Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2025

Strains and Plasmids	Relevant characteristic(s) ^a	Reference or source
Sphingobium		
lignivorans SYK-6	Wild type; Nal ^r Sm ^r	1
$\Delta ligS$	SYK-6 derivative; Δ <i>ligS</i> ; Nal ^r Sm ^r	This study
$\Delta ligL$	SYK-6 derivative; Δ <i>ligL</i> ; Nal ^r Sm ^r	2
$\Delta ligLN$	$\Delta ligL$ derivative; $\Delta ligL$ ligN; Nal ^r Sm ^r	2
$\Delta ligDLN$	$\Delta ligLN$ derivative; $\Delta ligD$ ligL ligN; Nal ^r Sm ^r	This study
$\Delta ligI$	SYK-6 derivative; ∆ <i>ligI</i> ; Nal ^r Sm ^r	3
$\Delta ligI \ ligS$	$\Delta ligI$ derivative; $\Delta ligI$ ligS; Nal ^r Sm ^r	This study
Escherichia coli		
BL21(DE3)	F^- ompT hsdS_B(r_B^- m_B^-) gal dcm (DE3); T7 RNA polymerase gene under	4
	the control of the <i>lacUV5</i> promoter	
HB101	recA13 supE44 hsd20 ara-14 proA2 lacY1 galK2 rpsL20 xyl-5 mtl-1	5
NEB 10-beta	araD 139 Δ (ara-leu)7697 fhuA lacX74 galK (ϕ 80 Δ lacZ Δ M15) recA1 endA1	New England Biolabs
	$nupG rpsL (Sm^r) \Delta(mrr-hsdRMS-mcrBC)$	
Plasmid		
pRK2013	Tra ⁺ Mob ⁺ ColE1 replicon; Km ^r	6
pSEVA225	RK2 cloning vector, Km ^r	SEVA
pET-16b	Expression vector; T7 promoter, Ap ^r	Novagen
pMAL-cX5	pMB1 ori cloning vector; Taq promoter, <i>lacI</i> , <i>malE</i> , Ap ^r	New England Biolabs
pAK405	Plasmid for allelic exchange and markerless gene deletions in Sphingomonads; Km ^r	7
pAK405GFP	pAK405 with synthesized promoter and codon-optimized superfolder GFP gene	8
pJB861	RK2 broad-host-range expression vector; $P_m xy/S$; Km ^r	9
pD1	pSEVA225 with a PCR amplified fragment of -269 to +30 relative to the <i>ligD</i> start codon	This study
pD2	pSEVA225 with a PCR amplified fragment of -173 to +30 relative to the <i>ligD</i> start codon	This study
pD3	pSEVA225 with a PCR amplified fragment of -108 to $+30$ relative to the <i>ligD</i> start codon	This study
pD2m35	pD2 with the mutation at TRM site (TTGA to CCAG) in <i>ligD</i> promoter	This study
pD2m2	pD2 with the mutation at LigS binding site (TGT to CAC) in <i>ligD</i> promoter	This study
pD2m3	pD2 with the mutation at LigS binding site (GGAAATG to AGGGATA) in <i>ligD</i> promoter	This study
pL1	pSEVA225 with a PCR amplified fragment of -119 to $+30$ relative to the <i>ligL</i> start codon	This study
pL2	pSEVA225 with a PCR amplified fragment of -64 to +30 relative to the <i>ligL</i> start codon	This study
pL1m35	pL1 with the mutation at TRM site (TTGA to CCAG) in <i>ligL</i> promoter	This study
pL1m2	pL1 with the mutation at LioS binding site (TGT to CAC) in <i>ligL</i> promoter	This study
pL1m2	nL1 with the mutation at LigS binding site (GGAACGG to AGGGCGA) in <i>ligL</i> promoter	This study
nP1	nSEVA225 with a PCR amplified fragment of -116 to $+27$ relative to the <i>ligP</i> start codon	This study
pP1	nSEVA225 with a PCR amplified fragment of -75 to $+27$ relative to the <i>ligP</i> start codon	This study
pI 2 nP1m35	pDL vith the mutation at TPM site (TCGATG to CCAGTC) in <i>liaP</i> promoter	This study
pr 11155	pI 1 with the mutation at Lies binding site (TTGA to CCAG) in <i>ligh</i> promoter	This study
pr 1111	pr I with the mutation at LigS binding site (TTT to CAC) in <i>ligP</i> promoter	This study
pP1m2	PI with the mutation at LigS binding site (IG1 to CAC) in <i>ligP</i> promoter	This study
pP1m3	pP1 with the mutation at LigS binding site (GGAAACG to AGGGACA) in <i>ligP</i> promoter	This study
pZ1	pSEVA225 with a PCR amplified fragment of -1/5 to +50 relative to the <i>hpvZ</i> start codon	This study
pZ2	pSE vA225 with a PCR amplified fragment of -108 to +30 relative to the <i>npv2</i> start codon	This study
p∠3	pSE vA225 with a PCK amplified fragment of -62 to +30 relative to the $hpvZ$ start codon	This study
pZ2m35	p22 with the mutation at TRM site (TTGA to CCAG) in <i>hpvZ</i> promoter	This study
pZ2m2	pZ2 with the mutation at LigS binding site (TGT to CAC) in <i>hpvZ</i> promoter	This study
pZ2m3	pZ2 with the mutation at LigS binding site (GAAAAAG to AAAGGAA) in <i>hpvZ</i> promoter	This study
pAl	pSEVA225 with a PCR amplified fragment of -71 to +19 relative to the <i>ldpA</i> start codon	This study
pA2	pSEVA225 with a PCR amplified fragment of -26 to $+19$ relative to the <i>ldpA</i> start codon	This study
		TT1 1 1

TABLE S1. Strains and plasmids used in this study

pMAL <i>ligS</i>	pMAL-cX5 with a 1.6 kb PCR amplified deletion fragment of <i>ligS</i>	This study
pMALdTetR	pMAL-cX5 with a 0.6 kb PCR amplified deletion fragment of dTetR	This study
pMALdMarR	pMAL-cX5 with a 1.0 kb PCR amplified deletion fragment of dMarR	This study
pAKligD	pAK405 with a 2.3 kb PCR amplified deletion fragment of <i>ligD</i>	2
pAK <i>ligS</i>	pAK405GFP with a 2.0 kb PCR amplified deletion fragment of <i>ligS</i>	This study
pJB <i>ligS</i>	pJB861 with a 1.6-kb BamHI fragment carrying ligS	This study
pJBMBPligS	pJB861 with a 2.8-kb BamHI fragment carrying MBPligS	This study
pJBMBPdMarR	pJB861 with a 2.2-kb BamHI fragment carrying MBPdMarR	This study

^aNal^r, Sm^r, Ap^r, and Km^r indicate resistance to nalidixic acid, streptomycin, ampicillin, and kanamycin, respectively.

TABLE S2.	Primers	used in	this	study
-----------	---------	---------	------	-------

