Supporting information for

Electrochemical hydrogenation of nitrogen to ammonia at

ambient conditions in a suspended dual-catalyst system

Yue Zhang^a, Wei Sun^{a*}, Rui-shuang Zhang^a, Yan Feng^a, Bin Dai^{a*}, Jichang Liu^b

a: School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, PR China.

b: State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China.

*Corresponding author: Wei Sun, Email: weisun@shzu.edu.cn and 18741354180@163.com.

Bin Dai, Email: <u>db_tea@shzu.edu.cn</u>.

Contents

Supplementary Tables (Table.S1~3)

Supplementary Figures (Figure 1~27)

Supplementary Text

1. Structure characterizations of prepared Ru/TiO₂ catalyst

- 2. How the alcohols added in SiW_{12} solution affect the ammonia production
- 3. How the alcohols affect the ammonia determination by Nessler's reagents

4. Comparison of ammonia determination by ¹H-NMR or ion chromatography method with the colorimetric method of Nessler's reagents

- 5. Interaction determination between SiW_{12} and catalyst Ru/TiO_2
- 6. Comparison of conventional electrolysis with our proposed routes

Appendix

- 1. Comparison of ammonia synthesis at constant current and constant potential
- 2. Experimental details and errors summarized in Table.A1

References

		0 1 1	NTT 111	TOP			
Electrolyte	(Metal wt%)	mA/cm ²	NH ₃ yield rate ug/h/g-cat	h ⁻¹	FE,%	methods	Ref.
0.5M NaOH	Ru SAs/g-C ₃ N ₄ (0.6wt%)	<0.1	2300	2.28	8.3	Nessler's reagent	[1]
0.1M HCl	Ru/NC (0.1wt%)	~2	3665	21.77	8.5	Indophenol blue method	[2]
0.1M HCl	Ru@ZrO ₂ /NC (0.1wt%)	~2	1500	8.91	15	Indophenol blue method	[2]
0.05M H ₂ SO ₄	Ru SAs/N-C (0.18wt%)	~0.5	120900	399	29.6	Indophenol blue method	[3]
0.05M H ₂ SO ₄	Ru NPs/N-C (2.64wt%)	~0.5	62500	14.07	14.1	Indophenol blue method	[3]
0.5M K ₂ SO ₄	Ru SAs/Mo ₂ CTx (1.41wt%)	~0.1	40800	17.19	25.77	Indophenol blue method	[4]
0.1M HCl	RuP ₂ /rGO (33.54wt%)	~0.2	32300	0.57	13.04	Indophenol blue method	[5]
5mM H ₂ SO ₄	Au ₁ /C ₃ N ₄ (0.15wt%)	~0.04	1947.8	15.05	11.1	Indophenol blue method	[6]
5mM H ₂ SO ₄	Au NPs/C ₃ N ₄ (3.4wt%)	~0.04	1972	0.67	6	Indophenol blue method	[6]
0.1M Na ₂ SO ₄	FePc/C (0.73wt%)	~0.5	10250	4.63	10.5	Indophenol blue method	[7]
0.1M KOH	Fe-N/C-CNTs (0.5wt%)	~0.8	34830	22.95	9.28	Nessler's reagent	[8]
0.1M KOH	FeSA-N-C (1.09wt%)	<0.05	7480	2.26	56.55	Indophenol blue method	[9]
0.1M HCl	Au/CeOx–RGO (1.31wt%)	<0.1	8300	7.34	10.1	Indophenol blue method	[10]
0.1M HCl	Au/TiO ₂ (1.542wt%)	~0.4	21400	16.08	8.11	Indophenol blue method	[11]
0.5M Li ₂ SO ₄	PEBCD/C ()	~1	2010		1.71	Nessler's reagent	[12]
0.05M H ₂ SO ₄	NPC ()	~4.5	23800		1.42	Nessler's reagent	[13]
		0.1	192.2	0.41	42.9		
	Ru/TiO ₂	1	265.2	0.56	5.92	Nessler's	This
0.5mM SiW ₁₂	(0.28wt%)	10	2446.1	5.19	5.46	reagent	work
		100	16691.3	35.42	3.73		

Supplementary Table.S1 Various electrochemical systems for ammonia synthesis from N_2 and H_2O at ambient conditions in reported literatures and our work

FE is the faradaic efficient.

	-			-	-			
T, ℃	Electrolyte	Cathode	Reactants	Current density mA/cm ²	NH ₃ yield rate ug/h/cm ²	FE,%	Detection methods	Ref.
550	BaCe _{0.2} Zr _{0.7} Y _{0.1} O _{2.9}	Ni-BZCY72	H ₂ -N ₂	12.5	175.03	6.2	Cavity Ringdown Spectroscopy	[14]
550	$La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\alpha}$	Ag-Pd	H ₂ -N ₂	2.1	145.04	70	Nessler's reagent	[15]
550	$BaZr_{0.8}Y_{0.2}O_{3\text{-}\delta}$	Ag	H ₂ O-N ₂	4.5	3.00	0.46	Indophenol blue method	[16]
550	$BaZr_{0.8}Y_{0.2}O_{3\text{-}\delta}$	LCSF	H ₂ O-N ₂	5.5	5.20	0.33	Indophenol blue method	[16]
500	$BaCe_{0.9}Y_{0.1}O_{3\text{-}\delta}$	Ru/LSTR	H ₂ -N ₂	0.45	0.31	2	Liquid chromatography	[17]
500	$BaCe_{0.9}Y_{0.1}O_{3\text{-}\delta}$	Ag-Pd	H ₂ -N ₂	0.8	1.84	<1	Liquid chromatography	[17]
500	$BaCe_{0.85}Y_{0.15}O_{3\text{-}\alpha}$	Ag-Pd	H ₂ -N ₂	1.0	128.52	60	Spectro- photometry	[18]
450	SDC-ternary carbonate	(LSFCu) -SDC	H ₂ -N ₂	55	329.87	7.5	Nessler's reagent	[19]
450	LiAlO ₂ -(Li/Na/K) ₂ CO ₃	Co ₃ Mo ₃ N- Ag	H ₂ -N ₂	3.21	20.01	3.83	Nessler's reagent	[20]
400	Carbonate-LiAlO ₂	CoFe ₂ O ₄ - Ag	H ₂ -N ₂	3.0	14.20	2.30	Nessler's reagent	[21]
400	$Ce_{0.8}Gd_{0.18}Ca_{0.02}O_{2\text{-}\delta}$	(LSFCu)- CGDC	H ₂ O -N ₂ /Air	14.5	3.06	0.39	Ammonia ISE analysis	[22]
300	LiCl, KCl, CsCl (0.5% Li ₃ N)	Porous Ni Plate	H ₂ O-N ₂	25	354.96	80	IR spectroscopy	[23]
300	LiCl, KCl, CsCl (0.5% Li ₃ N)	Porous Ni Plate	H ₂ O-N ₂	23	1224.0	23	IR spectroscopy	[24]
200	NaOH/KOH Nano-Fe ₂ O ₃	Ni	H ₂ O-N ₂	200	612.0	35	UV/vis, ISE, Test strips	[25]
200	Na _{0.5} K _{0.5} OH Nano-Fe ₂ O ₃	Monel (Ni-Cu)	H ₂ O-N ₂	20	991.44	76	UV/vis, ISE, Test strips	[26]
90	Nafion	Ru	H ₂ O-N ₂	2.6	1.30	0.92	Ion Chromatography	[27]
80	Nafion	Pt	H ₂ O -Air	10	57.34	0.83	Nessler's reagent	[28]
		Graphite rod		0.1	192.2	42.9		
		(with		1	265.2	5.92	Nessler's	This
Ambient	t 0.5mM SiW ₁₂ suspen		H_2O-N_2	10	2446.1	5.46	Reagent	work
		Ru/TiO ₂)		100	16691.3	3.73	5	
				200		2.70		

Supplementary Table.S2 Various electrochemical systems for ammonia synthesis under ambient pressure and different temperatures in reported literatures and our work

