Waste-based value-added feedstocks from tire pyrolysis oil distillation: defossilization of the petrochemical industry

Supplementary Information

Juan Daniel Martínez, Alberto Veses, Alberto Sanchís, Andreas Kapf, José Manuel López, María Soledad Callén, Tomás García, Ramón Murillo

Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, Spain.

Pyrum Innovations AG, Dieselstraße 8, D-66763 Dillingen, Germany.

Tables

Table S1. Experimental campaign and detailed GC characterization of the lightfraction

Run	Tomp		LTT (wt%)									
	Reboil er (°C)	RR	Benzen e	Toluen e	Ethyl- benzene	p+m- Xylen e	Styrene + o-Xylene	BTEX	Limonen e			
1	190		19.51	47.65	3.18	8.33	1.47	80.14	0.01			
2	210		14.35	40.19	6.31	18.16	4.22	83.20	0.05			
3	230		11.98	34.15	6.49	20.29	5.68	78.60	0.12			
4	250		9.71	28.52	5.95	18.57	5.47	68.20	0.26			
5	270		8.95	26.23	5.47	17.37	5.21	63.20	0.23			
6	190	1.5										
7	210	1.5	14.25	41.33	6.75	19	4.19	85.50	0.02			
8	230	1.5	11.73	33.53	6.71	20.66	5.49	78.10	0.03			
9	250	1.5	10.18	29.11	5.91	18.52	5.13	68.90	0.09			
10	270	1.5	10.59	29.95	5.85	18.77	5.23	70.40	0.08			

Table S2. Experimental campaign and detailed GC characterization of the heavy fraction

	Temp.		HTT (wt%)								
Run	Reboil er (°C)	RR	Benzen e	Toluen e	Ethyl- benzene	p+m- Xylen e	Styrene + o-Xylene	BTEX	Limonen e		
1	190		0.64	1.89	3.22	9.42	3.09	18.26	0.19		
2	210		0.63	1.53	0.99	5.48	2.74	11.37	0.51		
3	230		0.44	1.27	1.34	1.55	0.93	5.53	0.44		
4	250		0.27	1.28	0.52	1.78	0.64	4.49	0.12		
5	270		0.04	0.20	0.10	0.39	0.16	0.89	0.08		

6	190	1.5							
7	210	1.5	0.21	1.52	1.24	2.74	1.88	7.59	0.19
8	230	1.5	0.44	2.11	0.82	2.48	1.05	6.90	0.19
9	250	1.5	0.54	2.49	0.83	1.87	0.94	6.67	0.19
10	270	1.5	0.38	1.13	0.27	0.93	0.29	3.0	0.08

Type of waste tire	Pyrolysis conditions	Catalyst	Pyrolysis yields	BTEX in the TPO	Ref
Truck tires	Reactor: Fixed-bed. Sample: 300g. Temperature: 800 °C. Heating rate: 15- 25 °C/min	No catalyst	TPO: 44.7 wt%; TPG: 16.8 wt%; RRCB: 38.52 wt%	Aromatics: 65.4 wt%	RS1
Passenge r car tires	Reactor: Py-GC/MS. Sample: ~10 g. Temperature: 400-500 °C	No catalyst	Yields predicted by mathematical models	Optimum pyrolytic condition for yield of BTX (26.5 g per 100 g tire rubber)	RS2
From a recycling plant	Reactor: Self-designed optical precision heat control device. Sample: 0.40 g. Temperature: 425 - 575 °C. Heating rates: 60 - 6000 °C/min	No catalytic	TPO yields in the range of 55-57 wt%	Up to 41.5 area% with high heating rates	RS3
Passenge r cars	Reactor: Fixed bed. Temperature: 500 °C. Heating rate: 10 °C/min. Gas residence time: 30 s approx.)	ZSM-5 (si/Al 40). Y-Zeolite (CBV- 400). Y-Zeolite (CBV-780. Catalyst/feed ratio: 0-1.5	TPO yields in the range of 32-33 wt%. Catalyst presence reduces TPO yield. Increasing catalyst/tire feed ratio decreases TPO yield further and increases gas and coke formation.	Toluene reached a maximum value in the oil of 24 wt.%, benzene 5 wt.%, m/p-xylenes 20 wt.% and o-xylene 7 wt.%. (Total= 56wt%)	RS4
Origin not provided	Reactor: Fixed-bed. Sample: 1g. Temperature: 400-600 °C	Fe ₂ O ₃ , CuO, CaO. Addition ratios: 5, 10, and 15 % of metal oxide	TPO: 48-50 wt% ; TPG: 9- 12 wt%; RRCB: 39-40 wt%	Fe ₂ O ₃ promotes cyclization and dehydrogenation to produce monoaromatics (57.4% relative area)	RS5
Sidewall rubber of automotiv e vehicle scrap tires	Reactor: Continuous stirred batch. Sample: 150g of scrap tires. Temperature: 430-500 °C. Heating rate: 15 °C/min	ZSM-5, USY, β, SAPO-11, and ZSM-22. The catalytic pyrolysis was performed using 1.0 wt% (on a scrap tire weight basis)	HZSM-5: TPO: 55.65 wt%; TPG: 6.49 wt%; RRCB: 37.86 wt%. USY: TPO: 53.49 wt%; TPG: 9.97 wt%; RRCB: 36.54 wt%. β zeolite: TPO: 54 wt%; TPG: 8.24 wt%; RRCB: 37.76 wt%	HZSM-5: MAHs: 45.8 wt% (PAHs: 4.3 wt%). USY: MAHs: 45.4 wt% (PAHs: 3.4 wt%). β zeolite: MAHs: 46.7 wt% (PAHs: 3.3 wt%)	RS6
Origin not	Reactor: Fixed bed. Sample: 30 g.	Zeolites: KL,	TPO: 42-43 wt%; TPG:	MAHs = 44-45 wt%	RS7