Purpose	primer	sequences (5'to 3')
For the construction of a plasmid for <i>ligS</i> disruption		
pAK <i>ligS</i>	dis <i>ligS_</i> topF	AGCTCGGTACCCGGGTGTTGCCCTATCCCGAGTTC
	dis <i>ligS</i> _topR	GATTTTCTACTCCCGGCTCG
	dis <i>ligS</i> _botF	CGAGCCGGGAGTAGAAAATCGCTTTCGCGGTGCGATTGCG
	dis <i>ligS</i> _botR	AGGTCGACTCTAGAGTGCCTGATAGAATGAGGCGA
For the construction of reporter plasmid		
pD1	pD1_F	ACCTGCAGGCATGCAGAGCGGAGATGACGGCGTCC
	pD_R	TCATATGTTTTTCCTCCTAGAACGCGACCTGATCCTGGAAATC
pD2	pD2_F	ACCTGCAGGCATGCAGTCGATCGCGCGGGGGGGGGCGTCG
	pD_R	TCATATGTTTTTCCTCCTAGAACGCGACCTGATCCTGGAAATC
pD3	pD3 F	ACCTGCAGGCATGCAGCAGATGGCGCGGGGCATCGT
	pD R	TCATATGTTTTTCCTCCTAGAACGCGACCTGATCCTGGAAATC
pD2m35	pD2m35 topF	ACCTGCAGGCATGCAGTCGATCGCGCGGGGGGGGGGGTCTTTGCCAGCATTGT
• · · ·	pD2m35 topR	CTTGAAGCGGGTTTCCACTCATTTCCGGACAATGCTGG
	pD2m35 botF	GAGTGGAAACCCGCTTCAAG
	pD R	TCATATGTTTTTCCTCCTAGAACGCGACCTGATCCTGGAAATC
$nD^{2}m^{2}$	pD_m^2 to pE	
pD2III2	pD2m2_topP	
	pD2m2_topK	CAGTEGAAACCCCCTTCAAG
	pD2III2_000	
- D22	pD_K	
pD2m3	pD2m3_topF	
	pD2m3_botF	
	pD_R	
pLI	pL1_F	
	pL_R	TCATATGTTTTTCCTCCTAGATGAACGCCGTGGTCCCTG
pL2	pL2_F	ACCTGCAGGCATGCAGTGCAACGATCATGGGCTTC
	pL_R	TCATATGTTTTTCCTCCTAGATGAACGCCGTGGTCCCTG
pL1m35	pL1m35_topF	ACCTGCAGGCATGCAGGGACTGACTGCGGATCAGGCATACGCCAGTTTTGT
	pL1m35_topR	GGCTTATGCGCCGTTCCGGACAAAACTGGCGTATG
	pL1m35_botF	TCCGGAACGGCGCATAAGCC
	pL_R	TCATATGTTTTTCCTCCTAGATGAACGCCGTGGTCCCTG
pL1m2	pL1m2_topF	ACCTGCAGGCATGCAGGGACTGACTGCGGATCAGGCATACGTTGATTTCAC
	pL1m2_topR	GGCTTATGCGCCGTTCCGGGTGGAATCAAC
	pL1m2_botF	TCCGGAACGGCGCATAAGCC
	pL_R	TCATATGTTTTTCCTCCTAGATGAACGCCGTGGTCCCTG
pL1m3	pL1m3_topF	ACCTGCAGGCATGCAGGGACTGACTGCGGATCAGGCATACGTTGATTTTGTTTAAGG
	pL1m3_topR	GGCTTATGCGCCGCCTTAAA
	pL1m3_botF	TCCGGAACGGCGCATAAGCC
	pL_R	TCATATGTTTTTCCTCCTAGATGAACGCCGTGGTCCCTG
pP1	pP1_F	ACCTGCAGGCATGCACCGCTCGTTTCCAGACATTA
	pP_R	TCATATGTTTTTCCTCCTAGATGGTGATCTTGTTGTCTT
pP2	pP2_F	ACCTGCAGGCATGCAGCCAAAATCAACTAGCACTG
	pP_R	TCATATGTTTTTCCTCCTAGATGGTGATCTTGTTGTCTT
pP1m35	pP1_F	ACCTGCAGGCATGCACCGCTCGTTTCCAGACATTA
	pP1m35 topR	CATTCGTTCCCGGATCGTTG
	pP1m35 mid	CAACGATCCGGGAACGAATGGCCAAAATCAATCGATGCTGACCGCCGGTTGCGCTTA
	pP1m35 mid	TAAGCGCAACCGGCGGTCAGCATCGATTGATTTTGGCCATTCGTTCCCGGATCGTTG
	nD1m25_hotE	

	pP_R	TCATATGTTTTTCCTCCTAGATGGTGATCTTGTTGTCTT
pP1m1	pP1m1_topF	ACCTGCAGGCATGCACCGCTCGTTTCCAGACATTACTGG
	pP1m1_topR	CAGTGCTAGTTGATTTTGGCCATTCGTTCCCGGATCGCCAGTAA
	pP1m1_botF	GCCAAAATCAACTAGCACTG
	pP_R	TCATATGTTTTTCCTCCTAGATGGTGATCTTGTTGTCTT
pP1m2	pP1m2_topF	ACCTGCAGGCATGCACCGCTCGTTTCCAGGTGTTATCAA
	pP1m2_topR	CAGTGCTAGTTGATTTTGGCCATTCGTTCCCGGATCGTTGATAACACCTG
	pP1m2_botF	GCCAAAATCAACTAGCACTG
	pP_R	TCATATGTTTTTCCTCCTAGATGGTGATCTTGTTGTCTT
pP1m3	pP1m3_topF	ACCTGCAGGCATGCACCGCTCGTCCTTAAACATTA
	pP1m3_topR	CAGTGCTAGTTGATTTTGGCCATTCGTTCCCGGATCGTTGATAATGTTTAAGG
	pP1m3 botF	GCCAAAATCAACTAGCACTG
	pP R	TCATATGTTTTTCCTCCTAGATGGTGATCTTGTTGTCTT
pZ1	pZ1 F	ACCTGCAGGCATGCAAGGACGAGGGGCTGAAGCTC
•	pZ R	TCATATGTTTTTCCTCCTACACATAGTCGACCGTTCTG
pZ2	pZ2 F	ACCTGCAGGCATGCAGCGATCCTCTGGTTGACTTTG
	pZ R	TCATATGTTTTTCCTCCTACACATAGTCGACCGTTCTG
pZ3	pZ3 F	ACCTGCAGGCATGCACCGATGGAGTCAATGCAGCG
I	pZ R	TCATATGTTTTTCCTCCTACACATAGTCGACCGTTCTG
nZ2m35	pZ_m35 topF	ACCTGCAGGCATGCAGCGATCCTCTGGCCAGCTTTGT
p======	pZ2m35_topR	CCGCTACAAGGCGGTCTTTTTCGAACAAAGCTGGC
	pZ2m35_topFt	AAAAAACCCCCCTTGTAGCGG
	pZ2m55_000	TCATATGTTTTTCCTCCTACACATAGTCGACCGTTCTG
n72m2	pZ_R pZ_m^2 topE	
pezniz	pZ2m2_topR	CCGCTACAAGGCGGTCTTTTTCGAGTGGAG
	pZ2m2_topK	
	pZ2III2_000	
n72m2	pZ_R	
pz.2113	pZ2III3_topF	
	pZ2III5_topK	
	pZ2III5_001F	
- 41	pZ_K	
pAI	pA1_F	
	pA_K	
pA2	pA2_F	
For the construction of expression plasmid	pA_R	
pET <i>ligS</i>	pET <i>ligS</i> _F	TCGAAGGTCGTCATATGACGGGCGGAAAGGCCGT
	pET <i>ligS</i> _R	GTTAGCAGCCGGATCCTCAGTCCCGGTCCATCTCCT
pETdTetR	pETdTetR_F	TCGAAGGTCGTCATATGACGGGCGGAAAGGCCGT
	pETdTetR_R	GTTAGCAGCCGGATCTCACTGGAAGCGACGCAGCCGGT
pMAL <i>ligS</i>	pM <i>ligS</i> _F	ATCGAGGGAAGGATTTCACATATGACGGGCGGAAAGGCCGT
	pM <i>ligS</i> R	GAGCCTTTCGTTTTATTTGATCAGTCCCGGTCCATCTCCT
pMALdTetR	pMdTetR F	ATCGAGGGAAGGATTTCACATATGACGGGCGGAAAGGCCGT
	pMdTetR R	GAGCCTTTCGTTTTATTTGATCACTGGAAGCGACGCAGCCGGT
pMALdMarR	pMdMarR F	ATCGAGGGAAGGATTTCACATATGTCAAGCCTCTGGGTGTT
	pMdMarR R	GAGCCTTTCGTTTTATTTGATCAGTCCCGGTCCATCTCCT
For the construction of complementary plasmid	1 <u> </u>	
pJB <i>ligS</i>	pJB <i>ligS</i> _F	ATGGGAAGCTTCGTGAAAGGAGGTATATATAATGACGGGCGGAAAGGCCGT
	pJB <i>ligS</i> _R	TCCTGCAGGATATCTGTCAGTCCCGGTCCATCTCC
pJBMBP <i>ligS</i>	pJBMBP_F	ATGGGAAGCTTCGTGAAAGGAGGTATATATAATGAAAATCGAAGAAGGTAA
	pJB <i>ligS</i> _R	TCCTGCAGGATATCTGTCAGTCCCGGTCCATCTCC
pJBMBPdMarR	pJBMBP_F	ATGGGAAGCTTCGTGAAAGGAGGTATATATAATGAAAATCGAAGAAGGTAA
	pJB <i>ligS</i> _R	TCCTGCAGGATATCTGTCAGTCCCGGTCCATCTCC