		Metal	Tem./Pre.	^a NH ₃ yield	Ea	^b NH ₃ yield(25 °C)	^c TOF(25 ℃)	Dí
No.	Catalysts	(wt%)	(H ₂ /N ₂)	umol/g/h	kJ/mol	umol/g/h	s^{-1}	Ref
1	Ru/C12A7:e ⁻	1.2(Ru)	360 ℃, 1atm (3:1)	1820	49	0.052	1.21×10 ⁻⁷	[29]
2	Ru/C12A7:O ²⁻	1.2(Ru)	360 ℃, 1atm (3:1)	250	104	5.62×10 ⁻⁸	1.31×10 ⁻¹³	[29]
3	Ru/CaO•Al ₂ O ₃	1.2(Ru)	360 ℃, 1atm (3:1)	150	118	1.70×10 ⁻⁹	3.97×10 ⁻¹⁵	[29]
4	Ru-Cs/MgO	6(Ru)	360 ℃, 1atm (3:1)	1720	99	1.13×10 ⁻⁶	5.26×10 ⁻¹³	[29]
5	Ru/C12A7:H ⁻	1(Ru)	360 ℃, 1atm (3:1)	90	154	4.66×10 ⁻¹³	1.31×10 ⁻¹⁸	[29]
6	Ru/γ - Al_2O_3	6(Ru)	400 ℃, 1atm (3:1)	51	64.4	2.61×10 ⁻⁵	1.22×10 ⁻¹¹	[30]
7	Ru/CaO	1.5(Ru)	400 ℃, 1atm (3:1)	158	120.1	2.94×10^{-10}	5.50×10 ⁻¹⁶	[30]
8	Ba-Ru/AC	1(Ru)	400 ℃, 1atm (3:1)	148	88.8	3.14×10 ⁻⁷	8.81×10 ⁻¹³	[30]
9	Ba-Ru/AC	9.1(Ru)	400 ℃, 1atm (3:1)	2228	72.5	1.85×10 ⁻⁴	5.70×10 ⁻¹¹	[30]
10	Cs-Ru/MgO	1(Ru)	400 ℃, 1atm (3:1)	2264	85.8	9.43×10 ⁻⁶	2.65×10 ⁻¹¹	[30]
11	Cs-Ru/MgO	6(Ru)	400 ℃, 1atm (3:1)	3353	73	2.48×10 ⁻⁴	1.16×10 ⁻¹⁰	[30]
12	Ru/C12A7:O ²⁻	1.2(Ru)	400 ℃, 1atm (3:1)	546	104.6	3.32×10 ⁻⁸	7.75×10 ⁻¹⁴	[30]
13	Ru/C12A7:e-	0.1(Ru)	400 ℃, 1atm (3:1)	715	53.6	0.0042	1.17×10 ⁻⁷	[30]
14	Ru/C12A7:e-	0.3(Ru)	400 ℃, 1atm (3:1)	1027	40	0.13	1.19×10 ⁻⁶	[30]
15	Ru/C12A7:e-	1.2(Ru)	400 ℃, 1atm (3:1)	2757	49.1	0.044	1.03×10 ⁻⁷	[30]
16	Ru/C12A7:e-	4(Ru)	400 ℃, 1atm (3:1)	2122	56	0.0072	5.05×10 ⁻⁹	[30]
17	Ru/C12A7:e ⁻ (HT)	2(Ru)	340 ℃, 1atm (3:1)	2290	53	0.039	5.41×10 ⁻⁸	[31]
18	Ru/C12A7:e ⁻ (SP)	2(Ru)	340 ℃, 1atm (3:1)	1180	49	0.046	6.38×10 ⁻⁸	[31]
19	Ru/Ca ₂ N:e ⁻	1.8(Ru)	300 ℃, 1atm (3:1)	1674	60	0.015	2.34×10 ⁻⁸	[32]

Supplementary Table.S3 Comparison of ammonia NH_3 generation rate in literatures (hydrogenation of nitrogen N_2 with hydrogen H_2 : $N_2 + H_2 \rightleftharpoons NH_3$) with this study.

20	Ru/CaNH	1.8(Ru)	300 °C, 1atm (3:1)	53	110	2.95×10 ⁻⁸	4.60×10 ⁻¹⁴	[32]
21	Ru/C12A7:e ⁻	1.8(Ru)	300 °C, 1atm (3:1)	745	51	0.038	5.95×10 ⁻⁸	[32]
22	Ru/CaH ₂	2(Ru)	300 °C, 1atm (3:1)	2549	71	0.0027	3.80×10 ⁻⁹	[32]
23	Ru–Cs/MgO	2(Ru)	300 °C, 1atm (3:1)	697	120	5.60×10 ⁻⁸	7.85×10 ⁻¹⁴	[32]
24	Ru/BaO-CaH ₂	10(Ru)	340 °C, 1atm (3:1)	10500	41	2.13	5.97×10 ⁻⁷	[33]
25	Ru/CaH ₂	10(Ru)	340 °C, 1atm (3:1)	7400	68	0.0055	1.56×10 ⁻⁹	[33]
26	Ru/Ba-Ca(NH ₂) ₂	10(Ru)	340 °C, 1atm (3:1)	12400	44	1.35	3.79×10 ⁻⁷	[33]
27	Ru/Y ₅ Si ₃	2(Ru)	400 °C, 1atm (3:1)	800	48	0.016	2.30×10 ⁻⁸	[34]
28	Ru/Y ₅ Si ₃	5(Ru)	400 °C, 1atm (3:1)	1400	50	0.018	1.03×10 ⁻⁸	[34]
29	Ru/Y ₅ Si ₃	7.8(Ru)	400 °C, 1atm (3:1)	1900	52	0.016	5.70×10 ⁻⁹	[34]
30	Ru/LaScSi	1.8(Ru)	400 °C, 1atm (3:1)	2800	52	0.023	3.64×10 ⁻⁸	[35]
31	Ru/LaScSi	4.4(Ru)	400 °C, 1atm (3:1)	3000	52	0.025	1.59×10 ⁻⁸	[35]
32	Ru/LaScSi	8.3(Ru)	400 °C, 1atm (3:1)	3400	49	0.056	1.88×10^{-8}	[35]
33	Co/C12A7:e ⁻	2.6(Co)	400 °C, 1atm (3:1)	1764	49.5	0.026	1.63×10 ⁻⁸	[36]
34	Co/C12A7:O ₂	2.9(Co)	400 °C, 1atm (3:1)	48	112.7	4.72×10 ⁻¹⁰	2.66×10 ⁻¹⁶	[36]
35	Ba-Co/AC	10(Co)	400 °C, 1atm (3:1)	104	98.3	2.60×10 ⁻⁸	4.27×10 ⁻¹⁵	[36]
36	Cs-Co/MgO	6(Co)	400 °C, 1atm (3:1)	149	108.9	3.44×10 ⁻⁹	9.40×10 ⁻¹⁶	[36]
37	Co ₃ Mo ₃ N		400 °C, 1atm (3:1)	652	56	0.0022		[37]
38	Ni-Mo-N		400 °C, 1atm (3:1)	275	53	0.0018		[37]
39	Fe-Mo-N		400 °C, 1atm (3:1)	143	47	0.0037		[37]
40	Mo_2N		400 ℃, 1atm (3:1)	68	52	5.67×10 ⁻⁴		[37]

41	Ru/CaFH	12(Ru)	50 °C, 1atm (3:1)	50	20	26.77	6.26×10 ⁻⁶	[38]
42	Ru/MgX	2.21(Ru)	400 ℃, 20atm (3:1)	2804	147	1.23×10 ⁻¹¹	1.56×10 ⁻¹⁷	[39]
43	Ru/CsX	1.82(Ru)	400 ℃, 20atm (3:1)	993	82	9.72×10 ⁻⁶	1.50×10 ⁻¹¹	[39]
44	Ru/KX-1	2.16(Ru)	400 ℃, 20atm (3:1)	993	124	7.68×10 ⁻¹⁰	9.98×10 ⁻¹⁶	[39]
45	Ru/BaX-1	2.02(Ru)	400 ℃, 20atm (3:1)	1980	173	2.51×10 ⁻¹⁴	3.48×10 ⁻²⁰	[39]
46	Co-Ba/C		400 ℃, 10atm (3:1)	22320	102	2.43×10 ⁻⁶		[40]
47	Co-Sr/C		400 ℃, 10atm (3:1)	5040	110	9.09×10 ⁻⁸		[40]
48	Fe(KM1)		400 ℃, 10atm (3:1)	37800	70	0.0055		[40]
49	Co/C		400 ℃, 10atm (3:1)	79.2	149	2.22×10 ⁻¹³		[40]
50	Fe/C		400 ℃, 10atm (3:1)	7560	143	8.15×10 ⁻¹¹		[40]
51	Fe-LiH		300 ℃, 10atm (3:1)	4500	46.5	0.55		[41]
52	Mn-LiH		300 ℃, 10atm (3:1)	3000	50.6	0.17		[41]
53	Co-LiH		300 ℃, 10atm (3:1)	4800	52.1	0.20		[41]
54	Cr-LiH		300 ℃, 10atm (3:1)	3500	63.6	0.016		[41]
55	SiW ₁₂ -Ru/TiO ₂	0.28(Ru)	25 ℃, 1atm ()	981.8			9.84×10 ⁻³	This work

a: Ammonia yield was experimentally determined at the given temperature and pressure (H_2/N_2) , where H_2/N_2 is the volume ratio of hydrogen H_2 to nitrogen N_2 in feedstock.

b: Ammonia yield at 25 °C was extrapolated from the experimentally determined ammonia yield and activation energy E_a .

c: TOF was calculated from the ammonia yield divided by the number of metal atoms deposited on the catalysts.

