCl/HNO ₃ (ii) H ₂ O ₂ -NaOH	0.001 equiv. NaOH	Homo.	1 atm O ₂ -	45 50	24 10	96 100	- 42	-	[4]
2	AuPd-CTFs	-	Heter.	0.5 MPa	160	4	96	49	17	[1]
3	Pd/CeO ₂	-	Heter.	0.1 MPa	185	24	64	48	14	[5]
4	Au/CeO ₂	-	Heter.	1 MPa	180	4	72	45	31	[6]
5	RuMo/rGO	0.1 M NaOH	Heter.	0.3 MPa	100	12	94	49	-	[7]
6	VB ₁₂ /C-900	0.2 equiv. K ₂ CO ₃	Heter.	0.1 MPa	80	24	96	96	73	[2]
7	Co-N-C	1 equiv. NaOH	Heter.	1 MPa air	150	4	93	69	86	[8]
8	Co@CN	-	Heter.	0.1 MPa	110	12	-	65	31	[9]
9	(i) VOSO₄/TEMPO (ii) Cu(OAc)₂/Phen	0.2 equiv. Phen	Homo.	0.4 MPa	100 80	12 3	82 94	- 85	-	[10]
10	Bim-V-2	-	Homo.	0.5 MPa	120	10	97	92	32	[11]
11	(dipic)V(O)O ⁱ Pr	-	Homo.	Air	100	168	95	77	-	[12]
12	[Cu ^I (bbi)] ₂ {[Cu ^I (bbi)] ₂ - V ^{IV} ₂ V ^V ₈ O ₂₆ }·2H ₂ O	-	Heter.	0.4 MPa	100	12	>99	60	90	[13]
13	[MIMPS] ₂ H ₄ P ₂ Mo ₁₈ O ₆₂	-	Homo.	0.5 MPa	140	10	95	83.5	-	[14]
14	H ₅ PMo ₁₀ V ₂ O ₄₀ /BMIMSO ₃	-	Homo.	$1 \text{ atm } O_2$	130	10	100	80	-	[15]

Table S1. Different catalysts for the oxidative cleavage of β -O-4 alcohol under aerobic conditions.

15	$BetH_5V_2Mo_{18}O_{62}$	-	Homo.	0.8 MPa	140	8	92.9	86.3	1.8	[16]
16			Hotor		100	2	00	00	0.0	This
10	$CONA/C_{900}$ -NND ₆	0.2 equiv. KND ₆	neter.	0.2 IVIPa	100	5	99	99	98	work

Heter. = Heterogeneous; Homo. = Homogeneous; temp. = temperature; conv. = conversion

entry	catalysts	base catalysts	reaction system	O ₂	temp. (°C)	time (h)	conv. (%)	yield of phenols (%)	yield of benzoates (%)	ref.
1	KNb ₆ -Cu/C ₃ N ₄	0.058 equiv. KNb ₆	Heter.	0.5 MPa	80	12	96	90	10	[17]
2	CTF-pDCB-1	-	Heter.	0.5 MPa	140	2	> 99	45	15	[18]
3	KO _x -CTFs	-	Heter.	0.5 MPa	120	2	62	52	8	[3]
4	Cu(OAc) ₂	2 equiv. $BF_3 \cdot OEt_2$	Homo.	0.4 MPa	90	2	86	39	51	[19]
5	CuCl	4 equiv. NaOH	Homo.	1 atm air	30	5.5	97	89	-	[20]
6	Ce-Cu/MFI	-	Heter.	1.0 MPa	150	24	100	-	41	[21]
7	Fe-N-C	-	Heter.	0.3 MPa	140	4	94	93	62	[22]
8	CoMA/C ₉₀₀ -KNb ₆	0.2 equiv. KNb_6	Heter.	0.2 MPa	80	0.25	99	99	96	This work

Table S2. Different catalysts for the oxidative cleavage of β -O-4 ketone under aerobic conditions.