For confirmation of gene disruption

$\Delta ligD$	disligD_confF	GCCTCATCTATGAACTGAAT
	disligD_confR	CTCGAACAGCATGGGGGCGAT
$\Delta ligS$	dis <i>ligS_</i> confF	GGAGAAATATGGCAATACCG
	disligS_confR	CAATCGCGCCGCGACTGTTC
For RT-PCR		
RT0863-ligD	0863- <i>ligD</i> _F	CGCAGCACGGCAACAACAAT
	0863- <i>ligD</i> _R	CATCATAAGTGGTCTTCTCG
RTligD-ligF	<i>ligD-ligF_</i> F	CGAGAAGACCACTTATGATG
	ligD-ligF_R	AGATATTCGCAGATCACCGT
RTligF-ligE	ligF-ligE_F	ACGGTGATCTGCGAATATCT
	ligF-ligE_R	AGGATATAGCAGCGGAACCA
RTligF-ligG	<i>ligE-ligG_</i> F	TGGTTCCGCTGCTATATCCT
	ligE-ligG_R	CAGGATGACCATGCTTTCCT
RT <i>ligG</i> -0868	<i>ligG</i> -0868_F	AGGAAAGCATGGTCATCCTG
	<i>ligG</i> -0868_R	GCCATCACGAGGATATTGTC
RT1263-ldpB	1263- <i>ldpB</i> _F	CCTTCAGCAGATCGACAAGC
	1263- <i>ldpB</i> _R	ACATCTACGAAACCAGCCTC
RT <i>ldpA</i> -1266	<i>ldpA</i> -1266_F	TGGTTCCAGAATCGCTTCAC
	<i>ldpA</i> -1266_R	GATATAATCTTCCGCCACCC
RT1266-1267	1266-1267_F	GGGTGGCGGAAGATTATATC
	1266-1267_R	TCCCAATGCTCCACGATCTT
RT1267-1268	1267-1268_F	AAGATCGTGGAGCATTGGGA
	1267-1268_R	TCGATGAACACATTGTCCTT
RT1268- <i>ldpC</i>	1268- <i>ldpC</i> _F	AAGGACAATGTGTTCATCGA
	1268- <i>ldpC</i> _R	TTCATCGCCATGCCTCGCTT
RT <i>ldpC</i> -1270	<i>ldpC</i> -1270_F	AAGCGAGGCATGGCGATGAA
	<i>ldpC</i> -1270_R	TCCTCGGCGGAGATATCCGC
RT1280-1282	1280-1282_F	CGCCACCATGTTCGG
	1280-1282_R	GCGGCAGTGAGAACA
RT1282-hpvZ	1282- <i>hpvZ</i> _F	CGTCACCTTCGGCAT
	1282- <i>hpvZ</i> _R	CTTTCCACCGCACCT
RT3257-3258	3257-3258_F	CCCAGGCATCCAAGCTCGAT
	3257-3258_R	ACTTCCTGGTTCCAGCCAAA
RT3258-3259	3258-3259_F	CTGAGCTTCACGTACAAGGG
	3258-3259_R	CACCTGCACGGAGAGCTTCT
RT3259-ligP	3259- <i>ligP</i> _F	ACGTCACTTACCGCCTCTAT
	3259- <i>ligP</i> _R	CACCCATTTCCCGTCATCGA
RT3365-ligL	3365- <i>ligL</i> _F	TCCTTGAGAGTCGAGAAATC
	3365- <i>ligL</i> _R	TGGCGGACAACTGGATGGAA
RT <i>ligL</i> -3367	<i>ligL</i> -3367_F	GCTCCTCGAAGAACTGCCTG
	<i>ligL</i> -3367_R	ATGAGATGGTGGCGAGGGGA
RT3367-3368	3367-3368_F	TCCCCTCGCCACCATCTCAT
	3367-3368_R	CGGTCGTCCTCTATTICTTC
K13589-ligN	3589- <i>ligN</i> _F	
	3589-ligN_R	AGGACATGGATGTTGCCGAA
R1 <i>ligN</i> -3591	<i>ligN-3591_</i> F	CAGTTCGGCACCCTCATGTA
DT2501 2502	11g/N-3591_K	GGUIGICAIAIACIGCAICC
K13591-3592	3591-3592_F	GGAIGCAGTATATGACAGCC
	3591-3592_R	CAGGCAGTCATGGCAGGGAA

For qRT-PCR		
ligD	q <i>ligD_</i> F	CTGGAAGGGCTCGGGATCAC
	q <i>ligD_</i> R	ATAGGCCTCGCGGTCCATGA
ligL	q <i>ligL</i> _F	GCGCGGCTGGTGCTT
	q <i>ligL_</i> R	GAAGAACTGCCTGGCTTCGT
ligN	q <i>ligN_</i> F	CAGGACGCCCTCGATCAG
	qligN_R	GGAGTGAACGGCAAGATTGG
ligF	q <i>ligF_</i> F	CAAGCGCGCCGAAATG
	q <i>ligF_</i> R	ACGCACCAGCAGAAATATTCATC
ligE	q <i>ligE_</i> F	TCCGGCTGCACGATCAG
	q <i>ligE_</i> R	CCTTGTGCTTGAGCGCATATT
ligP	q <i>ligP_</i> F	GAGCGGTGCGACGATCA
	q <i>ligP_</i> R	TGTGCGCGATGGCATATT
ligG	q <i>ligG_</i> F	AGTTCCGCTCCAACCTGATG
	q <i>ligG_</i> R	ATCGTTGAGTGTCTTGCCGA
ligQ	q <i>ligQ_</i> F	AGGAACTGACGATCTATCAC
	q <i>ligQ_</i> R	GCATGATTTCCACACGCTCG
ligO	q <i>ligO_</i> F	AGCACCCCATCCAGCTCTATT
	q <i>ligO_</i> R	CGAGCATGATGGTGACTTTCTG
ldpB	q <i>ldpB</i> _F	CATCCGGCAGGACCATCTC
	q <i>ldpB</i> _R	GCGACATTCTTCTGGCTGAAA
ldpA	q <i>ldpA</i> _F	CATTCGCTGATGCTGCAGAT
For the construction of probes used in	q <i>ldpA</i> _R	TTGACCAGCACATGGCATTT
EMSAs		
Dp1	Dp1_F	GAGCGGAGATGACGGCGT
	Dp_R	GAACGCGACCTGATCCTG
Dp2	Dp2_F	TCTCCTGATTTCTACGGC
	Dp_R	GAACGCGACCTGATCCTG
Dp3	Dp3_F	CCTGTCATGGGCGATCCC
	Dp_R	GAACGCGACCTGATCCTG
Dp4	Dp4_F	CTTGAAGCGGGTTTCCAC
	Dp_R	GAACGCGACCTGATCCTG
Dp5	Dp5_F	CGAGAGCCGGAACAGACG
	Dp_R	GAACGCGACCTGATCCTG
Dp6	Dp4_F	CTTGAAGCGGGTTTCCAC
	Dp6_R	GTCGATCGCGCGGGGCGTCG
Dp6m1	pD6m1_F	GTCGATCGCGCGGGGCGTCGGGTCTTTGCCAG
	pD6m1_R	CTTGAAGCGGGTTTCCACTCATTTCCGGACAATGCTGG
Dp6m2	pD6m2_F	GTCGATCGCGCGGGGCGTCGGGTCTTTGTTGACACCAC
	pD6m2_R	CTTGAAGCGGGTTTCCACTCATTTCCGGGTGG
Dp6m3	pD6m3_F	GTCGATCGCGCGGGGCGTCGGGTCTTTGTTGACATTGTTTAAGG
	pD6m3_R	CTTGAAGCGGGTTTCCACTCATCCTTAA
Lp1		Gene synthesis (Twist Bioscience)
Lp2	Lp2_F	GGGACAACGGACCTTATC
1.2	Lp_К	
Lp3	Lp3_F	
T 4	Lp_К	
Lp4	Lp4_F	
	Lp_К	
Црэ	Lp5_F	
L	Lp_K	
Lbo	Lp4_r	
	гро_к	GOLIAIGUGUUIIU