Before electrolysis

After electrolysis

Supplementary Fig.S1 (A) Schematic illustration for three-electrode system of SiW_{12} mediated electro-hydrogenation. (B) Photograph of the experimental setup. The SiW_{12} reaction solution in cathode compartment is colorless before electro-reduction, and the color turns to dark blue after electrolysis.

Supplementary Fig.S2 Chronologically recorded UV-Vis spectra of SiW_{12} solution (0.5g SiW_{12} , 35mL H₂O) without electrolysis. The inset photographs demonstrate the SiW_{12} solution having no color change without electrolysis.

Supplementary Fig.S3 Cyclic voltammogram of SiW₁₂ solution (scanning conditions: working electrode: Pt sheet; reference electrode: Ag/AgCl; SiW₁₂ concentration: 0.05mol/L; temperature: 20° C; scanning rate: 10mV/s). The curve of SiW₁₂ includes three redox waves: the waves centered at around +0.10 V (I), -0.20V (II) and -0.40V (III). The first two waves are ascribed to two one-electron reduction processes and the third wave corresponds to a proton associated two-electron reduction[42].

Supplementary Fig.S4 UV-Vis spectra of SiW_{12} solutions before and after adding 0.05g Ru/TiO₂ catalyst particles under a constant electrolysis current density of 100 mA/cm². The UV-Vis spectra were measured by taking out 5mL sample from SiW_{12} solutions (0.5g SiW_{12} , 35mL H₂O) which were electrolyzed 50min.

Supplementary Fig.S5 (A) Illustration of three-electrode electrolysis experimental setup for electrochemical hydrogenation of nitrogen into ammonia. (B) LSV curves in 5mM SiW₁₂ solution suspended with 0.05g Ru/TiO₂ under N₂ and Ar atmospheres. The scan rate is 10mV/s. It can be found that the current density of solution under N₂ atmospheres become larger and larger than that under Ar atmospheres as the reaction proceeds. This could be ascribed to the ammonium ions produced when N₂ gas is bubbled into solution.

Supplementary Fig.S6 (A) The UV-Vis absorbance of NH₄Cl aqueous solutions with known NH₄Cl concentrations. (B) Standard curve of the absorbance at 420nm of NH₄Cl aqueous solutions with different NH₄Cl concentrations. The absorbance at 420nm shows a strong linear correlation with the NH₄Cl concentrations, indicating the relationship is in accordance with the Beer-Lambert Law. The Standard curve was measured 3 times.

Supplementary Fig.S7 TPD spectra of NH₃ from Ru/TiO₂ catalyst after exposure to NH₃ at 50°C for 1h. Ru/TiO₂ catalyst displays three TPD peaks, one centered at ~118 $^{\circ}$ C, the other two centered at ~346.5 °C and ~593 °C respectively. Moreover, relative low NH₃ response below 100 °C was observed, suggesting the adsorption of NH₃ on Ru/TiO₂ is very strong and most of NH₃ generated on Ru/TiO₂ are difficult to desorb from Ru/TiO₂ catalyst surface at temperature lower than 100 °C.

Supplementary Fig.S8 The adsorption isotherms needed in this work to calculate the amount of adsorbed ammonia during the reaction. (A) The adsorption isotherms were measured at room temperature in SiW₁₂ solution suspended with Ru/TiO₂ or TiO₂ catalyst particles respectively; (B) The adsorption isotherms were measured at room temperature respectively in SiW₁₂ solution, CF₃SO₃H solution and H₃PO₄ solution suspended with Ru/TiO₂ catalysts; (C) The adsorption isotherms were measured at room temperature in different pH values of SiW₁₂ solution suspended with Ru/TiO₂ catalysts; (D) The adsorption isotherms were measured at room temperature in SiW₁₂ solution suspended with Ru/TiO₂ solution suspended with Ru/TiO₂ catalysts; (D) The adsorption isotherms were measured at room temperature in SiW₁₂ solution suspended with different commercial carbon-supported metal catalysts.

Supplementary Fig.S9 Ammonia yields and corresponding faradaic efficiency in different acid solutions (pH value is same with each other) under different electrolysis current densities and 10mL/min N₂. (**A**) Ammonia yields and corresponding faradaic efficiency at electrolysis 4h in SiW₁₂ solution (0.5g SiW₁₂, 35mL H₂O) suspended with 0.05g Ru/TiO₂ catalysts. (**B**) Ammonia yields and corresponding faradaic efficiency at electrolysis 4h in H₃PO₄ solution suspended with 0.05g Ru/TiO₂ catalysts. (**C**) Ammonia yields and corresponding faradaic efficiency at electrolysis 4h in H₃PO₄ solution suspended with 0.05g Ru/TiO₂ catalysts.

Supplementary Fig.S10 The nitrogen gas solubility in alcohol-water is calculated by software of Aspen Plus V11. (**A**) The two-phase flash model was built to calculate the nitrogen gas solubility in water with concentration of different alcohols. An activity coefficient-based model of "NRTL" (Non-Random-Two-Liquid) was applied for the property method. (**B**) The calculated nitrogen gas solubility in water with different alcohol concentrations.

Supplementary Fig.S11 (A) The ammonia yields and (B) corresponding faradaic efficiency at electrolysis 4h in different alcohol-SiW₁₂ aqueous solutions (0.5g SiW₁₂, 3mL alcohol, 32mL H₂O) suspended with 0.05g Ru/TiO₂ catalyst particles under constant electrolysis current density of 100 mA/cm² and 10mL/min N₂.

Supplementary Fig.S12 Electron release rate of SiW_{12} anion in different substances as solvent. SiW_{12} can transfer electrons from the cathode and then release electrons to reduce the protons for hydrogen H₂ gas generation over the suspended Ru/TiO₂ catalyst with a rather fast transfer rate. These processes could be described as

$$\left(\mathrm{SiW}_{11}^{6}\mathrm{W}^{5}\mathrm{O}_{40}\right)^{5-} + \mathrm{H}^{+} \xrightarrow{\mathrm{Ru}/\mathrm{TiO}_{2}} \left(\mathrm{SiW}_{12}^{6}\mathrm{O}_{40}\right)^{4-} + \frac{1}{2}\mathrm{H}_{2}^{+} \uparrow \right)$$

As seen, measuring the hydrogen H_2 production can estimate the electron release rate of SiW₁₂ anion. Consequently, the electron release rate of SiW₁₂ anion is estimated using hydrogen production rate. (A) and (B) are respectively the hydrogen H_2 gas volume *versus* time and production rate, which are measured when the electrolysis (current density is 100mA/cm²) of SiW₁₂ solution for 10min and then electrolysis stopped. The SiW₁₂ solution contains 3mL alcohols, 32mL H₂O and 0.05g Ru/TiO₂.

Supplementary Fig.S13 (A) The ammonia yields and (B) corresponding faradaic efficiency at electrolysis 4h in SiW₁₂ aqueous solution (0.5g SiW₁₂, 35mL H₂O) and ethanol-SiW₁₂ aqueous solution (0.5g SiW₁₂, 3mL ethanol, 32mL H₂O) suspended with 0.05g Ru/TiO₂ catalyst particles under different electrolysis current densities and 10mL/min N₂.

Supplementary Fig.S14 Stability of ammonia productions was tested in SiW_{12} -water solution (0.5g SiW_{12} , 35mL H₂O) suspended with 0.05g Ru/TiO₂ catalysts under a constant electrolytic current of 100 mA/cm² and 10mL/min N₂. The every cycle test period is four hours.

Supplementary Fig.S15 (A) The ammonia yields and (B) corresponding faradaic efficiency at electrolysis 4h in SiW_{12} aqueous solution (0.5g SiW_{12} , 35mL H₂O) suspended with different commercial carbon supported catalysts of Ru/C, Rh/C, Pt/C or Pd/C under different electrolysis current densities and 10mL/min N₂. The amount of catalyst particles used was 0.05g and 5wt% metal loading on carbon support.

Supplementary Fig.S16 (A) Schematic diagram of UV-Vis spectrophotometer for *in sit* measurements of SiW₁₂ adsorption and desorption kinetics on Ru/TiO₂ or TiO₂ suspended in SiW₁₂ aqueous solution. (B) The absorbance of SiW₁₂ aqueous solution with different known SiW₁₂ concentrations. (C) Standard curves of SiW₁₂ solution correlating the absorbance with SiW₁₂ concentrations. (D) Measured SiW₁₂ adsorption and desorption kinetics curves on Ru/TiO₂ and TiO₂ respectively.

