Electronic Supporting Information

Highly efficient oxidative cleavage of lignin β-O-4 linkages via synergistic Co-CoO*x*/N-doped carbon and recyclable hexaniobate catalysis

Jie Li,^a Pengpeng Shao,^a Weijie Geng,^a Peng Lei,^a Jing Dong,^b Yingnan Chi^{*a} and

Changwen Hu^a

a Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China

b College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P.R. China

*Corresponding author (chiyingnan7887@bit.edu.cn)

Contents

Catalyst Characterization

Powder X-ray diffraction (PXRD) data were collected on a Rigaku MiniFlex 600 diffractometer with a Cu-Kα X-ray radiation source (λ = 1.54056 Å). Fourier-transform infrared (FT-IR) spectra were recorded at the range 4000-400 cm^{-1} on a Bruker ALPHA spectrometer. The Co content was measured by a ThermoiCAP Q mass spectrometry. The X-ray photoelectron spectroscopy (XPS) was conducted by the Thermo scientific Kα XPS equipped with a monochromatic Al Kα X-ray source (1486.6 eV). The morphologies of catalysts were observed on JEM-2010 transmission electron microscope. Electric paramagnetic resonance (EPR) signals were captured on a Bruker EMXplus. Two-dimensional Nuclear Magnetic Resonance Heteronuclear Single Quantum Coherence (2D NMR HSQC) spectra were recorded on a Bruker AVANCE III HD 700 MHz spectrometer. Gel permeation chromatography (GPC) was performed with a Waters 1515 chromatography system equipped with an Agilent PL1110 column. Gas chromatography-mass spectrometry (GC-MS) was used to identify substrate and products on an Agilent 7890A GC/5975C MS.

Preparation of Lignin β-O-4 Model Compounds

Synthesis of 2-(2-Methoxyphenoxy)-1-phenylethanol^[1]: (i) To a solution of guaiacol (0.9 g, 7.3 mmol) in 15 mL acetone, K_2CO_3 (1.04 g, 7.5 mmol) was added and stirred for 30 min. Then, 2-bromoacetophenone (1.4 g, 7 mmol) was added. After reaction for 24 h, the filtrate was collected and concentrated by rotary evaporator in vacuum. The solid was added into EtOAc, washed with 5% NaOH solution and water. The organic phase was collected, dried over anhydrous $Na₂SO₄$ and evaporated in vacuum. The obtained powder was recrystallized in ethanol.

(ii) The above powder (0.212 g, 1 mmol) was dissolved completely into a mixed solution of THF/H₂O (4:1 volume ratio, 5 mL), and NaBH₄ (76 mg, 2 mmol) was added

and stirred at room temperature. After 1 h, excess saturated $NH₄Cl$ aqueous solution (3 mL) was poured into the reaction mixture. Then, the liquid was extracted with EtOAc, washed with brine and dried over anhydrous $Na₂SO₄$. The organic phase was concentrated to obtain 2-(2-Methoxyphenoxy)-1-phenylethanol. Similarly, the synthetic steps of other methoxy group substituted 2-Phenoxy-1-phenylethanol were the same as that of 2-(2-Methoxyphenoxy)-1-phenylethanol, except that the starting materials were different.

$$
\begin{array}{c}\n0 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{HCHO, K2CO3 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n0 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{N}{a}BH_4 \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n0 \\
\hline\n\end{array}
$$

Synthesis of 2-phenoxy-1-phenylpropane-1,3-diol^[1]: 2-phenoxyacetophenone was prepared by the above similar method. A mixed EtOH/acetone (1:1, 30 mL) solution containing 2-phenoxyacetophenone (1.27 g, 6.0 mmol), HCHO (36 wt%, 11 mmol) and $K₂CO₃$ (0.9 g, 6.5 mmol) was stirred for 4 h and evaporated. The residue was dissolved in EtOAc and washed with water and brine. The organic phase was concentrated and purified by column chromatography with petroleum ether/EtOAc. Then the ketone, 1 phenyl-3-hydroxy-2-phenoxy propan-1-one, was reduced with NaBH₄ in THF/H₂O to obtain diol.