Heter. = Heterogeneous; Homo. = Homogeneous; temp. = temperature; conv. = conversion

	OH OH PP-ol PP-ol	alyst, O ₂ OH, 80 °C		°~+		
Frature -	Catalust	Terrer (0C)	Come (0()h		Yield (%) ^b	
Entry	Catalyst	Temp. (°C)	Conv. (%) ³	2a	2b	2c
1	Blank	80	<1	trace	trace	-
2	KNb ₆	80	14	12	11	-
3	CoMA/C ₉₀₀	80	37	36	24	11
4	CoMA/C ₉₀₀ -KNb ₆	80	90	90	89	-
5	CoMA/C ₉₀₀ -KNb ₆	40	30	30	27	-
6	CoMA/C ₉₀₀ -KNb ₆	60	53	51	52	-
7	CoMA/C ₉₀₀ -KNb ₆	100	99	99	98	-
8	CoMA/C ₉₀₀ -KNb ₆	120	99	99	99	-
9	MA/C ₉₀₀ -KNb ₆	80	16	16	15	1
10	CoMA/C ₇₀₀ -KNb ₆	80	47	45	46	-
11	CoMA/C ₈₀₀ -KNb ₆	80	57	56	41	13
12	CoMA/C ₁₀₀₀ -KNb ₆	80	74	73	66	-
13	Co powder-KNb ₆	80	12	11	12	-
14	CoO-KNb ₆	80	10	9	9	-
15	Co ₃ O ₄ -KNb ₆	80	8	6	7	-
16	CoMA/C ₉₀₀ -350-KNb ₆	80	11	8	10	-
17	CoMA/C ₉₀₀ -H ⁺ -KNb ₆	80	13	10	11	-

Table S3. Oxidative cleavage of PP-ol catalyzed by different catalysts. ^a

^a Reaction conditions: PP-ol (0.05 mmol), CoMA/C₉₀₀-KNb₆ (40 mg, m : m = 5 : 3), 2.5 mL MeOH, 80 °C, 0.2 MPa O₂, t = 3 h, biphenyl as the internal standard. ^b Conversion and yield were monitored by GC with FID detector.

	OH OH PP-ol Catalyst, O ₂ MeOH, 80 °C	$ \begin{array}{c} $	² 0~+〔		
Fasta -	Catalust	Come (0/)h		Yield (%) ^b	
Entry	Catalyst	Conv. (%)*	2a	2b	2c
1	CoMA/C ₉₀₀ -KNb ₆ (5:0)	37	36	24	11
2	CoMA/C ₉₀₀ -KNb ₆ (5:1)	71	67	60	10
3	CoMA/C ₉₀₀ -KNb ₆ (5:2)	86	86	75	11
4	CoMA/C ₉₀₀ -KNb ₆ (5:3)	90	90	89	-
5	CoMA/C ₉₀₀ -KNb ₆ (5:4)	93	86	92	-
6	CoMA/C ₉₀₀ -NaOH (0.2 eq.)	70	68	62	8
7	СоМА/С ₉₀₀ -КОН (0.2 еq.)	74	73	50	19
8	CoMA/C ₉₀₀ -K ₂ CO ₃ (0.2 eq.)	70	70	59	7
9	CoMA/C ₉₀₀ -KOAc (0.2 eq.)	42	32	18	11
10	CoMA/C ₉₀₀ -Prydine (0.2 eq.)	36	35	28	8
11	CoMA/C ₉₀₀ -Et ₃ N (0.2 eq.)	48	45	24	21
12	CoMA/C ₉₀₀ -MgO (0.2 eq.)	41	33	25	12
13	CoMA/C ₉₀₀ -CaO (0.2 eq.)	62	57	48	10
14	CoMA/C ₉₀₀ -Nb ₂ O ₅ (0.2 eq.)	40	39	27	10

Table S4. Influence of KNb₆ amount and different bases on the cleavage of PP-one.^a

^a Reaction conditions: PP-ol (0.05 mmol), CoMA/C₉₀₀ (25 mg), base (0.2 eq.), 2.5 mL MeOH, 80 °C, 0.2 MPa O_2 , t = 3 h. ^b Conversion and yield were monitored by GC with FID detector.

Scheme S1. The preparation of Co-CoO_x NPs/N-doped carbon.

Figure S1. The optimization of reaction conditions by adjusting $CoMA/C_{900}$ amount.

Figure S2. The optimization of reaction conditions by various oxygen pressure.

Figure S3. TEM image, the particle-size distribution histogram and HRTEM image of Co^0 , CoO and/or Co_3O_4 NPs of (a) CoMA/C₇₀₀, (b) CoMA/C₈₀₀, (c) CoMA/C₉₀₀, (d) CoMA/C₁₀₀₀.