Supplementary Fig.S17 (**A**) Hydrogen H₂ gas evolution in SiW₁₂ aqueous solution respectively suspended with Ru/TiO₂ and TiO₂ catalysts under a constant electrolytic current of 100 mA/cm² (before 60 min) and without electrolysis (after 60 min). (**B**) Electrode potential changes of SiW₁₂ aqueous solution respectively suspended with Ru/TiO₂ and TiO₂ catalysts under a constant electrolytic current of 100 mA/cm² (before 60 min) and without electrolytic current of 100 mA/cm² (before 60 min) and without electrolytic current of 100 mA/cm² (before 60 min) and without electrolysis (after 60 min). Ag/AgCl electrode serve as counter electrode and reference electrode. In all above experiments, the amount of catalyst particles used was 0.05g and the SiW₁₂ aqueous solution contained 35mL H₂O with 0.5g SiW₁₂.

Supplementary Fig.S18 TPD spectra of N₂ from Ru/TiO₂, TiO₂, SiW₁₂/TiO₂ (TiO₂ adsorbed with SiW₁₂) and SiW₁₂/Ru/TiO₂ (Ru/TiO₂ adsorbed with SiW₁₂) catalysts after exposure to N₂ at 50^oC for 1h.

Supplementary Fig.S19 *In-situ* FT-IR spectra of N_2 molecules adsorbed on TiO₂, Ru/TiO₂ and SiW₁₂/TiO₂ (TiO₂ adsorbed with SiW₁₂) with time under ambient temperature and latm nitrogen atmosphere or latm argon atmosphere.

Supplementary Fig.S20 N 1s XPS spectra of Ru/TiO₂ in SiW₁₂ aqueous solution after electrolysis 4h under 1atm argon Ar atmosphere (flow rate 10mL/min). Reaction solution volume is 35mL, and the aqueous solution contained 0.5g SiW₁₂, 35mL H₂O and 0.05g Ru/TiO₂. The electrolytic current density is 100 mA/cm².

N₂ hydrogenation in distal pathway

Supplementary Fig.S21 Most stable configurations and free energy profiles in DFT

calculations for nitrogen hydrogenation on SiW₁₂ in associative-distal pathway

N₂ hydrogenation in alternating pathway

Supplementary Fig.S22 Most stable configurations and free energy profiles in DFT

calculations for nitrogen hydrogenation on SiW₁₂ in associative- alternating pathway

Nitrogen N₂ molecule

Supplementary Fig.S23 Most stable configurations of nitrogen N₂ in gas phase, N₂ on $[SiW_{12}]^{5-}$ and -NNH on $[SiW_{12}]^{4-}$ in DFT calculations, and the bond length unit is Å. The bond length of N=N is calculated as 1.102 Å and is prolonged to be 1.108 Å on $[SiW_{12}]^{5-}$ in water or ethanol. The N=N bond length of -NNH is calculated as 1.135 Å in water or ethanol and the N-H bond length of -NNH is calculated as 1.791 Å and 1.828 Å respectively in water and ethanol.

Supplementary Fig.S24 TPD spectra of NH₃ from Ru/TiO₂, TiO₂, SiW₁₂/TiO₂ (TiO₂ adsorbed with SiW₁₂) and SiW₁₂/Ru/TiO₂ (Ru/TiO₂ adsorbed with SiW₁₂) catalysts after exposure to NH₃ at 50^oC for 1h.

Supplementary Fig.S25 Ammonia production and corresponding Faradaic efficiency at electrolysis 4h in SiW₁₂ solution suspended with Ru/TiO₂ under different pH conditions. Reaction solution: 0.5g SiW₁₂, 35mL H₂O and 0.05g Ru/TiO₂ catalysts. The electrolytic current density is 100 mA/cm² and the flow rate of nitrogen N₂ gas is 10mL/min.

Supplementary Fig.S26 The electrostatic potentials profiles of Ru cluster and SiW₁₂ with $[-NNH_n]^+$ or $[-NH_n]^+$ species. These are the most stable configurations calculated by DFT calculations. The Ru cluster has almost negative potential profiles around the surface of Ru cluster and the $[SiW_{12}]^{5-}$ anion also has the almost negative potential profiles. The $[-NNH_n]^+$ and $[-NH_n]^+$ show positive potential profiles, especially within the proton H⁺ zone and the positive potentials are enhanced with the hydrogenation reaction proceeded. This indicates the Ru cluster could repel the electrons from SiW₁₂ and $[-NNH_n]^+$ or $[-NH_n]^+$ could attract electrons from SiW₁₂, which further confirms the stored electron can be pushed from SiW₁₂ by Ru clusters to the adsorbed nitrogen species.

Supplementary Fig.S27 Ammonia production and corresponding Faradaic efficiency at electrolysis 4h in SiW_{12} solution suspended with only TiO_2 support under different current densities. Reaction solution: 0.5g SiW_{12} , 35mL H₂O and 0.05g TiO_2 . The flow rate of nitrogen N₂ gas is 10mL/min.

Supplementary text

1. Structure characterizations of prepared Ru/TiO₂ catalyst

The X-ray diffraction (XRD) patterns of TiO₂ and Ru/TiO₂ catalysts are shown in Supplementary Fig.S28. As seen the catalysts exhibit characteristic peaks at 25.28 °, $37.8 \circ, 48.05 \circ,$ and $55.06 \circ,$ corresponding to the (101), (004), (200) and (211) crystal planes of the anatase structure of TiO₂ (PDF # 00-21-1272). In addition, the main peak of Ru/TiO₂ is slightly shifted to a lower diffraction angle compared to TiO₂, indicating that Ru elements are successfully incorporated into the TiO₂ lattice[43]. The Ru/TiO₂ catalyst has a Ru loading of 0.28wt% which is measured by inductively coupled plasma emission spectrometry (ICP-OES). The nitrogen N₂ low temperature adsorption-desorption isotherm gives the pore size distribution of catalysts as shown in Supplementary Fig.S28. As seen, TiO₂ has a specific surface area of 145.24 m ⁷g, a pore volume of 0.287 cm ³g and a mean pore size of 6.59 nm. Ru/TiO₂ has a specific surface area of 130.24 m ⁷g, a pore volume of 0.271 cm ³g and a mean pore size of 7.04nm. This indicates that the Ru loading does not change the pore structure of TiO₂.

SEM and TEM images reveal the morphology of TiO₂ and Ru/TiO₂ catalysts as shown in Supplementary Fig.S29. As seen, the Ru loading shows no effect on TiO₂ morphology. HRTEM analysis shows that Ru/TiO₂ nanoparticles have clearly visible lattice streaks, indicating that Ru/TiO₂ nanoparticles have high crystallinity. Analysis by Fast Fourier transform (FFT) technique shows that the lattice fringe spacing of Ru/TiO₂ nanoparticles is 0.348nm which ascribes to the (101) crystal plane of anatase TiO₂, and 0.22 nm lattice fringe spacing which corresponds to the (111) crystal plane

of Ru[44,45]. In addition, the EDS elemental analysis diagram confirms the Ru element is evenly distributed on the TiO_2 support.

Supplementary Fig.S28 (A) XRD patterns of TiO₂ and Ru/TiO₂; (B) Nitrogen N₂ gas

adsorption-desorption isotherms; (C) Pore size distributions of TiO₂ and Ru/TiO₂.

Supplementary Fig.S29 SEM images of (A) TiO₂ and (B) Ru/TiO₂; (C) and (D) are HRTEM images of Ru/TiO₂; (E) and (F) are EDS analysis diagram of Ru/TiO₂

The surface composition and element state of Ru/TiO₂ were further investigated by X-ray photoelectron spectroscopy (XPS) as shown in Supplementary Fig.S30. XPS spectra show that Ru/TiO₂ contain Ru, Ti and O elements. The peaks observed at 458.65 and 464.35 eV in the Ti 2p and Ru 3p spectra also match well with Ti⁴⁺ $2p_{3/2}$ and Ti⁴⁺ $2p_{1/2}$ [46,47], and the peaks at 472.13 and 477.35 eV are correlated with the satellite peaks of Ti[48]. The peaks at 461.18 and 483.18 eV in Ru 3p spectra are attributed to Ru $3p_{3/2}$ and Ru $3p_{1/2}$ respectively, suggesting that Ru species exist in a metallic state[49,50]. The O 1s spectra show lattice oxygen (O_L, 529.85 eV), Ru-O-Ti (531.3eV) and adsorbed water (O_C, 533.2 eV)[51].

Supplementary Fig.S30 High-resolution XPS spectra of Ru/TiO₂: (A) full spectrum;

(B) Ti 2p; (C) Ru 3p; (D) O 1s.