Synthesis of 2-methyl-2-phenoxy-1-phenylpropan-1-ol^[2]: 2-phenoxyacetophenone (1.0 g, 4.8 mmol) was added to a three-neck bottle with anhydrous THF (26 mL). The bottle was placed in an ice bath, and in an Ar atmosphere NaH (0.64 g, 15.9 mmol, 60 wt% in mineral oil) was slowly added under stirring. After 15 min, CH₃I (0.99 g, 15.9 mmol) was dropped slowly. The mixture was heated at 40 \degree C for 4 h, followed by 30 mL of water and EtOAc. The extracted organic phase was washed with brine, dried over anhydrous $Na₂SO₄$, evaporated by rotary, and purified by column chromatography. Finally, 2-methyl-2-phenoxy-1-phenylpropan-1-ol was obtained by a similar reduction process in EtOH solvent.

Preparation of organosolv birch lignin[3]

A 500 mL round-bottom flask was charged with 1,4-dioxane (144 mL) and the dilute HCl (2 mol/L, 16 mL), and birch sawdust (20 g) was added. The mixture was heated to 80 $^{\circ}$ C under argon atmosphere for 1 h. The filtrate was collected and concentrated in vacuum. The grume was fully dissolved in acetone/water (9:1, 25 mL) and precipitated by the slowly addition into 250 mL of water. After being dried in air, the crude lignin was redissolved in acetone/methanol (9:1, 25 mL) and gradually added into $Et₂O$ (200 mL) with a quick stir. The organosolv birch lignin was collected by filtration and dried in air, affording 1.47 g solid sample with a yield of 7.35%. Lignin purity was measured by national renewable energy laboratory (NREL) method with the acid insoluble lignin content of 73%. This exacted lignin was used in subsequent experiments without further processing.

Supplementary experimental results

Table S1. Different catalysts for the oxidative cleavage of β-O-4 alcohol under aerobic conditions.

Heter. = Heterogeneous; Homo. = Homogeneous; temp. = temperature; conv. = conversion

entry	catalysts	base catalysts	reaction system	O ₂	temp. (°C)	time (h)	conv. (%)	yield of phenols (%)	yield of benzoates (%)	ref.
$\mathbf{1}$	KNb_6 -Cu/C ₃ N ₄	0.058 equiv. $KNb6$	Heter.	0.5 MPa	80	12	96	90	10	$[17]$
$\overline{2}$	$CTF-pDCB-1$	\sim	Heter.	0.5 MPa	140	$\overline{2}$	> 99	45	15	$[18]$
3	$KOx-CTFs$	\blacksquare	Heter.	0.5 MPa	120	$\overline{2}$	62	52	8	$[3]$
$\overline{4}$	Cu(OAc) ₂	2 equiv. BF_3 OEt_2	Homo.	0.4 MPa	90	$\overline{2}$	86	39	51	$[19]$
5	CuCl	4 equiv. NaOH	Homo.	1 atm air	30	5.5	97	89	-	$[20]$
6	Ce-Cu/MFI		Heter.	1.0 MPa	150	24	100		41	$[21]$
$\overline{7}$	Fe-N-C	\sim	Heter.	0.3 MPa	140	4	94	93	62	$[22]$
8	$CoMA/C900$ -KNb ₆	0.2 equiv. $KNb6$	Heter.	0.2 MPa	80	0.25	99	99	96	This work

Table S2. Different catalysts for the oxidative cleavage of β-O-4 ketone under aerobic conditions.

Heter. = Heterogeneous; Homo. = Homogeneous; temp. = temperature; conv. = conversion

Table S3. Oxidative cleavage of PP-ol catalyzed by different catalysts. ^a

^a Reaction conditions: PP-ol (0.05 mmol), CoMA/C₉₀₀-KNb₆ (40 mg, m : m = 5 : 3), 2.5 mL MeOH, 80 °C, 0.2 MPa O_2 , t = 3 h, biphenyl as the internal standard. b Conversion and yield were monitored by GC with FID detector.