Lp6m1	Lp6m1_F	GGGACTGACTGCGGATCAGGCATACGCCAGTTTTG
	Lp6m1_R	GGCTTATGCGCCGTTCCGGACAAAACTGGCGTATG
Lp6m2	Lp6m2_F	GGGACTGACTGCGGATCAGGCATACGTTGATTCCACCCGG
	Lp6m2_R	GGCTTATGCGCCGTTCCGGGTGGAATCAAC
Lp6m3	Lp6m3_F	GGGACTGACTGCGGATCAGGCATACGTTGATTTGTTTAAGG
	Lp6m3_R	GGCTTATGCGCCGCCTTAAA
Pp1	Pp1_F	CCGCTCGTTTCCAGACATTA
	Pp_R	GATGGTGATCTTGTTGTCTT
Pp2	Pp2_F	GCCAAAATCAACTAGCACTG
	Pp_R	GATGGTGATCTTGTTGTCTT
Pp3	Pp2_F	GCCAAAATCAACTAGCACTG
	Pp3_R	CAGTGCTAGTTGATTTTGGC
Pp3m1	Pp3m1_F	CCGCTCGTTTCCAGACATTACTGGCGA
	Pp3m1_R	CAGTGCTAGTTGATTTTGGCCATTCGTTCCCGGATCGCCAGTAA
Pp3m2	Pp3m2_F	CCGCTCGTTTCCAGGTGTTA
	Pp3m2_R	CAGTGCTAGTTGATTTTGGCCATTCGTTCCCGGATCGTTGATAACACCTG
Pp3m3	Pp3m3_F	CCGCTCGTCCTTAAACATTA
	Pp3m3_R	CAGTGCTAGTTGATTTTGGCCATTCGTTCCCGGATCGTTGATAATGTTTAAGG
Zp1		Gene synthesis (Twist Bioscience)
Zp2	Zp2_F	CCCCATCGTCATCCTGCT
	Zp_R	CACATAGTCGACCGTTCT
Zp3	Zp3_F	AGGACGAGGGGCTGAAGC
	Zp_R	CACATAGTCGACCGTTCT
Zp4	Zp4_F	GCGATCCTCTGGTTGACT
	Zp_R	CACATAGTCGACCGTTCT
Zp5	Zp5_F	CCGATGGAGTCAATGCAG
	Zp_R	CACATAGTCGACCGTTCT
Zp6	Zp4_F	GCGATCCTCTGGTTGACT
	Zp6_R	CCGCTACAAGGCGGTCTTTT
Zp6m1	Zp6m1_F	GCGATCCTCTGGCCAGCTTTGTTCG
	Zp6m1_R	CCGCTACAAGGCGGTCTTTTTCGAACAAAGCTGGC
Zp6m2	Zp6m2_F	GCGATCCTCTGGTTGACTCCACTCG
	Zp6m2_R	CCGCTACAAGGCGGTCTTTTTCGAGTGGAG
Zp6m3	Zp6m3_F	GCGATCCTCTGGTTGACTTTGTTTAAGG
	Zp6m3_R	CCGCTACAAGGCGGTCTTCCTTAA
Ap1	Ap1_F	GGCATTGTTGACCAGCACAT
	Ap_R	AGCGATTCTGGAACCATGTG
Ap2	Ap2_F	GGGGCGATCCGTGACATC
	Ap_R	AGCGATTCTGGAACCATGTG
Ap3	Ap3_F	CAATGCCGAAGCCGATGC
	Ap_R	AGCGATTCTGGAACCATGTG
Ap4	Ap4_F	ATGGCGTTTCCTCTGAT
	Ap_R	AGCGATTCTGGAACCATGTG
Ap5	Ap5_F	TTGCAGACAAGGAGAGAG
	Ap_R	AGCGATTCTGGAACCATGTG

TABLE S3. dTetR and dMarR nucleotide sequences and amino acid sequences.

Name	Sequence (5'to 3') or (N- to C-terminal)
dTetR	ATGACGGGCGGAAAGGCCGTGCTGGACCGCTTTGCGGTGGGGGGTCGACAAGGACGCGATCATCGCGGCTGCGCTGGCGCTGC
nucleotide	AGGCGAAACATGGGCTGGCGGGGCTGCACGCTCGCTGCAGTCGCGGAACGGCTGCGCGTCGACGAGACGCAGGTGAGCCGACA
	TTTCGCTGATCGCGCGGACCTGCTGACGGCCATGGCGCGCGAGATTGCCCGCGGCGTCCGCGCCACGCCGCCGCGCGCG
	GGCGGGGCGCAGCTCGTCCAGCGCGCCAGTGCCGGGCGCCAGCTGATGCTTTCCCGGCGGGACGGCGCATTGCTGTTCGCGCAC
	eq:atgccgtctctctctcccccccccccccccccccccccc
	CGCGCCGCGTGGCGCTCGTCGATCGGTTCACGGTCGGTTTCGCGGTGGCCGAGCAGGCCGCCGCCGGCCAGTGCGGAGACGTC
	GGCAAGCTTCGAGAGCCAGCTTGACATTGTCCTGTCCGGACTTGCCTCCGCCCGC
	ACCGGCTGCGTCGCTTCCAGTCAAGCCTCTGGGTGTTCCTGCGCGATGCGTGA
dTetR	${\tt MTGGKAVLDRFAVGVDKDAIIAAALALQAKHGLAGCTLAAVAERLRVDETQVSRHFADRADLLTAMAREIARGVRATPPAQGWRA}$
amino acid	QLVQRASAGRQLMLSRRDGALLFAHMPSLFPPGGTGFDCVPALCEVGFSPADARAAVALVDRFTVGFAVAEQAAPASAETSASFESQ
	LDIVLSGLASARPDGLVAQRDDRLRRFQSSLWVFLRDA
dMarR	ATGGCGCGCGAAAGCGCCAACATCTCCTTTGCGCGGACTGTCCACATCAACGAACTGGATCGCCGCATCCTACTGCTGCTTCAG
nucleotide	GCGCAGGGCGACATGACGCTTGCCGCGATTTCCCTGTCCACGGGGGTGGACAAGGCGCAGGTGAGCCGCGCGATCAAGCGCAT
	GACGGAGATCTCGCTGCTCGCCGCGGCGGCGGCATCCGCAGCCGATCCGCCTGAGTGCGAGCGGCCGCCAGCTTGCCGAGCGCT
	${\tt TGCTGCGGCAGGCTGAGCTGCGCAATCGTGAGCTGACGTTCGGCATCACGGACGAGCAGATCGTCACGCTGTTCGGCGTGCTG}$
	GACACGCTGCTGACCCGCGCCGTCGCGCTGTTCGAGAAGGAGCGCAAGCTCGTCGCGTCCAACCAGCGGCAGGAACCGGTCG
	ATTTCCAGGATCTGGTCGCGGAGGGCCTGCCGGACGAGAACGGGATTGCCGTGGATCGCTCGC
	CGCTGTGTTCGTACATGCTGCGGGGGGGGGGGGGGCGCTCGCT
	${\tt GCCGAGATCTGCCGCAATCCGCCAATCAGCTGGCCGCAGCTGGTGCTGGCCCTCTATCGCGACCAGAGCCAGGCAGG$
	${\tt GGTCAATCATCTGGTGGAGAGCGGCCTTGTCGAGCGCACCGGCAAGCCGGGGGGGG$
	AGGGCCGGCGGATCAGCGACATCATTCGCGACACCGCCGCGCGCG
	CTCGACAGCTTCATGGACGCGTTCGACATTCTTTCGCGCAATGCCGAAGTGCAGCTCGCCCGGGAAAAGGCGATCCAGGAGAT
	GGACCGGGACTGA
dMarR	MARESANISFARTVHINELDRRILLLQAQGDMTLAAISLSTGVDKAQVSRAIKRMTEISLLARGGIRSPIRLSASGRQLAERLLRQAE
amino acid	$\label{eq:linear} LRNRelTFGITDEQIVTLFGVLDTLLTRAVALFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRQEPVDFQDLVAEGLPDENGIAVDRSRILPPFITLCSYMLRGGALAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKERKLVASNQRAFEKEKEKKVY$
	HKRRTGLSNFESWVIAE ICRNPPISWPQLVLALYRDQSQAGRTVNHLVESGLVERTGKPGRRHGFFAPTEEGRRISDIIRDTAARRSEFLOW AND
	FQGIPPPQLDSFMDAFDILSRNAEVQLAREKAIQEMDRD

TABLE S4. Synthesized genes used for EMSA in this study.