2. How the alcohols added in SiW₁₂ solution affect the ammonia production

In our proposed electrochemical system, the reaction for nitrogen hydrogenation into ammonia is

$$N_{2} + 6 \left(SiW_{11}^{6}W^{5}O_{40}\right)^{5-} + 6H^{+} \xrightarrow{\text{Ru/TiO}_{2}} 6 \left(SiW_{12}^{6}O_{40}\right)^{4-} + 2NH_{3}$$

The catalyst Ru/TiO₂ is prepared and its pore size is around 7nm which is much larger than nitrogen size 0.364nm. SiW₁₂ is a relative large molecule with size of 1.08nm. Therefore, the nitrogen diffusion is not restrictive in pores of Ru/TiO₂ catalyst. But the SiW₁₂ diffusion needs to be considered. Now let us consider the SiW₁₂ mass balance in a spherical Ru/TiO₂ catalyst particle suspended in SiW₁₂ solution as show in Supplementary Fig.S31. To simplify, the capital letter A is used to denote the SiW₁₂ molecule.

Supplementary Fig.S31 Schematic diagram of SiW_{12} mass balance in a spherical Ru/TiO_2 catalyst particle.

 C_{A0} represents the SiW₁₂ concentration in bulk solution; C_{AS} denotes the SiW₁₂ concentration on catalyst surface; C_A is the SiW₁₂ concentration within catalyst

particle; *R* is the radius of catalyst particle; *r* is the coordinate of SiW_{12} molecule within catalyst particle. The mass balance of SiW_{12} in an arbitrary spherical shell of catalyst particle is described as

In (at
$$r$$
) – Out ($r + dr$) + Generation (within dr) = 0

$$N_{\rm A} \cdot 4\pi r^2 \Big|_r - N_{\rm A} \cdot 4\pi r^2 \Big|_{r+\Delta r} + r_{\rm A} S\rho 4\pi r_m^2 \Delta r = 0$$
(S-1)

where the N_A represents the diffusing flux of SiW₁₂; r_A is the reaction rate based on the catalyst surface; S is the surface area per unit mass of catalyst; ρ is the mass density of catalyst; r_m represents the mean radius of spherical shell. When $\Delta r \rightarrow 0$, the equation (S-1) becomes

$$\frac{d(N_{\rm A}r^2)}{dr} - r_{\rm A}S\rho r^2 = 0$$
 (S-2)

According to Fick's law, the N_A can be described as

$$N_{\rm A} = -D_e \frac{dC_{\rm A}}{dr} \tag{S-3}$$

 D_e is the effective diffusivity of SiW₁₂. The reaction rate can be estimated using a power function as

$$r_{\rm A} = -k_i C^n_{\rm A} C^m_{\rm B} C^q_{\rm C} \tag{S-4}$$

 k_i is the reaction constant; *m*, *n* and *q* denoted the reaction orders; C_B denotes the nitrogen N₂ concentration, that is nitrogen gas solubility. C_C denotes the proton H⁺ concentration. In our electrolytic system, the nitrogen N₂ concentration in solution is constant under a given experimental conditions and the proton H⁺ concentration is rather large. Then the equation (S-4) can be simplified as

$$r_{\rm A} = -kC_{\rm A}^n \tag{S-5}$$

where $k = k_i C_B^m C_C^q$.

Substituting equations (S-3) and (S-5) into (S-2), we can obtain

$$D_{e} \frac{1}{r^{2}} \frac{d}{dr} \left(r^{2} \frac{dC_{A}}{dr} \right) - kS\rho C_{A}^{n} = 0$$
 (S-6)

Let $\psi = C_A/C_{AS}$, $\lambda = r/R$, the equation (S-6) becomes

$$\frac{1}{\lambda^2} \frac{d}{d\lambda} \left(\lambda^2 \frac{d\psi}{d\lambda}\right) - \frac{kS\rho R^2 C_{\rm AS}^{n-1}}{D_e} \psi^n = 0$$
(S-7)

Define the Thiele modulus ϕ_n as

$$\phi_n^2 = \frac{kS\rho R^2 C_{\rm AS}^{n-1}}{D_e}$$
(S-8)

For nitrogen hydrogenation into ammonia, the reaction order for nitrogen is usually as \sim 1 and assuming the reaction order for SiW₁₂ is one. Therefore, the equation (S-7) can be solved as

$$\psi = \frac{C_{\rm A}}{C_{\rm AS}} = \frac{1}{\lambda} \left(\frac{\sinh \phi_{\rm I} \lambda}{\sinh \phi_{\rm I}} \right)$$
(S-9)

Define the internal effective factor η as

$$\eta = \frac{\text{Actual overall rate of reaction}}{\text{Rate of reaction is when entire interior surface were}}$$
(S-10)
exposed to the external pellet surface

The internal effective factor η can be expressed as

$$\eta = \frac{3}{\phi_1^2} (\phi_1 \coth \phi_1 - 1)$$
 (S-11)

where

$$\phi_1 = \sqrt{\frac{kS\rho R^2}{D_e}} \tag{S-12}$$

As seen, the internal effective factor η is a monotonically decreasing function versus Thiele modulus ϕ_1 which is also a function of reaction rate and diffusion rate. It is found that the presence of alcohol in SiW₁₂ solution could not only change the rate of electron release of SiW_{12} anion, but also change the diffusion rate of SiW_{12} as shown in Supplementary Fig.S32.

Supplementary Fig.S32 (A) Hydrogen H₂ volume *versus* time on TiO₂ are measured when the electrolysis (current density is 100mA/cm^2) of SiW₁₂ solution for 10min and then electrolysis stopped (SiW₁₂ solution contains 3mL alcohols, 32mL H₂O and 0.05g TiO₂). The hydrogen H₂ volume *versus* time on Ru/TiO₂ can be found in *Supplementary Fig.S12A*. (B) Electron release rate is estimated using the hydrogen H₂ production rate calculated from the data of hydrogen H₂ volume *versus* time. (C) and (D) are adsorption kinetics curves of SiW₁₂ respectively on the Ru/TiO₂ and TiO₂ measured in aqueous solution with SiW₁₂ concentration of 50ug/mL and alcohol concentration of 0.088mL/mL.

3. How the alcohols affect the ammonia determination by Nessler's reagents

In order to estimate the effects of water-soluble alcohols added into the reaction solution on the ammonia ion determination by Nessler's reagents. 3 mL alcohols were added into 32 mL water to get alcohol-water solution. Then 1 mL solution was taking out and added into 4 mL water to obtain 5 mL dilute alcohol-water solution. Finally, 0.2 mL Nessler's reagents were added into the 5 mL dilute alcohol-water solution to conduct UV-Vis spectroscopy measurements. As shown in Supplementary Fig.S33, absorbance with or without alcohols are almost same with each other, indicating that adding 3 mL alcohols into 32 mL water shows no effect the ammonia determination by Nessler's reagents.

Supplementary Fig.S33 The UV-Vis absorbance of aqueous solution with different concentrations of NH_4^+ without or with different alcohols: (A) methanol, (B) ethanol, (C) n-propanol and (D) isopropanol.

4. Comparison of ammonia determination by ¹H-NMR or ion chromatography method with the colorimetric method of Nessler's reagents

The isotope experiments using ${}^{15}N_2$ as the feeding nitrogen gas are quantitatively analyzed to validate the yield rate of the detected ammonia. In order to compare, the colorimetric method was also used to test ammonia using ${}^{15}N_2$ as the feeding nitrogen gas. As shown in Supplementary Fig.S34, the ammonia in a sample reaction solution was determined respectively as 8.35 ug/mL by Nessler' reagents and 7.43 ug/mL by ¹H-NMR spectra. Furthermore, the ion chromatography was also used to verify the amount of ammonia produced and compared with the colorimetric method. As shown in Supplementary Fig.S35, the ammonia in a sample reaction solution was determined respectively as 1.39 ug/mL by ion chromatography and 1.27 ug/mL by colorimetric method of Nessler' reagents. These comparable values of ammonia produced with different methods indicate that the ammonia produced in our work could be accurately measured using colorimetric method. Hence, the colorimetric method of UV-Vis spectroscopy through the colorimetric reactions of Nessler's reagents was applied to quantify ammonia product in this work, due to its characteristic of accurate and easy quantification.

Supplementary Fig.S34 Electrocatalysis of nitrogen to ammonia using isotopic labeling ¹⁵N₂ as nitrogen gas feedstock. (A) NMR intensity of ¹⁵NH₄Cl with different concentrations. The maleic acid, C₄H₄O₄, was used as the internal standard substance to give calibration curve. (B) Calibration curves for ¹⁵NH₄Cl are based on peak area of NMR intensity. (C) UV-Vis absorbance of ¹⁵NH₄Cl aqueous solutions with known ¹⁵NH₄Cl concentrations. (D) Standard curve of the absorbance at 420 nm of ¹⁵NH₄Cl aqueous solutions with different ¹⁵NH₄Cl concentrations. The ammonia in a sample reaction solution (denoted by asterisk on curve) was determined respectively as 8.35 ug/mL by Nessler' reagents and 7.43 ug/mL by ¹H-NMR spectra.