Table S4. Influence of KNb₆ amount and different bases on the cleavage of PP-one. ^a

^a Reaction conditions: PP-ol (0.05 mmol), CoMA/C₉₀₀ (25 mg), base (0.2 eq.), 2.5 mL MeOH, 80 °C, 0.2 MPa O_2 , t = 3 h. $\frac{b}{b}$ Conversion and yield were monitored by GC with FID detector.

Scheme S1. The preparation of Co-CoO*^x* NPs/N-doped carbon.

Figure S1. The optimization of reaction conditions by adjusting CoMA/C₉₀₀ amount.

Figure S2. The optimization of reaction conditions by various oxygen pressure.

Figure S3. TEM image, the particle-size distribution histogram and HRTEM image of Co⁰, CoO and/or Co₃O₄ NPs of (a) CoMA/C₇₀₀, (b) CoMA/C₈₀₀, (c) CoMA/C₉₀₀, (d) $CoMA/C₁₀₀₀$.

Figure S4. (a) N 1s and (b) C 1s XPS spectra of N-doped carbon support in CoMA/C₉₀₀.

Figure S5. N₂ sorption isotherms of CoMA/C₉₀₀. Inset: Pore size distributions of $CoMA/C₉₀₀$.

Figure S6. The PXRD patterns of CoMA/C₉₀₀, CoMA/C₉₀₀-H⁺ and CoMA/C₉₀₀-350.

			Yield $(%)^b$		
Entry	Radical scavenger	Conv. $(\%)^b$	2a	2 _b	
1	No	90	90	89	
2 ^c	No	≤ 1	≤ 1	≤ 1	
3	Ph ₂ NH	20	20	16	
4	BQ	3	3	3	
5	BHT	20	20	16	

Table S5. Radical trapping experiments for the catalytic cleavage of PP-ol.^a

^a Reaction conditions: PP-ol (0.05 mmol), CoMA/C₉₀₀-KNb₆ (40 mg, m : m = 5 : 3), 2.5 mL MeOH, 80 °C, 0.2 MPa O_2 , t = 3 h. ^b Conversion and yield were monitored by GC with FID detector. ^c 0.2 MPa N₂.

Figure S7. EPR patterns in the presence of CoMA/C₉₀₀-H⁺ and CoMA/C₉₀₀-350 with DMPO as the trapping agent.

^a Reaction conditions: PP-ol (0.05 mmol), $COMA/C₉₀₀$ -KNb₆ (40 mg, m : m = 5 : 3), 2.5 mL solvent, 80 °C, 0.2 MPa O_2 , t = 3 h. $\frac{b}{b}$ Conversion and yield were monitored by GC with FID detector.

Figure S8. The linear fit of ln(Ct/C0) against the reaction time (a) PP-ol and (b) PP-ol-α*d*₁ and (c) PP-ol-β-*d*₂ catalyzed by CoMA/C900-KNb6.

Figure S9. The measurement of apparent activation energy at 60, 70, and 80 °C. The data obtained fit to the first order kinetic.

Figure S10. FT-IR spectra of PP-ol, fresh and immersed KNb₆ with the wavenumber range of (a) 4000-400 cm⁻¹ and (b) 1400-400 cm⁻¹. KNb₆ was immersed in a minimal amount of methanol containing PP-ol, followed by separation, washing, and drying of the $KNb₆$.

Figure S11. The possible role of KNb₆ during the process of MeOH attacking C_{α} site of methyl benzoylformate (**2c**).

Figure S12. The detection of CO₂ produced during reaction through a clear limewater.

Figure S13. (a) Leaching test for the conversion of PP-ol to aromatic monomers over CoMA/C₉₀₀-KNb₆. (b) Recycling test. (c) FT-IR and (d) PXRD of the fresh and used catalysts.

Figure S14. The detection of CO₂ by a clear limewater using vanillyl ester and vanillic acid as substrate.

Figure S15. 2D HSQC NMR spectra (in DMSO-*d*6) of (a) organosolv birch lignin and (b) catalytic cleavage reaction.