Tale S3. BTEX concentrations reported in the literature from the pyrolysis of ELTs

Type of waste tire	Pyrolysis conditions	Catalyst	Pyrolysis yields	BTEX in the TPO	Ref
provided	Temperature: 500 °C. Heating rate: 10 °C/min	HMOR, HBeta, HZSM-5, and HY	11-13 wt%; RRCB: 41-43 wt%		
Small domestic cars	Initial Evaluation: Reactor: Pyroprobe coupled with GC/MS. Sample: 0.60 mg. Temperature: 500-800 °C. Residence time: 5-30 s. Atmospheres: He, CH ₄ , H ₂ , N ₂ , O ₂ <u>Catalytic Pyrolysis:</u> Reactor: fixed-bed. Sample: 3g. Temperature: 750 °C. Heating rate: 500 °C/s. Carrier Gas: CH4. Residence time: 30 s	Different zeolite catalysts. The catalysts were loaded in a quartz tube by mixing with the raw materials at 10 wt. %.	The yields of pyrolysis products are not shown.	<u>Non-catalytic:</u> 40.91 % MAHs were obtained at 500 °C/s and 750 °C in helium atmosphere. <u>Catalytic:</u> The H β catalyst is conducive to the formation of MAHs (up to 53.09 area %). The MCM-41Q catalyst is beneficial to the formation of BTEX (22.35 area %), as the content of MAHs was 46.09 area%	RS8
Origin not provided.	Reactor: Py-GC/MS. Sample: 1 mg. Temperature: 400-450 °C. Heating rate: 2000 °C/s	Noble metals (Pd, Pt, Au) supported on titanate nanotubes (NT- Ti). The catalysts to feedstocks mass ratio was held at 1:4	The yields of pyrolysis products are not shown	The BTX production was enhanced by the presence of catalysts with a selectivity order as follows Pd > Pt ≈ Au > support > non-catalys. Values up to 50 area % of Monoaromatics	RS9
Origin not provided	Reactor: Two-staged pyrolysis– catalysis (fixed bed reactor). Sample: 10g. Temperature: 500 °C	Y-type (USY) zeolite. Catalyst/tire ratios of 0.25, 0.5, 0.75 and 1.0	Non-catalytic: TPO: 45.9 wt%; TPG: 16.5 wt%; RRCB: 37.59 wt%. TPO yield decreased as increasing the catalyst/tire ratio. Values lower than 30 wt%	Values up to 63 wt% of BTEX (catalyst/tire ratio of 0.5)	RS1 0
Origin not provided	Reactor: CDS 5200 Pyroprobe coupled to GC/MS. Sample: 10g. Temperature: 350, 400, and 450 °C	(Pd, Ni or Co)/SiO ₂ . Metal catalysts based on Ni, Co, and Pd	The yields of pyrolysis products are not shown	BTX: Pd (30.1 %) > Ni (22.2 %) > Co (10.2 %) > non-catalyzed (8.8 %)	RS1 1