Supplementary Fig.S35 Ion chromatography was used to quantify ammonia product. (A) Ion chromatogram of a sample of 11.95 ug/mL ammonium ion NH_4^+ standard solution. (B) Ion chromatogram of an electrocatalytic reaction sample collected from SiW_{12} solution after reaction 4h. Reaction solution: 0.5g SiW_{12} , 35mL H_2O and 0.05g Ru/TiO_2 . (C) Calibration curve for NH_4^+ concentration related to the chromatographic peak area. The ammonia in the sample reaction solution was determined respectively as 1.39 ug/mL by ion chromatography and 1.27 ug/mL by Nessler' reagents.

5. Interaction determination between SiW₁₂ and catalyst Ru/TiO₂

From the discussions in main body of this work, the adsorption and desorption kinetic experiments show that the SiW_{12} anions can be adsorbed on Ru/TiO_2 and have strong interactions with the Ru clusters. The element distributions from TEM images further suggest that the element Si has almost the same distribution as the element of Ru (see Fig.4b in main body of this work). Moreover, from the structure of SiW_{12} as shown in Supplementary Fig.S36, we can find that the Si is located in the center of the Keggin-structured SiW_{12} anion. These experimental facts confirm that the adsorbed SiW_{12} anions are distributed on the Ru clusters of Ru/TiO₂.

Supplementary Fig.S36 (A) and (B) are SEM images of SiW₁₂; (C) A Keggin-type polyoxometalate SiW₁₂ with Keggin-structured $[SiW_{12}]^{4-}$ anion.

In order to further evaluate the interactions of SiW₁₂ with Ru, the XPS spectra were used to check what kind of interactions (physical or chemical) between SiW_{12} and Ru. Herein, the XPS spectra of Ru/TiO₂ (Ru 3p and O 1s) and SiW₁₂ (W 4f and O 1s) are shown in Supplementary Fig.S37 and the XPS spectra of SiW₁₂ adsorbed on Ru/TiO₂, [SiW₁₂/Ru/TiO₂ (Ru 3p, W 4f and O 1s)], can be found in Supplementary Fig.S38. It is found that the bond energy values of Ru 3p $(3p_{3/2}: 461.54eV \text{ and } 3p_{1/2}:$ 485.55eV) and O 1s (O_t 530.17eV, O_b 531.5eV and O_i 533.2eV) of SiW₁₂/Ru/TiO₂ are almost same with the bond energy values of Ru 3p (3p_{3/2} 461.18eV and 3p_{1/2} 485.18eV) of Ru/TiO₂ and O 1s (Ot 530.7eV, Ob 531.5eV and Oi 532.8eV) of SiW12, in which Ot is the surface terminal oxygen (W=O), O_b is the bridging oxygen (W-O-W) and O_i is the central oxygen (Si-O-Si). The bond energy values of W 4f of SiW₁₂/Ru/TiO₂ (4f_{7/2} 35.53eV and 4f_{5/2} 37.68eV) are almost same with the bond energy values of W 4f of SiW_{12} (4f_{7/2}: 35.81eV and 4f_{5/2}: 37.94eV). All these results indicate that when SiW_{12} is adsorbed on Ru/TiO₂, no bond energy changes, suggesting that there are no chemical bonds formed between SiW₁₂ and Ru/TiO₂. This means there are just strong physical interactions between SiW₁₂ and Ru/TiO₂ catalyst. The $[SiW_{12}]^{4-}$ or $[SiW_{12}]^{5-}$ anion is about 1nm in size and have many charges, so that the strong Vander Waals force and electrostatic force play important roles in the physical interactions between SiW₁₂ and catalyst.

Supplementary Fig.S37 XPS spectra of Ru/TiO₂ (Ru 3p and O 1s) and SiW₁₂ (W 4f

and O 1s)

Supplementary Fig.S38 XPS spectra of SiW_{12} adsorbed on Ru/TiO₂ [SiW₁₂/Ru/TiO₂

(Ru 3p, W 4f and O 1s)]

6. Comparison of conventional electrolysis with our proposed routes

In conventional electrolysis, the catalysts particles were loaded on the electrode to realize the electrochemical hydrogenation of nitrogen into ammonia as shown in Supplementary Fig.S39. This kind of electrolysis system has some requirements and limits: (1) Catalysts need to be attached on the electrode using some binders, and the binders must be some substances that can conduct electricity. (2) The electrons coming from the electrode need to be transferred to the active sites on catalysts, so that the materials consisting of catalysts also need to conduct electricity. This could results in some limits in using many non-conductive materials that are very efficient to be as catalysts or supports. (3) The space for the catalyst particles is limited in the electrode in which the conductive binders also occupy a certain amount of space, so that the shapes and contact area of catalyst particles are limited as well. (4) The nitrogen N₂ gas needed to overcome the diffusion barriers from the bulk electrolyte to reach at the active sites on catalyst particles loaded on electrode. This could limit the reaction rate of ammonia synthesis.

Supplementary Fig.S39 The conventional catalyst-loaded electrochemical system for

nitrogen conversion into ammonia in reported works

However, in our work, a suspended electrolysis system was established to give a novel strategy that uses a combination of a suspended Ru catalyst and water-soluble polyoxometalate SiW_{12} as shown in Supplementary Fig.S40. The SiW_{12} adopted here has multiple functions: First, the electrons can be captured and stored by SiW_{12} which hinders the protons to further react with electrons. Second, SiW_{12} has a low electrical potential which can be easily reduced to negative voltage in water solution, which is essential for reducing target molecules of N_2 with protons. Third, the reduced SiW_{12} can serve as a soluble electron transfer catalyst to transfer the electrons to the Ru catalysts where then the electrons are released to reduce the nitrogen into ammonia.

This suspended dual-catalyst system design could overcome the kinetic diffusion issue and transfer electrons from electrode to suppress hydrogen evolution, so that the electrochemical reaction rate and faradaic efficiency are greatly improved. Because the catalyst particles are not attached on the electrode, the electrons involved in the reactions are delivered by the electron transfer catalyst SiW_{12} rather than direct electric current flow through the catalyst particles. As a result, the required electric conductivity of catalyst particles is no longer limited in this study. This is impossible in conventional electrolysis system which strictly requires the electrons coming from the electrode. This kind of novel design is very different from the traditional ones and has giant significance because there are no limits in the range of catalyst designs and selection of various supports in the electrocatalytic hydrogenation. No matter what kinds of catalysts with different shapes, sizes, geometries, materials and conductive or non-conductive, all can be used in this electron transfer catalyst enhanced electrolysis system. Even the homogeneous catalysts also can be used in this work, but cannot be used in the conventional ones due to the unique flow characteristics of homogeneous catalysts. In addition, the nitrogen hydrogenation reaction was transferred to occur on the suspended catalysts. This greatly leaves us more opportunities and operations to intensify the nitrogen fixation process, but not affect the electron transfer process on electrode.

Supplementary Fig.S40 The proposed suspended-catalyst electrochemical system for nitrogen conversion into ammonia in this work

Appendix

1. Comparison of ammonia synthesis at constant current and constant potential

In order to compare, the electrolysis of ammonia synthesis at a constant current density (0.1mA mA/cm²) and a constant potential (-0.04V vs NHE, 0.1mA mA/cm²) is also conducted and the results are shown in Supplementary Fig.S41. It can be found that these two methods have similar results as long as the current density keeps same with each other. Therefore, in this work, the electrolysis at constant current density is chosen because it is very convenient to calculate the Faraday efficiency.

Supplementary Fig.S41 Comparison of electrolysis of ammonia synthesis between constant current (0.1mA/cm^2) and constant potential (-0.04V vs NHE, 0.1mA/cm^2).