Figure S4. (a) N 1s and (b) C 1s XPS spectra of N-doped carbon support in $CoMA/C_{900}$.

Figure S5. N_2 sorption isotherms of CoMA/C₉₀₀. Inset: Pore size distributions of CoMA/C₉₀₀.

Figure S6. The PXRD patterns of CoMA/C₉₀₀, CoMA/C₉₀₀-H⁺ and CoMA/C₉₀₀-350.

Entry	Dedical converger		Yield (%) ^b		
Entry	Radical scavenger	Conv. (%) ²	2a	2b	
1	No	90	90	89	
2 ^c	No	< 1	< 1	< 1	
3	Ph ₂ NH	20	20	16	
4	BQ	3	3	3	
5	BHT	20	20	16	

Table S5. Radical trapping experiments for the catalytic cleavage of PP-ol.^a

^a Reaction conditions: PP-ol (0.05 mmol), CoMA/C₉₀₀-KNb₆ (40 mg, m : m = 5 : 3), 2.5 mL MeOH, 80 °C, 0.2 MPa O₂, t = 3 h. ^b Conversion and yield were monitored by GC with FID detector. ^c 0.2 MPa N₂.

Figure S7. EPR patterns in the presence of CoMA/C₉₀₀-H⁺ and CoMA/C₉₀₀-350 with DMPO as the trapping agent.

Table S6. The effe	ect of solvent o	on the oxidative	cleavage of PP-ol. ^a
--------------------	------------------	------------------	---------------------------------

Entry	a h i a h	C_{onv} (9/)b	Yield (%) ^b		
Littiy	solvent	COIIV. (%) ²	2a	esters	
1	MeOH	90	90	89	
2	EtOH	54	52	53	
3	<i>i</i> -PrOH	37	36	31	
4	<i>t</i> -BuOH	12	12	11	
5	CH₃CN	9	5	-	
6	THF	7	5	-	
7	Diox	5	5	-	

^a Reaction conditions: PP-ol (0.05 mmol), CoMA/C₉₀₀-KNb₆ (40 mg, m : m = 5 : 3), 2.5 mL solvent, 80 °C, 0.2 MPa O₂, t = 3 h. ^b Conversion and yield were monitored by GC with FID detector.

Figure S8. The linear fit of $ln(Ct/C_0)$ against the reaction time (a) PP-ol and (b) PP-ol- α - d_1 and (c) PP-ol- β - d_2 catalyzed by CoMA/C₉₀₀-KNb₆.

Figure S9. The measurement of apparent activation energy at 60, 70, and 80 $^{\circ}$ C. The data obtained fit to the first order kinetic.

Figure S10. FT-IR spectra of PP-ol, fresh and immersed KNb_6 with the wavenumber range of (a) 4000-400 cm⁻¹ and (b) 1400-400 cm⁻¹. KNb_6 was immersed in a minimal amount of methanol containing PP-ol, followed by separation, washing, and drying of the KNb_6 .

Figure S11. The possible role of KNb_6 during the process of MeOH attacking C_{α} site of methyl benzoylformate (**2c**).

Figure S12. The detection of CO₂ produced during reaction through a clear limewater.

Figure S13. (a) Leaching test for the conversion of PP-ol to aromatic monomers over $CoMA/C_{900}$ -KNb₆. (b) Recycling test. (c) FT-IR and (d) PXRD of the fresh and used catalysts.

Figure S14. The detection of CO_2 by a clear limewater using vanillyl ester and vanillic acid as substrate.

Figure S15. 2D HSQC NMR spectra (in DMSO- d_6) of (a) organosolv birch lignin and (b) catalytic cleavage reaction.