Type of waste tire	Pyrolysis conditions	Catalyst	Pyrolysis yields	BTEX in the TPO	Ref
		supported on SiO ₂). Catalyst-to- tire ratio of 8:1			
Truck tire	Reactor: Quartz Tube. Sample: 2 g. Temperature: 500 ºC	Metal-modified USY (Fe, Co, Ni, Cu, Zn). 2 g of waste tire and 0.4 g catalyst	TPO yield decreased from 42 to 34 wt%, approximately.	The highest relative content of monoaromatics reached 63.70 relative area % over 1%Cu/USY (42.92 mg/g)	RS1 2
Origin not provided	Reactor: Tandem micro pyrolyzer (Rx- 3050 TR) coupled with GC/MS. Sample: 1 mg. Temperature: 400-600 °C. Investigations: Zinc content and catalytic temperature.	RRCB and Zinc loaded RRCB was used as catalyst. Catalyst- to-tire ratio (5:1, 10:1, 15:1, 20:1, 25:1, and 30:1)	The yields of pyrolysis products are not shown	BTEX yield which was 2.4 times higher than that from uncatalyzed case. The optimal TPO products were obtained at 600 °C with catalyst-to-tire ratio of 20. The relative content of BTEX reached 54.70%	RS1 3

Run	Temp. Reboile	RR	Eleme receiv	ntal com ed (wt%)			
	r (°C)	C) C		C H N S		S	(IVIJ/Kg)
1	190	No	89.0	8.6	1.3	1.1	40.1
2	210	No	89.0	8.6	1.1	1.0	39.5
3	230	No	89.2	8.2	0.6	0.8	39.2
4	250	No	89.7	8.1	1.0	1.0	39.3
5	270	No	89.0	8.0	1.3	1.1	40.1
6	190	1.5					
7	210	1.5	89.1	8.2	1.5	1.0	39.3
8	230	1.5	89.4	8.1	0.8	0.9	41.1
9	250	1.5	89.1	8.0	1.4	1.0	41.4
10	270	1.5	89.2	8.0	1.2	0.8	39.8

 Table S4. Elemental and calorific analyses of the resulting heavy fraction

Table S5. GC/MS results of the resulting heavy fraction

Ru	Temp. Reboil er (°C)	R R	BTEX	BTEX		Substitute d Benzenes		Indanes, indenes		Heterocyc lic compoun ds		РАН		Others	
n 			RA (%)	RS D (%)	RA (%)	RS D (%)	RA (%)	RSD (%)	RA (%)	RS D (%)	RA (%)	RS D (%)	RA (%)	RS D (%)	
1	190	N o	40.2	2.0	36.0	1.0	1.5	4.5	1.7	3.2	19.2	1.4	1.3	3.5	100.0
2	210	N o	32.4	2.5	40.3	1.2	1.7	1.7	1.9	1.5	22.2	1.2	1.6	1.2	100.0
3	230	N o	29.6	1.4	46.8	0.1	2.0	2.3	1.7	2.8	18.1	1.4	1.7	0.4	100.0
4	250	N o	9.1	1.4	27.6	0.1	3.9	2.0	4.7	0.8	52.9	0.3	1.7	0.7	100.0
5	270	N o	3.0	3.0	21.0	2.9	2.8	3.2	5.2	6.1	65.6	1.5	2.3	2.2	100.0
6	190	1. 5													
7	210	1. 5	19.7	0.3	39.7	0.3	2.3	0.7	2.7	9.8	33.8	0.5	1.8	1.9	100.0
8	230	1. 5	17.2	0.5	42.5	0.0	2.4	0.3	2.9	1.2	33.0	0.3	2.0	0.4	100.0
9	250	1. 5	16.3	0.5	38.8	0.8	2.9	1.1	3.1	2.3	37.0	0.8	2.0	1.3	100.0
10	270	1. 5	9.7	1.4	26.0	0.5	2.4	2.5	4.0	0.0	55.6	0.4	2.2	0.2	100.0

Fig. S1. Steady-state temperature profile of the column (run # 1)

Fig. S2. Steady-state temperature profile of the column (runs 2 and 7)

Fig. S3. Steady-state temperature profile of the column (runs 3 and 8)

Fig. S4. Steady-state temperature profile of the column (runs 4 and 9)