Name	Sequence (5'to 3')
Zp1	CGGCGACCTGCGCACCGCGATCCTCAGCGTGAACTGGGTCGCGATCCCCATCGTCATCCTGCTGCTGGTGCTGGTGTTCCGGATCCGATCCGGATCCCCATCGTCATCCTGCTGCTGGTGCTGGTGTTCCGGATCCCGATCCCCATCGTCATCCTGCTGCTGCTGGTGTGTCCGGATCCCGATCCCCATCGTCATCCTGCTGCTGCTGGTGTTCCGGATCCCGGATCCCCATCGTCATCCTGCTGCTGCTGGTGTGTGT
	CAAGGACGAGGGGCTGAAGCTCGAGCGGGGGGGGGGGGG
	${\tt GGTTGACTTTGTTCGAAAAAGACCGCCTTGTAGCGGCCGATGGAGTCAATGCAGCGCACAGCCAAATCGTGCGCGCGGGGTGAGA}$
	GGAAAGACAGGCCAATGGTTGATGTCAGAACGGTCGACTATGTG
Lp1	${\tt TTGTCCGCCAGGGCTGGGCCGTGAGCGGCGATGGCCGGGACAACGGACCTTATCGGACCGAGCAAGCGACCGCGCGGGCGG$
	${\tt CCGGGGCATCTGGCAAGGGCGTTTCGATCGGCCGGGGTGACTGGCGCGCGC$
	CATACGTTGATTTTGTCCGGAACGGCGCATAAGCCGTGCAACGATCATGGGCTTCACCGCCCGGCAGCAAGCGATCGGTTCGAACA
	GGAGAGGAAGCATCATGGACATCGCAGGGACCACGGCGTTCATC

Gene	SYK-6 SEMP (TPM)	SEMP + GGE (TPM)	Fold (GGE + SEMP/SEMP)
GGE catabolism genes			
$ligD^*$	19	740	39
$ligL^*$	21	59	2.8
$ligN^*$	25	156	6.2
ligF	27	681	25
ligE	11	436	40
ligP	27	1099	41
ligG	10	198	20
ligQ	1145	1717	1.5
hpvZ	30	394	13
SLG_20400	439	220	0.5
vceA	158	256	1.6
vceB	144	177	1.2
DGPD catabolism genes			
ligO	14	60	4.3
<i>ldpB</i>	6	61	10
ldpC	18	68	3.8
<i>ldpA</i>	9	149	17

TABLE S5. RNA-Seq analysis of SYK-6 grown in the presence and absence of GGE

 ldpA
 9

 *Genes involved in both GGE and DGPD catabolism.

