Supporting Information

Electron-mediator-free efficient photocatalytic regeneration of coenzyme NAD(P)H via direct electron transfer using ultrathin Bi2MoO⁶ nanosheets

Yao Chai,^a Zirui Pang,^a Heng Jiang,^a Chi Chung Tsoi,^a Liang Wan,^a Yu Du,^a Huaping Jia,^a Yujiao Zhu,^a Detao Liu,^d Fengjia Xie,^{*,a} Guangya Zhou^{*,c} and Xuming Zhang^{*,a,b}

*E-*mail: xuming.zhang@polyu.edu.hk, mpezgy@nus.edu.sg, fengjia.xie@connect.polyu.hk.

CONTENTS

EXPERIMENTAL

Materials: Hexadecyltrimethylammonium bromide [CH₃(CH₂)₁₅N(Br)(CH₃)₃, ≥98%], Bismuth(III) nitrate pentahydrate $[Bi(NO₃)₃·5H₂O, ACS$ reagent, ≥98.0%], Sodium molybdate dihydrate [Na₂MoO₄·2H₂O, ACS reagent, ≥99%], β-Nicotinamide adenine dinucleotide hydrate (NAD⁺, ≥99%), β-Nicotinamide adenine dinucleotide, reduced disodium salt hydrate (β-NADH, ≥97%), β-Nicotinamide adenine dinucleotide phosphate hydrate (β-NADP⁺, $≥95%$). Pentamethylcyclopentadienylrhodium(III) chloride dimer $[(Cp*RhCl₂)₂, \geq 97%]$, and 2, 2'-Bipyridyl $(C_{10}H_8N_2, \geq 99\%)$ were purchased from Sigma-Aldrich Chemical Reagent Co.,Ltd.

Characterization: The crystal structure of each photocatalyst was analyzed using X-ray powder diffractometer (XRD, Rigaku SmartLab). Transmission electron microscopy (TEM, FEI TS12) was utilized to examine the microscopic morphology of the photocatalysts. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) were conducted with a Thermo ESCALAB 250XI instrument and a Thermo ESCALAB Xi+ instrument equipped with an ultraviolet photoelectron spectroscope (He I, 21.22 eV), respectively. Furthermore, the ultravioletvisible diffuse reflectance spectra (UV-vis DRS) of the catalysts were acquired on a PerkinElmer UVvis-NIR spectrometer equipped with an integrating sphere. The scanning range was set at 250-800 nm, with a measurement rate of 2 nm/s. Atomic force microscopy (AFM) data were collected using a Bruker Dimension edge. Additionally, photoluminescence (PL) spectra and time-resolved photoluminescence (TRPL) spectra were obtained on an Edinburgh fluorescence spectrometer (PLS1000). N₂ adsorption–desorption isotherms at 77 K were conducted on a Micrometrics ASAP2460 analyzer.

Photoelectrochemical Measurements: The CHI660 electrochemical workstation was used to evaluate the photoelectric properties of the catalyst, providing insights into the separation and migration of photo-generated carriers. A dispersion containing 10 mg of photocatalyst and 20 μL of 5% Nafion solution in 1 mL ethanol underwent 3 hours of sonication. Subsequently, 20 μL of the resulting solution was applied to the conductive surface of a glass electrode with a diameter of approximately 0.25 cm and allowed to air dry. The remaining conductive glass was uniformly coated with nail polish to prevent unintended photoelectric signals. For photocurrent measurements, Pt plates served as the counter electrode, Ag/AgCl as the reference electrode, and $Na₂SO₄$ (0.2 M) as

3

the electrolyte solution. For electrochemical impedance measurements, a 0.5 M KCl solution with 5.0 mM $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$ was used as the electrolyte solution.

Fig. S1. (a) UV-visible absorption spectra of of NADH at different concentrations in an environment containing an electron mediator and (b) the corresponding standard curve. (c) UV-visible light absorption spectra of NADH at different concentrations in an environment without electron mediator and (d) the corresponding standard curve.

Fig. S2. Nitrogen adsorption-desorption curves of a series of catalysts at different preparation temperatures: (a) BMO-80, (b) BMO-100, and (c) BMO-120.

Fig. S3. SEM of Bi₂MoO₆ nanosheets under various hydrothermal preparation temperatures. (a) BMO-80, (b) BMO-100, (c) BMO-120.