2. Experimental details and errors summarized in Table.A1

	Current		FE (%)	FE average			
Experimental conditions	$\frac{\text{density}}{(\text{mA/cm}^2)}$	First	Second	Third	(%)	LITOI (70)	
	100	0.00739	0.00712	0.00796	0.00749	1.34~6.27	
35mL water	10	0.0942	0.0894	0.102	0.0952	1.05~7.14	
5mM S1W ₁₂ 0.05g Ru/C	1	0.325	0.375	0.332	0.344	3.49~9.01	
5100 B 11m D	0.1	1.597	1.308	1.349	1.418	4.87~12.6	
	100						
35mL water	10						
$5 \text{mM} \text{ S1W}_{12}$ 0.05g Rh/C	1						
	0.1						
	100	0.00129	0.00137	0.00156	0.00142	3.52~9.86	
35mL water	10						
$\frac{5 \text{ mM} \text{ SIW}_{12}}{0.05 \text{ g Pd/C}}$	1						
C	0.1						
	100						
35mL water	10						
0.05 g Pt/C	1						
	0.1						
	100	0.0475	0.0485	0.0531	0.0497	2.41~6.84	
35mL water	10	0.248	0.286	0.273	0.269	1.49~7.81	
0.05g Ru/TiO ₂	1	1.775	2.056	2.031	1.954	3.94~9.16	
	0.1	11.32	9.57	9.32	10.07	4.97~12.4	
	100	0.00857	0.00928	0.0096	0.00915	1.42~6.77	
35mL water	10	0.0562	0.0645	0.0623	0.0610	2.13~7.87	
0.05g Ru/TiO ₂	1	0.557	0.609	0.532	0.585	4.1~9.06	
	0.1	3.74	3.82	3.12	3.56	5.06~12.4	
35mL water	100	0.0167	0.0181	0.0162	0.0170	1.76~6.47	
CF ₃ SO ₃ H	10	0.138	0.159	0.144	0.147	2.04~7.48	
0.05g Ru/TiO ₂	1	0.92	1.08	1.051	1.017	3.34~9.54	

Table.A1 Summarized experimental results of electrocatalytic ammonia synthesis

		0.1	10.43	9.57	9.76	9.92	1.61~5.14
		100	0.198	0.178	0.185	0.187	1.07~5.89
35mL water 5mM SiW ₁₂ 0.05g TiO ₂		10					
		1					
		0.1					
	pH=1	100	0.0504	0.0478	0.0512	0.0498	1.2~4.02
35mL water	pH=3	100	0.0298	0.0318	0.0323	0.0313	1.6~4.79
5mM SiW ₁₂ 0.05g Ru/TiO ₂	pH=5	100	0.0279	0.0261	0.0285	0.0275	1.45~5.09
0 -	pH=7	100	0.0158	0.0155	0.0146	0.0153	1.31~4.58
	pH=9	100	0.0125	0.0137	0.0134	0.0132	1.52~5.3
	Methanol	100	1.093	1.002	1.124	1.073	1.86~6.62
3mL alcohols 32mLwater	Ethanol	100	3.507	3.779	3.898	3.728	1.37~5.93
5mM SiW ₁₂ 0.05g Ru/TiO ₂	<i>n</i> -propanol	100	1.564	1.69	1.756	1.67	1.52~6.35
	Isopropanol	100					
		100	3.507	3.779	3.898	3.728	1.37~5.93
3mL ethanol 32mLwater		10	5.073	5.551	5.765	5.463	1.61~7.12
5mM Si 0.05g Ru/	W ₁₂ /TiO ₂	1	6.081	5.403	6.282	5.922	2.69~8.76
		0.1	38.82	43.77	46.2	42.93	1.96~9.57

*----- means undetected

References

- B. Yu, H. Li, J. White, S. Donne, J. Yi, S. Xi, Y. Fu, G. Henkelman, H. Yu, Z. Chen, T. Ma, Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion, Adv. Funct. Mater. 30 (2020) 1905665. https://doi.org/https://doi.org/10.1002/adfm.201905665.
- H. Tao, C. Choi, L.-X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H. Wang, A.W.
 Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Nitrogen Fixation by Ru Single-Atom
 Electrocatalytic Reduction, Chem. 5 (2019) 204–214.
 https://doi.org/https://doi.org/10.1016/j.chempr.2018.10.007.
- Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, Achieving a Record-High Yield Rate of 120.9 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts, Adv. Mater. 30 (2018) 1803498.

https://doi.org/https://doi.org/10.1002/adma.201803498.

- W. Peng, M. Luo, X. Xu, K. Jiang, M. Peng, D. Chen, T.-S. Chan, Y. Tan, Spontaneous
 Atomic Ruthenium Doping in Mo2CTX MXene Defects Enhances Electrocatalytic Activity for
 the Nitrogen Reduction Reaction, Adv. Energy Mater. 10 (2020) 2001364.
 https://doi.org/https://doi.org/10.1002/aenm.202001364.
- [5] R. Zhao, C. Liu, X. Zhang, X. Zhu, P. Wei, L. Ji, Y. Guo, S. Gao, Y. Luo, Z. Wang, X. Sun, An ultrasmall Ru2P nanoparticles–reduced graphene oxide hybrid: an efficient electrocatalyst for NH3 synthesis under ambient conditions, J. Mater. Chem. A. 8 (2020) 77–81. https://doi.org/10.1039/C9TA10346E.
- [6] X. Wang, W. Wang, M. Qiao, G. Wu, W. Chen, T. Yuan, Q. Xu, M. Chen, Y. Zhang, X. Wang,

J. Wang, J. Ge, X. Hong, Y. Li, Y. Wu, Y. Li, Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia, Sci. Bull. 63 (2018) 1246–1253. https://doi.org/https://doi.org/10.1016/j.scib.2018.07.005.

- [7] C. He, Z.-Y. Wu, L. Zhao, M. Ming, Y. Zhang, Y. Yi, J.-S. Hu, Identification of FeN4 as an Efficient Active Site for Electrochemical N2 Reduction, ACS Catal. 9 (2019) 7311–7317. https://doi.org/10.1021/acscatal.9b00959.
- Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang, W. Zheng, Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction
 Electrocatalysis under Ambient Conditions in Aqueous Solution, ACS Catal. 9 (2019) 336–344.
 https://doi.org/10.1021/acscatal.8b03802.
- M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, Over 56.55%
 Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential, Nat. Commun. 10 (2019) 341. https://doi.org/10.1038/s41467-018-08120-x.
- S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Amorphizing of Au Nanoparticles by CeOx–RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions, Adv. Mater. 29 (2017) 1700001.
 https://doi.org/https://doi.org/10.1002/adma.201700001.
- M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions, Adv. Mater. 29 (2017) 1606550.
 https://doi.org/https://doi.org/10.1002/adma.201606550.
- [12] G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu, H. Wang, Ammonia

Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy, J. Am. Chem. Soc. 139 (2017) 9771–9774. https://doi.org/10.1021/jacs.7b04393.

- [13] Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang, J. Zhao, Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon, ACS Catal. 8 (2018) 1186–1191. https://doi.org/10.1021/acscatal.7b02165.
- [14] E. Vasileiou, V. Kyriakou, I. Garagounis, A. Vourros, M. Stoukides, Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell, Solid State Ionics. 275 (2015) 110–116. https://doi.org/https://doi.org/10.1016/j.ssi.2015.01.002.
- [15] F. Zhang, Q. Yang, B. Pan, R. Xu, H. Wang, G. Ma, Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α ceramic prepared via microemulsion method and its application in ammonia synthesis at atmospheric pressure, Mater. Lett. 61 (2007) 4144–4148. https://doi.org/https://doi.org/10.1016/j.matlet.2007.01.060.
- [16] D.S. Yun, J.H. Joo, J.H. Yu, H.C. Yoon, J.-N. Kim, C.-Y. Yoo, Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst, J. Power Sources. 284 (2015) 245–251.

https://doi.org/https://doi.org/10.1016/j.jpowsour.2015.03.002.

- [17] J. Otomo, N. Noda, F. Kosaka, Electrochemical Synthesis of Ammonia with Proton
 Conducting Solid Electrolyte Fuel Cells at Intermediate Temperatures, ECS Trans. 68 (2015)
 2663. https://doi.org/10.1149/06801.2663ecst.
- [18] Y. Guo, B. Liu, Q. Yang, C. Chen, W. Wang, G. Ma, Preparation via microemulsion method and proton conduction at intermediate-temperature of BaCe1–xYxO3–α, Electrochem.

Commun. 11 (2009) 153–156. https://doi.org/https://doi.org/10.1016/j.elecom.2008.10.038.