TABLE S6. Orthologs of LigS and catabolic enzymes of GGE and DGPD in bacteria

	LigS		LigD		LigL		LigN		LigF		LigE		LigP		LigG		LigQ		HpvZ		LigO		LdpC		LdpB		LdpA	
Strains (ANI%)	E value l	Per. ident Accession	E value Pe	er. ident Access	ion E value F	Per. ident Accession	n Evalue F	Per. ident Accession	E value P	er. ident Accession	E value Pe	r.ident Accession	n Evalue P	er. ident Accession	E value Pr	er. ident Accessio	n Evalue F	Per. ident Accession	E value F	Per. ident Accession	E value	Per. ident Accession	Evalue Pe	er. ident Accession	E value Pe	r.ident Accession	Evalue Pe	er. ident Accession
Sphingobium lignivorans B1D3A (96.37)	0	99.61 **. sectors.	0	99.02 ^{ap} . an and	0	98.96 **. montane	0	99.36 w. marine	0	99.22 m. markets s	0	99.29 **	0	99.29 **. metallar	0	97.74 w. manuel	0	98.66 *	0	99.46 ** meterate	0	99.66 w.u.u.u.	3e-177	97.59 **	0	98.03 # Jacobito	0	98.35 ** minutes
Sphingobium xanthum NL9 (78.56)	0	73.45 **.ucum	0	87.54 ^{we performent}	8e-165	78.55 MP.0000001	6e-176	77.49 ^{we,constant}	1e-178	91.02 ^{wp,actorate}	0	92.17 **.0000	0	95.02 whereas a	8e-177	89.66 ^{w,uouus}	2e-172	80.49 **	0	88.41 ^w , and and	0	89.23 ^{wp,1017+18644}	2e-157	87.15 ^{we,actionar}	0	86.8 ^{as} according	4e-168	90 ** 3017-315.1
Sphingobium nicotianae H33 (78.35)	0	70.92 **. reasons -	0	85.57 ^{ap} journey	0	82.35 **. 2-Million	4e-170	77.49 w.mmm	9e-180	90.23 approximates	0	89.96 **	0	93.93 ^{sectorem}	7e-177	88.46 w.man.	1e-170	79.58 **. Pressent.	0	90.05 ** >+#2000	0	87.21 w. passas	4e-159	87.95 ** prasectar	0	87.46 = posteres	1e-167	90.34 ar passes -
Sphingobium sp. B7D2B (78.07)	0	64.53 **	0	82.78 ** Jaat 7004	0	84.38 **.mman	0	89.39 w.metano	1e-175	88.33 **.matham	1e-127	63.84 **.metrone	0	88.97 **.million	4e-175	87.69 **.mester	0	86.74 =	0	90.58 **	5e-76	41.13 w.m.	2e-147	84.74 =	0	84.82	3e-160	86.25 **.mi.
Sphingobium sp. B12D2B (78.08)	0	64.53 **	0	82.78 ** JANT THE	0	84.38 **	0	89.07 w.automa	1e-175	88.33 **.mt1100*	1e-127	63.84 m.m.m.m.m.	0	88.97 **.mm	1e-175	88.08 w.mmm.	0	86.74 =	0	90.4 ** means	5e-76	41.13 #Jactimes	7e-147	84.34 **.mmcu	0	84.82 ** Januari	4e-162	88.19 ** Jan 2001
Sphingobium sp. B11D3B (78.28)	0	64.53 **	0	82.78 ** Januari	0	84.03 **	0	88.75 w.mana	3e-174	87.94 **:natesaa	1e-127	63.84 **.metrone	0	88.97 **.million	7e-175	87.31 w.mmax.	0	86.74 = accurate	0	90.4 ** metana	2e-75	40.78 - Junine	9e-148	84.74 =	0	84.82 ** manner	7e-162	87.08 **.million.*
Sphingobium sp. B8D3D (78.2)	0	64.34 ^{arguerran}	0	82.12 ^{ar just have}	0	83.68 ^{ar} .mcmo.	0	89.07 w	5e-176	88.72 ^{wp_destTable}	5e-127	63.47 **	0	88.61 **.*******	7e-175	87.31 ^{wr,matham, i}	0	86.74 ^{separation}	0	90.22 **	3e-76	41.13 ^{up, success}	7e-147	84.34 **	0	85.15 ** parciant +	2e-161	86.67 ^{ap} , mathematic
Sphingobium sp. B8D3A (78.01)	0	64.34 **.sectors	0	82.12 ** Just Tame	0	83.68 sectors	0	89.07 w	5e-176	88.72 w.m.m.	5e-127	63.47	0	88.61 m.matrix	7e-175	87.31 w.m.	0	86.74 <i>**</i>	0	90.22 ** Jost Same	3e-76	41.13 - Justian	7e-147	84.34 =	0	85.15 ** percent +	2e-161	86.67 sejastass.
Sphingobium sp. B8D3C (78.11)	0	64.15 **.*******	0	83.11 m	0	84.03 **	0	89.07 w	6e-176	88.72 m	5e-127	63.47	0	88.61 m.man	7e-175	87.69 m	0	86.74 =	0	90.58 **	7e-76	40.78	3e-145	83.94 *	0	85.15 ····	2e-160	86.25 **
Sphingobium sp. B8D3B (78.23)	0	64.15 **.*******	0	83.11 -	0	84.03	0	89.07 w	6e-176	88.72 w.man.	5e-127	63.47	0	88.61 m.matrix	7e-175	87.69 m	0	86.74	0	90.58 **	7e-76	40.78	3e-145	83.94 ar. commu	0	85.15	2e-160	86.25 ···
Sphingobium sp. B2D3D (77.92)	0	64.15 **.*******	0	83.11 -	0	84.03	0	89.07 w	6e-176	88.72 w.man.	5e-127	63.47	0	88.61 m.matrix	7e-175	87.69 m	0	86.74	0	90.58 **	7e-76	40.78	3e-145	83.94 ar. commu	0	85.15	2e-160	86.25 ···
Sphingobium sp. B2D3A (77.86)	0	64.15 ^{stratement}	0	82.45 ^{wp.patrone}	0	84.38 ^{arcancement}	0	88.42 **	1e-175	88.33 ^{ar, automas}	1e-127	63.84 ^{ar,methan}	0	88.97 **.autorat	1e-173	86.54 w.manua.	0	86.74 **.aucunt	0	90.58 **	2e-75	40.78 ** Justine	3e-151	84.34 **	0	85.81 ** Jaccores	4e-161	86.67 ** Jacobson
Sphingobium sp. B1D7B (77.94)	0	64.15 =			0	84.38 ×	0	88.75 w.mman.	1e-175	88.33 w.a.com	1e-127	63.84 **.mct+a+	0	88.97 m.m.	1e-175	88.08 w.mmm.	0	86.74 =	0	90.58 **			2e-147	84.74 **				
Sphingobium sp. B11D3D (78.03)	0	64.15 m.m.m.	0	83.11 m.mm	0	83.68 strategies	0	88.42 w.m.m.	2e-174	87.94 **.******	1e-127	63.84 **.metrose	0	88.97 wheelers	1e-175	88.08 **	0	86.74 - autom	0	90.58 **.*******	7e-76	40.78	3e-151	84.34 **	0	85.81 # Jaccores	4e-161	86.67 ** Jan 1994
Sphingobium sp. B11D3A (78.23)	0	64.15 ^{ar} . or constant	0	83.11 ^{ap}	0	84.03 ^{ar} means	0	89.07 w	2.00E-176	87.94	1e-127	63.84 ^{ar,methan}	0	88.97 **.autorat	1e-175	87.64 white and a second	0	86.38	0	90.58 **	7e-76	40.78	4e-147	83.94 **.metum	0	85.15 **	7e-162	87.08 ** Jan 2008.1
Sphingobium sp. B10D7B (78.16)	0	64.15 **	0	83.11 m	0	84.03 ar.mann	0	89.07 w	2.00E-176	87.94	1e-127	63.84 **.mct+a+	0	88.97 m.m.	1e-175	87.64 w.m.mai	0	86.38	0	90.58 **	7e-76	40.78	4e-147	83.94 **.metum	0	85.15 **	7e-162	87.08 **.million.
Sphingobium sp. B10D3B (78.14)	0	64.15 m.metron.	0	82.78 ** Jaat 7004	0	84.72 =	0	89.07 w.matters	5e-176	88.72 w.m.mail	5e-127	63.47 m.m.	0	88.61 m. martine	3e-174	86.54	0	84.69 ar.metran	0	90.4 ** partiant	5e-76	41.13 w.m.	1e-147	83.94 ** success	0	84.49 ** partners	4e-162	88.19 ** JacTure 1
Sphingobium xanthum B10D3A(78.08)	0	64.15 **.mattem	0	82.78 ** JANT THE .	0	84.72 secondaria	0	89.07 w.automa	5e-176	88.72 **:stations.	5e-127	63.47	0	88.61 m.matrix	3e-174	86.54	0	84.69 **.mc****	0	90.4 ** partment	5e-76	41.13 w.m.m.	1e-147	83.94 **.meters	0	84.49 ** Jan Carlo	4e-162	88.19 ** Just 1941
Sphingobium sp. B2D3C (77.98)	0	63.76 **	0	83.11 m	0	84.38 ar.m.m.	0	89.39 w.mana	1e-175	88.33 w.a.com	1e-127	63.84 **.mct+a+	0	88.97 m.m.	8e-178	88.46	0	86.38	0	90.58 ** Januarian	7e-76	40.78	4e-148	84.34 **.matric	0	85.48 **	7e-162	87.08 **.million.
Sphingobium sp. B2D3B (78.06)	0	63.76 **	0	83.11 ^{ar}	0	84.38 ^{sectores}	0	89.39 ^{we} restaure	1e-175	88.33 ^{ap} , nations	1e-127	63.84 **.matters	0	88.97 **.md0+m	8e-178	88.46	0	86.38	0	90.58 ** matter	7e-76	40.78 ^{arc} and an arc.	4e-148	84.34 **.materia	0	85.48 ^{ar junction}	7e-162	87.08 ** Just 100.1
Erythrobacter sp. SG61-1L	3e-56	51.5 **.*******	6e-55	40.28 ** management	6e-97	50.75 stratement	1e-149	68.59 **.stations.	3e-110	63.11 sectors	2e-132	66.42 **	5e-169	80.8 ** statistics			3e-112	60.58 **.mmax	0	73.13	1e-71	43.77 w.metama.	1e-118	71.54 #.mm-m	3e-145	67.88 **.matrons	3e-119	71.68 ** main main
Altererythrobacter lauratis Y-8	2e-92	50.62 **.me.com							7e-107	59.02 m ² ,000/1012	1e-105	55.8 secondaria	7e-121	60.65 m ² ,000 at 10.1			4e-110	58.97 =					3e-120	69.64 **	7e-144	68.54	4e-118	72.65 ** .xm+xm1+