Before the 2D HSQC NMR test of dioxasolv birch lignin, to the DMSO- d_6 solution of dioxasolv birch lignin (50 mg), the pyrazine was added as an internal standard. And the H atoms' peak area of pyrazine is normalized as 1.00 according to the integral of ¹H NMR. Thus, the integral peak areas of β-O-4 linkage (A_α, A_β), β-5 linkage (B_α, B_β, B_γ), and β-β linkage (C_{α} , C_{β} , C_{γ}), to internal standard were calculated as (0.53, 0.52), (0.1, 0.09, 0.2), and (0.18, 0.16, 0.34), according to the integral of ¹H NMR of dioxasolv birch lignin. After oxidative depolymerization (dioxasolv birch lignin: 50 mg), the signals of β-O-4 linkage (A) and β-5 linkage (B) almost disappeared, suggesting that the β-O-4 linkage (A) and β-5 linkage (B) were completely converted. But the signal of the part of the β-β linkages (C) was still observed, and the peak areas of both C_{α} and C_{γ} to internal was calculated as 0.01. Thus, the conversions of C_α and C_γ in β-β linkages were calculated referred to internal:^[3] 100*[1-0.01/[(0.18)*(50/50)]] = 94% and 100*[1- $0.01/[(0.34)*(50/50)] = 97\%.$

Figure S16. The distribution of aromatic monomeric products for dioxasolv birch lignin.

¹H NMR Spectra of Lignin β-O-4 Model Compounds

Figure S17. ¹H NMR of 2-(2-Methoxyphenoxy)-1-phenylethanol.

Figure S19. ¹H NMR of 2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl)ethanol.

Figure S22. ¹H NMR of 2-phenoxy-1-phenylpropane-1,3-diol

References

[1] Zhao, L.; Shi, S.; Zhu, G.; Liu, M.; Gao, J.; Xu, J. Au–Pd alloy cooperates with covalent triazine frameworks for the catalytic oxidative cleavage of β-O-4 linkages. *Green Chem.* **2019,** *21*, 67076716.

[2] Luo, H. H.; Wang, L. Y.; Li, G. S.; Shang, S. S.; Lv, Y.; Niu, J. Y.; Gao, S. Nitrogen-doped carbonmodified cobalt-nanoparticle-catalyzed oxidative cleavage of lignin β-O-4 model compounds under mild conditions. *ACS Sustain. Chem. Eng.* **2018,** *6*, 14188-14196.

[3] Zhu, G. Z.; Shi, S.; Zhao, L.; Liu, M.; Gao, J.; Xu, J. Catalytic activation of carbon–hydrogen bonds in lignin linkages over strong-base-modified covalent triazine frameworks for lignin oxidative cleavage. *ACS Catal.* **2020,** *10*, 7526-7534.

[4] Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin. *J. Am. Chem. Soc.* **2013,** *135*, 6415-6418.

[5] Deng, W.; Zhang, H.; Wu, X.; Li, R.; Zhang, Q.; Wang, Y. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO₂-supported Pd nanoparticles. *Green Chem.* 2015, 17, 5009-5018.

[6] Song, W. L.; Dong, Q. M.; Hong, L.; Tian, Z. Q.; Tang, L. N.; Hao, W. L.; Zhang, H. X. Activating molecular oxygen with $Au/CeO₂$ for the conversion of lignin model compounds and organosolv lignin. *RSC Advances* **2019,** *9*, 31070-31077.

[7] Lei, P.; Zhang, J.; Shen, W.; Zhong, M.; Guo, S. Boosting the catalytic performance of Ru nanoparticles in the cleavage of β-O-4 linkages in lignin by doping Mo. *Green Chem.* **2024,** *26*, 6616-6624.

[8] Liu, S.; Bai, L.; van Muyden, A. P.; Huang, Z.; Cui, X.; Fei, Z.; Li, X.; Hu, X.; Dyson, P. J. Oxidative cleavage of β-O-4 bonds in lignin model compounds with a single-atom Co catalyst. *Green Chem.* **2019,** *21*, 1974-1981.

[9] Sun, K.; Chen, S.; Zhang, J.; Lu, G. P.; Cai, C. Cobalt Nanoparticles Embedded in N-Doped Porous Carbon Derived from Bimetallic Zeolitic Imidazolate Frameworks for One-Pot Selective Oxidative Depolymerization of Lignin. *ChemCatChem* **2019,** *11*, 1264-1271.