Before the 2D HSQC NMR test of dioxasolv birch lignin, to the DMSO- d_6 solution of dioxasolv birch lignin (50 mg), the pyrazine was added as an internal standard. And the H atoms' peak area of pyrazine is normalized as 1.00 according to the integral of ¹H NMR. Thus, the integral peak areas of β -O-4 linkage (A_{α} , A_{β}), β -5 linkage (B_{α} , B_{β} , B_{γ}), and β - β linkage (C_{α} , C_{β} , C_{γ}), to internal standard were calculated as (0.53, 0.52), (0.1, 0.09, 0.2), and (0.18, 0.16, 0.34), according to the integral of ¹H NMR of dioxasolv birch lignin. After oxidative depolymerization (dioxasolv birch lignin: 50 mg), the signals of β -O-4 linkage (A) and β -5 linkage (B) almost disappeared, suggesting that the β -O-4 linkage (A) and β -5 linkage (B) were completely converted. But the signal of the part of the β - β linkages (C) was still observed, and the peak areas of both C_{α} and C_{γ} to internal was calculated as 0.01. Thus, the conversions of C_{α} and C_{γ} in β - β linkages were calculated referred to internal:^[3] 100*[1-0.01/[(0.18)*(50/50)]] = 94% and 100*[1-0.01/[(0.34)*(50/50)]] = 97%.

Figure S16. The distribution of aromatic monomeric products for dioxasolv birch lignin.

¹H NMR Spectra of Lignin β -O-4 Model Compounds

Figure S17. ¹H NMR of 2-(2-Methoxyphenoxy)-1-phenylethanol.

$\begin{array}{c} 7.7.3.8\\ 7.7.7.3.8\\ 7.7.7.3.3.8\\ 7.7.7.7.3.3\\ 7.7.7.3.3\\ 7.7.7.2.3\\ 7.7.7.2.3\\ 7.7.7.2.3\\ 7.7.7.2.3\\ 7.7.7.2.3\\ 7.7.7.2.3\\ 7.7.7.2.3\\ 7.7.3.3\\ 7.7.3\\$

Figure S19. ¹H NMR of 2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl)ethanol.

Figure S22. ¹H NMR of 2-phenoxy-1-phenylpropane-1,3-diol

References

[1] Zhao, L.; Shi, S.; Zhu, G.; Liu, M.; Gao, J.; Xu, J. Au–Pd alloy cooperates with covalent triazine frameworks for the catalytic oxidative cleavage of β -O-4 linkages. *Green Chem.* **2019**, *21*, 6707-

6716.

[2] Luo, H. H.; Wang, L. Y.; Li, G. S.; Shang, S. S.; Lv, Y.; Niu, J. Y.; Gao, S. Nitrogen-doped carbonmodified cobalt-nanoparticle-catalyzed oxidative cleavage of lignin β -O-4 model compounds under mild conditions. *ACS Sustain. Chem. Eng.* **2018**, *6*, 14188-14196.

[3] Zhu, G. Z.; Shi, S.; Zhao, L.; Liu, M.; Gao, J.; Xu, J. Catalytic activation of carbon–hydrogen bonds in lignin linkages over strong-base-modified covalent triazine frameworks for lignin oxidative cleavage. *ACS Catal.* **2020**, *10*, 7526-7534.

[4] Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin. *J. Am. Chem. Soc.* **2013**, *135*, 6415-6418.

[5] Deng, W.; Zhang, H.; Wu, X.; Li, R.; Zhang, Q.; Wang, Y. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO₂-supported Pd nanoparticles. *Green Chem.* **2015**, *17*, 5009-5018.

[6] Song, W. L.; Dong, Q. M.; Hong, L.; Tian, Z. Q.; Tang, L. N.; Hao, W. L.; Zhang, H. X. Activating molecular oxygen with Au/CeO₂ for the conversion of lignin model compounds and organosolv lignin. *RSC Advances* **2019**, *9*, 31070-31077.

[7] Lei, P.; Zhang, J.; Shen, W.; Zhong, M.; Guo, S. Boosting the catalytic performance of Ru nanoparticles in the cleavage of β -O-4 linkages in lignin by doping Mo. *Green Chem.* **2024**, *26*, 6616-6624.

[8] Liu, S.; Bai, L.; van Muyden, A. P.; Huang, Z.; Cui, X.; Fei, Z.; Li, X.; Hu, X.; Dyson, P. J. Oxidative cleavage of β -O-4 bonds in lignin model compounds with a single-atom Co catalyst. *Green Chem.* **2019**, *21*, 1974-1981.

[9] Sun, K.; Chen, S.; Zhang, J.; Lu, G. P.; Cai, C. Cobalt Nanoparticles Embedded in N-Doped Porous Carbon Derived from Bimetallic Zeolitic Imidazolate Frameworks for One-Pot Selective Oxidative Depolymerization of Lignin. *ChemCatChem* **2019**, *11*, 1264-1271.