Altererythrobacter sp. CC-YST694	4e-104	47.84 **			5e-94	50 sector in	4e-71	43.28 #.ucrass.	5e-57	41.94 **.00700.00.1	7e-114	59.71 **.00000	2E-132	66.06			8e-115	61.31 =, second	0	72.95 ** 2007 March 1	1e-68	41.79 =, sectores.	4e-120	72.06 **.uctous	1e-144	67.88 #JOC1000	6e-118	72.32 ar. contractor.
Altericroceibacterium spongiae HN-Y73	5e-89	47.81 **. same	3e-112	55.56 **	2e-94	50.37 m	6e-154	69.77 w	5e-109	61.48 **. same	6e-131	66.3 se_constant -	2e-161	75.89 ** - constant -			3e-118	61.68 **. concent.	0	71.06	3e-172	79.73 #	3e-100	60.32 *	4e-142	65.23 ** josses (2e-119	70.35 ** (masses)
Aurantiacibacter xanthus CCTCC AB 2015396	6e-93	47.63 **.····							2e-110	61.89 ^{wr,-metals}	2e-111	56.79 **	6e-121	59.35 **			2e-119	62.64 **.******					8e-120	68.44 ** · · · · · · · · · ·	5e-138	66.01 **	3E-119	71.24
Altererythrobacter fulvus KACC 19119	3e-101	47.24 **			9e-94	50 str.commission	4e-143	68.91 w.methan	5e-110	63.52 ve.uurtuus	2e-134	67.9 **.uscass	5e-167	79.71 which are a second as a second			2e-113	60.95 st.mcmail	0	73.51	1E-66	42.09	8e-117	70.33 at 100000	7e-145	67.88 ** January	5e-118	72.12 ** seeteel.
Altererythrobacter sp. Root672	6e-92	47.18			3e-95	49.1 ×*			2e-116	63.82 sejamana	9e-124	64.07 **.*******	8e-161	76.16 white and a second second			1e-119	62.41 m.m.m.	0	71.79	8e-65	40.27 w.m.	6e-122	68.83 matrix	2e-145	68.21 **	6e-119	70.85 ** seasons
Croceibacterium aestuarii D39	1e-98	46.58 **			1e-96	50.18 ^{ar, season 1}	2e-56	41.2 ^{wr,manner}	7e-112	61.38 ^{ar, sesses 1}	9e-105	56.04 **	2e-128	62.99 ** manual			7e-121	62.64 **. minima	0	70.11 **	3e-66	42.42 ^{up} , sectors.	3e-112	68.67 **.searce.	7e-143	65.56 ** JANAGETER	1e-117	71.3 ^{ar jament}
Altererythrobacter palmitatis KCTC52607	2e-83	46.44 = mont							3e-108	59.84 m.mmmm	2e-106	57.41 **	7e-120	60.29 m ⁻ , consect -			3e-111	59.12 at marcan					8e-119	69.23 at 1000000	3e-144	67.88 ** JONECON	3e-117	70.35 ** xearce.
Aurantiacibacter suaedae GH3-15	1e-92	46.3 sectores.							8e-109	60.66 ** .: ITETATA	2e-108	56.79 sectors	7e-118	58.76 m. commune			4e-119	61.9 st. comm.					2e-119	69.26 **	1e-134	64.69 **	4e-117	69.91 ** -=======
Croceibacterium selenioxidans LX-88	1e-98	46.3 ** /******			8e-91	46.93 m. contract			2e-116	63.82 w.c.man	2e-126	65.56 m.matter	1e-161	76.16 whole and the second sec			1e-118	61.31 ···	0	71.43 ** 20484010			2e-124	70.45	1e-141	66.89 ··· >	9e-121	72.65 ** passes
Altererythrobacter segetis YJ20	8e-98	46.17 - second	3e-113	55.89 m ⁻	2e-94	49.46	3e-57	40.65 w.m.man	3e-104	59.43 w.m.m.	4e-110	58.24	1e-127	63.21 m.m.			4e-112	59.35 m.m.	0	71.22	4e-85	48.13 w. m. m.	1e-111	68.83	1e-149	69.54	2e-115	69.96 **.******
Aurantiacibacter sp. DGU5	6e-91	46.01 ^{sector}							6e-107	59.43 ^{ar, latters, c}	7e-111	57.3 ^{arguman}	3e-120	61.11 ^{arguettere}			3e-118	61.9 ^{sectore}					4e-118	67.62 ** Jacket?	2e-135	65.35 ** Jac volation	3e-118	70.8 ^{ap} (at 1999)
Croceibacterium salegens MCCC 1K01500	2e-101	45.79 sectors			3e-97	50.18 st. sacasses	2e-58	41.2 w. man.	1e-104	58.61 w, servers	2e-105	56.78 **.cesacco	9e-129	63.7 white and a			1e-116	62.27 st. scools	0	70.79	5e-65	41.41 w. maan	1e-117	68.27 water and	1e-138	64.03 **	4e-114	70.4 sectors
Altericroceibacterium indicum DSM 18604	9e-96	45,45	3e-111	55.1 w	6e-94	48.2 sejament	1e-150	68.71 w.matri	2e-108	63.03 w	4e-133	67.53	2e-161	76.6 why managers a	7e-124	65.5 w.mm.	3e-116	60.95 st. scrass.	0	71.59 ** million	1e-168	78.45 w. sataas	7e-92	60.73 secondaria	3e-137	66.78	4e-118	70.35 an jaman a
Aurantiacibacter sp. MUD11 Group 2	2e-95	45.41							3e-110	61.89 m.montes	1e-113	57.35 m.m.	8e-125	61.9 **			5e-112	59.49 m.mmm.					2e-125	/1./2 = ,	9e-141	65.79 w manual 1	1e-131	/5 m.mmm.
Altencroceibactenum endophyticum LMG 29518	2e-92	44.5	3e-104	51.7 ^{ap} , and and	3e-96	49.82	1e-154	69.23 w. analis	4e-105	61.76 sections	5e-135	67.53	1e-162	78.49 m	4e-121	64.86 ^{as} internal.	6e-118	60.81	0	70.15	3e-174	78.04 w. minut	2e-96	62.35 ^{as} anten	be-148	68.21 **	2e-116	70.8 w/series
Aurantacibacter sp. 219JJ12-13	26-94	44.5							2e-109	62.3	5e-102	52.01	2e-115	58.82			2e-112	59.85	0	55.37			1e-121	69.96 - march	28-141	66.45	8e-134	76.15
Auranitacidacter odishensis KCTC 23961	38-97	44.36 - 01.00			4. 50	10.00	0. 74		Te-107	60.25 minutes	98-102	54.85 - 0.00	1e-115	58.89 m mm			1e-111	59.56	/E-118	40.84			18-122	70.04	18-139	00.08	1e-135	77.82
Fordbrokenter westensilienneis ICM19014	28-99	44.22			16-00	40.22	08-71	44.41	7e-100	58.2 minutes	8e-110	58.83 minator	/e-12/ /E-117	62.82 minanti			10 109	59.71 0-mmm.	Fe 101	41.02			De-123	70.45 m mmm	38-143	67 m.mmm	1e-117	70.8 ********
Alteriemenikeeterium viellenenenen CCTCC AB 207168	20 107	43.88			8 a 05	40.92			7e 110	63.53	36-103	82.1 m.m.	46-117	39.20			20 110	60.07 m month	00-121	72.62 m cm/late	40.85	42.00	5e-123	70.49	0e 157	60.87 -	20-110	71.75 m m m
Alternumentiasiheater kustensis M0202	20.07	42.54			00 00	40.02			20 104	60.02 ·	20 112	58.01 at at 1000	60 100	61 E4 an arrange			20 115	60.91		10.02	40 00	42.00	80 112	60.02 vs unemp	40 121	65.01 ···	20 115	eo 47 en entrena
Aurantiacitacter sp. DGU6	2e-93	43.54							4e-110	62.7 w.u.u.u.u.u	2e-104	55 16	1e-120	61 11			1e-110	58 57 march					2e-116	67.89	2e-134	64 47 -	3e-138	78 24
Criceibacterium soli MCCC 1K02088	18-96	43.52 m more			26-02	48 74 at months	16-68	42.16 m mmm	Re-112	64.75 at another	26-110	59.36 at apparts	4e-130	64.98 m money			48-116	60.44 at months	0	70.48 m	98-69	41.37 m manual	50-118	68.27 vessas	40-149	68 54 m month	76-121	72.65 m (10100)
Aurantiacibacter rhizoenbarae GH3-10	98-96	43.51			20.02	40.14	10.00	42.10	5e-107	60.66 **.*****	26-104	54 32 -	76-118	58.61			58-111	59 12 -		10.40	00 00	41.07	16-76	55.08 *	5e-139	65 13 *	76-132	75 73 *
Alterenythrobacter sp. B11	1e-89	43.34			9e-93	49.28	9E-73	45.42	9e-121	66.26	5e-115	60.44 =	8e-136	66.19	1		3e-116	60.07	0	72.53	2e-67	41.79	7e-123	72.06	3e-149	69.54	3e-118	70.4 **.******
Aurantiacibacter arachoides BC4-10-4	38-93	43.33													1		5e-108	56 79					1					
Croceibacterium atlanticum 26DY36	3e-89	43.3			5e-93	49.63	1		6e-123	66.94 w.mm	8e-117	60	3e-144	68.33 **	1		5e-113	59.71	0	72.34	1E-63	41.91	1e-122	68.83	1e-149	69.21 **	2e-121	72.2 **
Aurantiacibacter sp. H149	3e-97	42,99					1		8e-108	61.07 ** minute	5e-103	55.22 =	2e-117	59.33 w second	1		5e-113	60.22	Ū		5e-63	40.79 =	2e-119	69.64	2e-137	64.8 **	3e-135	76.99 **.******
Altererythrobacter sp. KTW20L	3e-92	42.46 **					1		6e-105	59.43 **	4e-109	57.2 **	1e-127	62.64 ** sectores	1		8e-111	58.24 **	1				2e-119	68.83 ^{at} returns	4e-144	68.21 ** partners	7e-120	72.57 **
Alteraurantiacibacter aquimixticola SSKS-13	2e-98	41.54 =					1		6e-108	60.66	8e-111	57.3	2e-124	61.54	1		4e-112	60.44 =	1				9e-120	68.02	4e-143	66.89	8e-117	70.31
Croceibacterium xixiisoli S36	5e-80	41.19			7e-88	50.2	4e-104	53.95	4e-138	72.98	3e-122	64.49	1e-141	68.21	1		2e-113	59.71 -	0	71.14	1e-64	43.9	1e-50	40.55	7e-148	68.54 w.man.	3e-118	69.51 **
	L																		·									