- [19] I.A. Amar, C.T.G. Petit, L. Zhang, R. Lan, P.J. Skabara, S. Tao, Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode, Solid State Ionics. 201 (2011) 94–100. https://doi.org/https://doi.org/10.1016/j.ssi.2011.08.003.
- [20] I.A. Amar, R. Lan, C.T.G. Petit, S. Tao, Electrochemical Synthesis of Ammonia Based on Co3Mo3N Catalyst and LiAlO2–(Li,Na,K)2CO3 Composite Electrolyte, Electrocatalysis. 6 (2015) 286–294. https://doi.org/10.1007/s12678-014-0242-x.
- [21] I.A. Amar, R. Lan, C.T.G. Petit, V. Arrighi, S. Tao, Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte, Solid State Ionics. 182 (2011) 133–138. https://doi.org/https://doi.org/10.1016/j.ssi.2010.11.009.
- I.A. Amar, R. Lan, S. Tao, Electrochemical Synthesis of Ammonia Directly from Wet N2
 Using La0.6Sr0.4Fe0.8Cu0.2O3-δ-Ce0.8Gd0.18Ca0.02O2-δ Composite Catalyst, J.
 Electrochem. Soc. 161 (2014) H350. https://doi.org/10.1149/2.021406jes.
- [23] T. Murakami, T. Nohira, Y. Araki, T. Goto, R. Hagiwara, Y.H. Ogata, Electrolytic Synthesis of Ammonia from Water and Nitrogen under Atmospheric Pressure Using a Boron-Doped Diamond Electrode as a Nonconsumable Anode, Electrochem. Solid-State Lett. 10 (2007) E4. https://doi.org/10.1149/1.2437674.
- [24] T. Murakami, T. Nohira, T. Goto, Y.H. Ogata, Y. Ito, Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure, Electrochim. Acta. 50 (2005) 5423–5426. https://doi.org/https://doi.org/10.1016/j.electacta.2005.03.023.
- [25] S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu, RETRACTED: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science (80-.).

345 (2014) 637-640. https://doi.org/10.1126/science.1254234.

- [26] F.-F. Li, S. Licht, Advances in Understanding the Mechanism and Improved Stability of the Synthesis of Ammonia from Air and Water in Hydroxide Suspensions of Nanoscale Fe2O3, Inorg. Chem. 53 (2014) 10042–10044. https://doi.org/10.1021/ic5020048.
- [27] V. Kordali, G. Kyriacou, C. Lambrou, Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell, Chem. Commun. (2000) 1673–1674. https://doi.org/10.1039/B004885M.
- [28] R. Lan, S. Tao, Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte, RSC Adv. 3 (2013) 18016–18021. https://doi.org/10.1039/C3RA43432J.
- [29] M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V Sushko, T. Yokoyama, M. Hara, H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis, Nat. Commun. 6 (2015) 6731–9. https://doi.org/10.1038/ncomms7731.
- [30] M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W.Kim, M. Hara, H. Hosono, Ammonia synthesis using a stable electride as an electron donor and
- [31] Y. Inoue, M. Kitano, S.-W. Kim, T. Yokoyama, M. Hara, H. Hosono, Highly dispersed Ru on electride [Ca24Al28O64]4+(e–)4 as a catalyst for ammonia synthesis, ACS Catal. 4 (2014)
 674–680. https://doi.org/10.1021/cs401044a.

reversible hydrogen store, Nat. Chem. 4 (2012) 934–940. https://doi.org/10.1038/nchem.1476.

[32] M. Kitano, Y. Inoue, H. Ishikawa, K. Yamagata, T. Nakao, T. Tada, S. Matsuishi, T.Yokoyama, M. Hara, H. Hosono, Essential role of hydride ion in ruthenium-based ammonia

synthesis catalysts, Chem. Sci. 7 (2016) 4036–4043. https://doi.org/10.1039/C6SC00767H.

- [33] M. Hattori, T. Mori, T. Arai, Y. Inoue, M. Sasase, T. Tada, M. Kitano, T. Yokoyama, M. Hara,
 H. Hosono, Enhanced catalytic ammonia synthesis with transformed BaO, ACS Catal. 8 (2018)
 10977–10984. https://doi.org/10.1021/acscatal.8b02839.
- [34] Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, H. Hosono, Water durable electride Y5Si3: electronic structure and catalytic activity for ammonia synthesis, J. Am. Chem. Soc. 138 (2016) 3970–3973. https://doi.org/10.1021/jacs.6b00124.
- [35] J. Wu, Y. Gong, T. Inoshita, D.C. Fredrickson, J. Wang, Y. Lu, M. Kitano, H. Hosono, Tiered electron anions in multiple voids of LaScSi and their applications to ammonia synthesis, Adv. Mater. 29 (2017) 1700924. https://doi.org/https://doi.org/10.1002/adma.201700924.
- Y. Inoue, M. Kitano, M. Tokunari, T. Taniguchi, K. Ooya, H. Abe, Y. Niwa, M. Sasase, M.
 Hara, H. Hosono, Direct activation of cobalt catalyst by 12CaO 7Al2O3 electride for ammonia synthesis, ACS Catal. 9 (2019) 1670–1679. https://doi.org/10.1021/acscatal.8b03650.
- [37] R. Kojima, K. Aika, Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis:
 Part 2. Kinetic study, Appl. Catal. A Gen. 218 (2001) 121–128.
 https://doi.org/https://doi.org/10.1016/S0926-860X(01)00626-3.
- [38] M. Hattori, S. Iijima, T. Nakao, H. Hosono, M. Hara, Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C, Nat. Commun. 11 (2020) 2001. https://doi.org/10.1038/s41467-020-15868-8.
- [39] T. B écue, R.J. Davis, J.M. Garces, Effect of cationic promoters on the kinetics of ammonia synthesis catalyzed by ruthenium supported on zeolite X, J. Catal. 179 (1998) 129–137. https://doi.org/https://doi.org/10.1006/jcat.1998.2212.

- [40] S. Hagen, R. Barfod, R. Fehrmann, C.J.H. Jacobsen, H.T. Teunissen, I. Chorkendorff,
 Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon, J. Catal.
 214 (2003) 327–335. https://doi.org/https://doi.org/10.1016/S0021-9517(02)00182-3.
- [41] P. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He, P. Chen, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nat. Chem. 9 (2017) 64–70. https://doi.org/10.1038/nchem.2595.
- [42] B. Keita, L. Nadjo, New aspects of the electrochemistry of heteropolyacids: Part II. Coupled electron and proton transfers in the reduction of silicoungstic species, J. Electroanal. Chem.
 Interfacial Electrochem. 217 (1987) 287–304.

https://doi.org/https://doi.org/10.1016/0022-0728(87)80225-5.

- [43] Y. Guo, R. Zhang, S. Zhang, Y. Zhao, Q. Yang, Z. Huang, B. Dong, C. Zhi, Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc–nitrate batteries, Energy Environ. Sci. 14 (2021) 3938–3944. https://doi.org/10.1039/D1EE00806D.
- [44] X. Zeng, Y. Bai, S.M. Choi, L. Tong, R.M. Aleisa, Z. Li, X. Liu, R. Yu, N. V Myung, Y. Yin, Mesoporous TiO2 nanospheres loaded with highly dispersed Pd nanoparticles for pH-universal hydrogen evolution reaction, Mater. Today Nano. 6 (2019) 100038. https://doi.org/https://doi.org/10.1016/j.mtnano.2019.100038.
- [45] H. Ye, Q. Wang, M. Catalano, N. Lu, J. Vermeylen, M.J. Kim, Y. Liu, Y. Sun, X. Xia, Ru Nanoframes with an fcc Structure and Enhanced Catalytic Properties, Nano Lett. 16 (2016) 2812–2817. https://doi.org/10.1021/acs.nanolett.6b00607.
- [46] N. Kruse, S. Chenakin, XPS characterization of Au/TiO2 catalysts: Binding energy assessment

and irradiation effects, Appl. Catal. A Gen. 391 (2011) 367–376. https://doi.org/https://doi.org/10.1016/j.apcata.2010.05.039.

- [47] R. Castillo, B. Koch, P. Ruiz, B. Delmon, Influence of the Amount of Titania on the Texture and Structure of Titania Supported on Silica, J. Catal. 161 (1996) 524–529.
 https://doi.org/https://doi.org/10.1006/jcat.1996.0214.
- [48] M. Wang, G. Li, S. Wang, X. Liu, A. Wang, H. Cao, C. Zhang, Catalytic oxidation of propane over nanorod-like TiO2 supported Ru catalysts: Structure-activity dependence and mechanistic insights, Chem. Eng. J. 481 (2024) 148344.

https://doi.org/https://doi.org/10.1016/j.cej.2023.148344.

- [49] L. Jing, G. Jie, W. Yu, H. Ren, X. Cui, X. Chen, L. Jiang, A unique sandwich-structured Ru-TiO/TiO2@NC as an efficient bi-functional catalyst for hydrogen oxidation and hydrogen evolution reactions, Chem. Eng. J. 472 (2023) 145009. https://doi.org/https://doi.org/10.1016/j.cej.2023.145009.
- [50] R. Bavand, A. Yelon, E. Sacher, X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite, Appl. Surf. Sci. 355 (2015) 279–289. https://doi.org/https://doi.org/10.1016/j.apsusc.2015.06.202.
- [51] W. Cai, Y.-F. Jiang, J. Zhang, H. Yang, J. Zhang, C.-Q. Xu, W. Liu, J. Li, B. Liu, Ruthenium/titanium oxide interface promoted electrochemical nitrogen reduction reaction, Chem Catal. 2 (2022) 1764–1774. https://doi.org/10.1016/j.checat.2022.05.009.