[10] Wang, M.; Lu, J. M.; Zhang, X. C.; Li, L. H.; Li, H. J.; Luo, N. C.; Wang, F. Two-step, catalytic C–C bond oxidative cleavage process converts lignin models and extracts to aromatic acids. *ACS Catal.* **2016**, *6*, 6086-6090.

[11] Wang, Y.; Ding, B.; He, J.; Ding, Z.; Hou, Z. Ionic Liquid-Stabilizing Vanadium Oxo-Cluster Catalysts for One-Step Selective Oxidative Cleavage of β –O–4 Lignin Model Compounds. *Energy & Fuels* **2023**, *37*, 5429-5440.

[12] Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Thorn, D. L. Aerobic Oxidation of Lignin Models Using a Base Metal Vanadium Catalyst. *Inorg. Chem.* **2010**, *49*, 5611-5618.

[13] Tian, H. R.; Liu, Y. W.; Zhang, Z.; Liu, S. M.; Dang, T. Y.; Li, X. H.; Sun, X. W.; Lu, Y.; Liu, S. X. A multicentre synergistic polyoxometalate-based metal–organic framework for one-step selective oxidative cleavage of β -O-4 lignin model compounds. *Green Chem.* **2020**, *22*, 248-255.

[14] Li, Y.; Zhang, X.; Li, Z.; Song, J.; Wang, X. Full Utilization of Lignocellulose with Ionic Liquid Polyoxometalates in a One-Pot Three-Step Conversion. *ChemSusChem* **2019**, *12*, 4936-4945.

[15] Xin, X.; Li, Z.; Chi, M.; Zhang, M.; Dong, Y.; Lv, H.; Yang, G.-Y. A recoverable polyoxometalateionic liquid catalyst for selective cleavage of lignin β -O-4 models under mild conditions. *Green Chem.* **2023**, *25*, 2815-2824.

[16] Li, Z.; Li, Y.; Chen, Y.; Wang, Q.; Jadoon, M.; Yi, X.; Duan, X.; Wang, X. Developing Dawson-Type Polyoxometalates Used as Highly Efficient Catalysts for Lignocellulose Transformation. *ACS Catal.* 2022, *12*, 9213-9225.

[17] Li, J.; Li, Z.; Dong, J.; Fang, R. B.; Chi, Y. N.; Hu, C. W. Hexaniobate as a Recyclable Solid Base

Catalyst to Activate C–H Bonds in Lignin Linkage Boosting the Production of Aromatic Monomers. *ACS Catal.* **2023**, *13*, 5272-5284.

[18] Zhao, L.; Shi, S.; Liu, M.; Zhu, G.; Wang, M.; Du, W.; Gao, J.; Xu, J. Covalent triazine framework catalytic oxidative cleavage of lignin models and organosolv lignin. *Green Chem.* **2018**, *20*, 1270-1279.

[19] Wang, M.; Li, L. H.; Lu, J. M.; Li, H. J.; Zhang, X. C.; Liu, H. F.; Luo, N. C.; Wang, F. Acid promoted C–C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. *Green Chem.* **2017**, *19*, 702-706.

[20] Hu, Y. Z.; Yan, L.; Zhao, X. L.; Wang, C. G.; Li, S.; Zhang, X. H.; Ma, L. L.; Zhang, Q. Mild selective oxidative cleavage of lignin C–C bonds over a copper catalyst in water. *Green Chem.* **2021**, *23*, 7030-7040.

[21] Li, L. X.; Kong, J. H.; Zhang, H. M.; Liu, S. J.; Zeng, Q.; Zhang, Y. Q.; Ma, H.; He, H. Y.; Long, J. X.; Li, X. H. Selective aerobic oxidative cleavage of lignin C-C bonds over novel hierarchical Ce-Cu/MFI nanosheets. *Appl. Catal. B: Environ.* **2020**, *279*, 119343-119358.

[22] Guo, S.; Tong, X.; Meng, L.; Yang, G. A sustainable iron-catalyzed aerobic oxidative C–C and C– O bond cleavage of a lignin model to phenol and methyl benzoate. *Catal. Sci. & Technol.* **2023**, *13*, 1748-1754.