[10] Wang, M.; Lu, J. M.; Zhang, X. C.; Li, L. H.; Li, H. J.; Luo, N. C.; Wang, F. Two-step, catalytic C–C bond oxidative cleavage process converts lignin models and extracts to aromatic acids. *ACS Catal.* **2016,** *6*, 6086-6090.

[11] Wang, Y.; Ding, B.; He, J.; Ding, Z.; Hou, Z. Ionic Liquid-Stabilizing Vanadium Oxo-Cluster Catalysts for One-Step Selective Oxidative Cleavage of β–O–4 Lignin Model Compounds. *Energy & Fuels* **2023,** *37*, 5429-5440.

[12] Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Thorn, D. L. Aerobic Oxidation of Lignin Models Using a Base Metal Vanadium Catalyst. *Inorg. Chem.* **2010,** *49*, 5611-5618.

[13] Tian, H. R.; Liu, Y. W.; Zhang, Z.; Liu, S. M.; Dang, T. Y.; Li, X. H.; Sun, X. W.; Lu, Y.; Liu, S. X. A multicentre synergistic polyoxometalate-based metal–organic framework for one-step selective oxidative cleavage of β-O-4 lignin model compounds. *Green Chem.* **2020,** *22*, 248-255.

[14] Li, Y.; Zhang, X.; Li, Z.; Song, J.; Wang, X. Full Utilization of Lignocellulose with Ionic Liquid Polyoxometalates in a One-Pot Three-Step Conversion. *ChemSusChem* **2019,** *12*, 4936-4945.

[15] Xin, X.; Li, Z.; Chi, M.; Zhang, M.; Dong, Y.; Lv, H.; Yang, G.-Y. A recoverable polyoxometalateionic liquid catalyst for selective cleavage of lignin β-O-4 models under mild conditions. *Green Chem.* **2023,** *25*, 2815-2824.

[16] Li, Z.; Li, Y.; Chen, Y.; Wang, Q.; Jadoon, M.; Yi, X.; Duan, X.; Wang, X. Developing Dawson-Type Polyoxometalates Used as Highly Efficient Catalysts for Lignocellulose Transformation. *ACS Catal.* **2022,** *12*, 9213-9225.

[17] Li, J.; Li, Z.; Dong, J.; Fang, R. B.; Chi, Y. N.; Hu, C. W. Hexaniobate as a Recyclable Solid Base

Catalyst to Activate C–H Bonds in Lignin Linkage Boosting the Production of Aromatic Monomers. *ACS Catal.* **2023,** *13*, 5272-5284.

[18] Zhao, L.; Shi, S.; Liu, M.; Zhu, G.; Wang, M.; Du, W.; Gao, J.; Xu, J. Covalent triazine framework catalytic oxidative cleavage of lignin models and organosolv lignin. *Green Chem.* **2018,** *20*, 1270- 1279.

[19] Wang, M.; Li, L. H.; Lu, J. M.; Li, H. J.; Zhang, X. C.; Liu, H. F.; Luo, N. C.; Wang, F. Acid promoted C–C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. *Green Chem.* **2017,** *19*, 702-706.

[20] Hu, Y. Z.; Yan, L.; Zhao, X. L.; Wang, C. G.; Li, S.; Zhang, X. H.; Ma, L. L.; Zhang, Q. Mild selective oxidative cleavage of lignin C–C bonds over a copper catalyst in water. *Green Chem.* **2021,** *23*, 7030-7040.

[21] Li, L. X.; Kong, J. H.; Zhang, H. M.; Liu, S. J.; Zeng, Q.; Zhang, Y. Q.; Ma, H.; He, H. Y.; Long, J. X.; Li, X. H. Selective aerobic oxidative cleavage of lignin C-C bonds over novel hierarchical Ce-Cu/MFI nanosheets. *Appl. Catal. B: Environ.* **2020,** *279*, 119343-119358.

[22] Guo, S.; Tong, X.; Meng, L.; Yang, G. A sustainable iron-catalyzed aerobic oxidative C–C and C– O bond cleavage of a lignin model to phenol and methyl benzoate. *Catal. Sci. & Technol.* **2023,** *13*, 1748-1754.