Fig. S5. Steady-state temperature profile of the column (runs 5 and 10)

References

[RS1] N Akkouche, M Balistrou, K Loubar, S Awad, M Tazerout. Heating rate effects on pyrolytic vapors from scrap truck tires. *Journal of Analytical and Applied Pyrolysis* 2017, **123**, 419-429. <u>https://doi.org/10.1016/j.jaap.2016.10.005</u>

[RS2] D Zheng, J Cheng, X Wang, G Yu, R Xu, C Dai, N Liu, N Wang, B Chen. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires. *Waste Management* 2023, **169**, 196-207. https://doi.org/10.1016/j.wasman.2023.07.001

[RS3] H Wang, H Hu, Y Yang, H Liu, H Tang, S Xu, A Li, H Yao.. Effect of high heating rates on products distribution and sulfur transformation during the pyrolysis of waste tires. *Waste Management* 2020, **118**, 9-17. https://doi.org/10.1016/j.wasman.2020.08.015

[RS4] PT Williams, AJ Brindle. Aromatic chemicals from the catalytic pyrolysis of scrap tyres. *Journal of Analytical and Applied Pyrolysis* 2003, **67(1)**, 143-164. <u>https://doi.org/10.1016/S0165-2370(02)00059-1</u>

[RS5] H Jiang, J Zhang, J Shao, T Fan, J Li, F Agblevor, H Song, J Yu, H Yang, H Chen. Desulfurization and upgrade of pyrolytic oil and gas during waste tires pyrolysis: The role of metal oxides. *Waste Management* 2024, **182**, 44-54. https://doi.org/10.1016/j.wasman.2024.04.020

[RS6] W Li, C H, D Li, P Huo, M Wang, L Han, G Chen, H Li, X Li, Y Wang, M Wang. Derived oil production by catalytic pyrolysis of scrap tires. *Chinese Journal of Catalysis* 2016, **37(4)**, 526-532. <u>https://doi.org/10.1016/S1872-2067(15)60998-6</u>

[RS7] S Muenpol, R Yuwapornpanit, S Jitkarnka. Valuable petrochemicals, petroleum fractions, and sulfur compounds in oils derived from waste tyre pyrolysis using five commercial zeolites as catalysts: impact of zeolite properties. *Clean Technologies Environmental Policy* 2015, **17**, 1149–1159. <u>https://doi.org/10.1007/s10098-015-0935-8</u>

[RS8] B Wang, Y Fu, H Zheng, D Zeng, R Xiao. Catalytic and noncatalytic fast pyrolysis of waste tires to produce high-value monocyclic aromatic hydrocarbons. *Journal of Analytical and Applied Pyrolysis* 2021, **156**, 105131. https://doi.org/10.1016/j.jaap.2021.105131

[RS9] P Osorio-Vargas, CH Campos, CC Torres, C Herrera, K Shanmugaraj, TM Bustamante, JN Diaz de Leon, F Medina, LE Arteaga-Pérez. *Catalysis Today* 2022, **394–396**, 475-485. <u>https://doi.org/10.1016/j.cattod.2021.06.029</u>

[RS10] S Boxiong, W Chunfei, L Cai, G Binbin, W Rui. Pyrolysis of waste tyres: The influence of USY catalyst/tyre ratio on products. *Journal of Analytical and Applied Pyrolysis* 2007, **78 (2)**, 243-249. <u>https://doi.org/10.1016/j.jaap.2006.07.004</u>

[RS11] P Osorio-Vargas, T Menares, ID Lick, ML Casella, R Romero, R Jiménez, LE Arteaga-Pérez. Tuning the product distribution during the catalytic pyrolysis of waste tires: The effect of the nature of metals and the reaction temperature. *Catalysis Today* 2021, **372**, 164-174. <u>https://doi.org/10.1016/j.cattod.2020.10.035</u>

[RS12] Y Hong, J Guan, C Liang, D He, Y Fan, L Wang, F Nie, J Liu, Q Zhang. Catalytic fast pyrolysis of waste truck-tire to aromatics production over metal-modified USY catalysts. *Journal of Analytical and Applied Pyrolysis* 2023, **174**, 106127. https://doi.org/10.1016/j.jaap.2023.106127

[RS13] Y Pan, J Sima, X Wang, Y Zhou, Q Huang. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char. *Waste Management* 2021, **131**, 214-225. <u>https://doi.org/10.1016/j.wasman.2021.06.013</u>