Fig. S4. Typical EDS spectrum of the BMO-100 sample.

Fig. S5. Schematic diagram of $Bi₂MoO₆$ crystal structure.

Fig. S6. Schematic representation of two possible structures possible for a single layer of Bi₂MoO₆. (a) [BiO]⁺-[MoO₄]²⁻-[BiO]⁺ sandwich structure and (b) [MoO₄]²⁻-[BiO]⁺-[BiO]⁺ nonsandwich structure.

Fig. S7. HRTEM image of BMO-100.

Fig. S8. SAED image of BMO-100.

Fig. S9. The color of the reaction solution changed gradually over time.

Fig. S10. UV-visible absorption spectrum of photocatalytic NADH regeneration by BMO-100.

Fig. S11. Photocatalytic TEOA oxidation. NMR spectra before and after the reaction and the enlarged image.

Fig. S12. ¹H NMR spectra of the solution before and after 1 hour of illumination, along with the enlarged spectrum.

Fig. S13. UV-Vis absorption spectra of photocatalytic NADH regeneration over a series of photocatalysts in the presence of electron mediators. (a) BMO-80, (b) BMO-100, (c) BMO-120, (d) BMO-140, and (e) BMO-160.

Fig. S14. UV-Vis absorption spectra of photocatalytic NADH regeneration over a series of photocatalysts in the absence of electron mediators. (a) BMO-80, (b) BMO-100, (c) BMO-120, (d) BMO-140, and (e) BMO-160.

Fig. S15. (a) ¹H NMR spectra of NADH standard solutions with different concentrations and the enlarged image. (b) ¹H NMR spectra of the solution after 1 hour of illumination, along with the enlarged spectrum.

To ensure accuracy in the NMR analysis, we utilized the distinct ¹H NMR signal of 1,4-NADH, observed at 6.8 ppm, as a marker for NADH concentration. We established a direct relationship between 1,4-NADH concentration and its peak area at 6.8 ppm. Specifically, at a concentration of 0.6 mM, the peak area measured was 2.2212 \times 10⁻⁴, and at 0.8 mM, it was 2.6268 \times 10⁻⁴. Using this calibration, we determined the NADH concentration postregeneration with the BMO-100 photocatalyst. The peak area at 6.8 ppm was approximately 2.1620×10^{-4} , corresponding to a concentration of 0.62 mM.

Fig. S16. UV-visible absorption spectra of photocatalytic NADH regeneration by BMO-100 under different monochromatic light irradiations: (a) 380 nm, (b) 400 nm, (c) 420 nm.

Fig. S17. XRD patterns of catalyst before and after cycle.

Fig. S18. Effect of catalyst dosage on photocatalytic NADH regeneration activity.

Fig. S19. UV-Vis absorption spectra of photocatalytic NADH regeneration with different amounts of catalyst.

Fig. S20. EPR signal of defective structures.

Type	Reactants	Reagents	Solvent	Product		
Name	$Na2MoO4·2H2O$, Bi(NO ₃) ₃ .5H ₂ O	CTAB	H ₂ O	Bi ₂ MoO ₆		
Mass/g	$0.24195 + 2 \times 0.485.07$	330 0.05		0.6		
PMI	$(0.24195 + 2 \times 0.485.07 + 0.05 + 330)/0.6 = 552.10$					

Table S1. Calculation of PMI during catalyst preparation.

Reactants	Reagents	Solvents	Catalyst	Product	PMI	Ref.
$NAD+$	TEOA	PBS	Bi ₂ MoO ₆	NADH	9211.98	This
6.6343×10^{-4}	0.15	4	0.05	4.56×10^{-4}		work
$NAD+$	TEOA, HCl or NaOH	PBS	$PDA/g-C_3N_4$	NADH	>6191	40
6.6343×10^{-4}	> 0.15	>4	0.01	6.72×10^{-4}		
$NAD+$	TEOA	PBS	Lawn-like TP-	NADH	34112	44
			$COFs/Ti3C2Tx$			
6.6343×10^{-4}	0.15	10	0.015	2.98×10^{-4}		
$NAD+$	EDTA-2Na, EDTA-4Na, TEOA, lactic acid or pure H_2O		ARTM36	NADH		
					32583	45
6.6343×10^{-4}	15		0.020	4.61×10^{-4}		

Table S2. Comparison of PMI of different catalytic systems.