(A) Organization of the GGE and DGPD catabolism genes. The bars with numbers below the map indicate the regions to be amplified and correspond to the numbering in panel B. (B) Agarose gel electrophoresis of RT-PCR assays with primers amplifying the regions shown in panel A. Total RNAs isolated from SYK-6 cells grown in Wx-SEMP + 5 mM GGE were used as templates for cDNA synthesis. Lanes: M, molecular size markers; g, control PCR with the SYK-6 genomic DNA; + and -, RT-PCR with or without reverse transcriptase, respectively. (C) RNA-Seq read coverage of the GGE and DGPD catabolism genes. RNAseq was performed using RNA obtained from SYK-6 cells grown in Wx-SEMP + 5 mM GGE.

Fig. S2. Construction of *ligS* mutants and *ligD ligL ligN* triple mutant.

The left panels show schematic representations of the disruption of *ligS* in SYK-6 and $\Delta ligI$ (A) and the disruption of *ligD* in $\Delta ligLN$ (B). The disruption of the genes was examined by colony PCR analyses (right side panels). The primer pairs used for colony PCR analyses are shown in Table S2. M, molecular size markers.

Fig. S3. Mutation into the putative *ligD*, *ligL*, *ligP*, and *hpvZ* promoter sequences.

The putative -35 and -10 elements are shown in green and violet, respectively. LigS binding sequences were highlighted in yellow. Mutations in the -35 element are shown as m35.

Fig. S4. Purification and molecular mass analysis of LigS.

(A) A plasmid construction of pET*ligS*. (B) SDS-PAGE of purified LigS. Lanes: M, molecular size markers; 1, His-LigS (2 µg); 2, LigS with His-tag removed by Factor Xa (2 µg). (C) Molecular mass analysis of LigS using Mass photometry.

Fig. S5. Identification of LigS binding region.

(A) EMSAs of LigS (0–1000 nM) binding to Dp1, Lp1, Pp1, Zp1, and Ap1 probes (40 fmol). (B) EMSA of LigS (1000 nM) binding to stepwise shortened *ldpA* probes (40 fmol). Each probe was incubated in the presence (+) and absence (-) of purified LigS. (C) Alignment of LigS binding regions upstream of *ligD*, *ligL*, *ligP*, and *hpvZ*. Alignment was performed using Clustal W.

(A) Plasmids construction of pETdTetR and pMALdMarR. dTetR uses amino acid residues from position 1 to 210 of LigS, and dMarR uses amino acid residues from position 210 to 516. dTetR and dMarR have a stop codon (TGA) and a start codon (ATG) added, respectively. (B) SDS-PAGE of dTetR and dMarR. Lanes: M, molecular size markers; 1, cell extracts of *E. coli* harboring pET-16b (10 µg); 2, cell extracts of *E. coli* harboring pETdTetR (10 µg); 3, purified His-dTetR (2 µg); 4, purified dTetR with His-tag removed by Factor Xa (2 µg); 5, cell extracts of *E. coli* harboring pMAL-c5X (MBP; 10 µg); 6, cell extracts of *E. coli* harboring pMALdTetR (MBP-dTetR; 10 µg); 7, cell extracts of *E. coli* harboring pMALdMarR (MBP-dMarR; 10 µg); 8, cell extracts of *E. coli* harboring pMALLigS (MBP-LigS; 10 µg).

Fig. S7. Search for effector molecules of LigS.

(A) EMSAs of LigS (100–1000 nM) binding to Dp4, Lp4, Pp1, and Zp4 (40 fmol) in the presence of GGE, DGPD, and their metabolites. (B) EMSAs of LigS (100 nM) binding to Dp4 (40 fmol) in the presence of downstream metabolites. (C) EMSAs of LigS (100 nM) binding to Dp4 (40 fmol) in the presence of GGE plus MPHPV, HPV, *threo*-DGPD, DGPD-keto, or *erythro*-DGPD. Abbreviations: VA, vanillic acid; AV, acetovanillone; PCA, protocatechuic acid; PDC, 2-pyrone-4,6-dicarboxylic acid; HPV, β -hydroxypropiovanillone. Each probe was incubated in the presence (+) and absence (-) of purified LigS.

Fig. S8. Search for effector molecules of LigS from black liquor.

(A) EMSAs of LigS (100 nM) binding to Dp4 (40 fmol) in the presence of neutralized black liquor. (B) EMSAs of LigS (100 nM) binding to Dp4 (40 fmol) in the presence of ethyl acetate extract of black liquor and aqueous layer after ethyl acetate extraction. (C) EMSAs of LigS (100 nM) binding to Dp4 (40 fmol) in the presence of black liquor incubated with SYK-6 for 4, 8, and 24 h. Each probe was incubated with (+) or without (-) purified LigS. (D) HPLC analysis of black liquor incubated with SYK-6 for 24 h. SYK-6 cells were incubated with 5% neutralized black liquor in Wx-SEMP. Portions of the culture were collected at the start and 24 h and analyzed using HPLC. HPLC analysis was performed with the ACQUITY UPLC system (Waters). The sample solution was filtered through a PTFE filter (Captiva Econofilter, Agilent) with a pore size of 0.20 μ m and using CORTECS UPLC T3 column (particle size, 1.6 μ m; 2.1 × 150 mm, Waters). The mobile phase was a mixture of solution A (acetonitrile containing 0.1% formic acid) and B (water containing 0.1% formic acid) under the following conditions: 0–3.0 min, linear gradient from 1 to 20% A; 3.0–5.0 min, decreasing gradient from 20 to 7% A; 5.0–6.1 min, linear gradient from 7 to 30% A; 6.1–7.1 min, linear gradient from 30 to 50% A; 7.1–7.5 min, decreasing gradient from 50 to 1% A; 7.5–10 min, 1% A. The flow rate was 0.3 mL/min, and the column temperature was 40°C. Abbreviations: VA, vanillic acid; VN, vanillin; AV, acetovanillone.

Fig. S9. Conversion of vanilloyl acetic acid, vanillic acid, and syringic acid by resting cells of SYK-6 and $\Delta ligS$.

Cells of SYK-6 (black) and $\Delta ligS$ (orange) with an OD₆₀₀ of 0.5 vanilloyl acetic acid and 1.0 (vanillic acid and syringic acid), respectively, were incubated with 100 μ M vanilloyl acetic acid, vanillic acid, and syringic acid.

References

- 1. Y. Katayama, S. Nishikawa, M. Nakamura, N. Morohoshi, T. Haraguchi, K. Yano and M. Yamasaki, *Mokuzai Gakkaishi*, 1987, **33**, 77-79.
- R. Kato, K. Maekawa, S. Kobayashi, S. Hishiyama, R. Katahira, M. Nambo, Y. Higuchi, E. Kuatsjah, G. T. Beckham, N. Kamimura and E. Masai, *Appl Environ Microbiol*, 2023, **89**, e0017123.
- 3. K. Mori, N. Kamimura and E. Masai, Appl Microbiol Biotechnol, 2018, 102, 4807-4816.
- 4. F. W. Studier and B. A. Moffatt, J Mol Biol, 1986, 189, 113-130.
- 5. F. Bolivar and K. Backman, Methods Enzymol, 1979, 68, 245-267.
- 6. D. H. Figurski and D. R. Helinski, Proc Natl Acad Sci USA, 1979, 76, 1648-1652.
- 7. A. Kaczmarczyk, J. A. Vorholt and A. Francez-Charlot, Appl Environ Microbiol, 2012, 78, 3774-3777.
- E. Kuatsjah, M. Zahn, X. Chen, R. Kato, D. J. Hinchen, M. O. Konev, R. Katahira, C. Orr, A. Wagner, Y. Zou, S. J. Haugen, K. J. Ramirez, J. K. Michener, A. R. Pickford, N. Kamimura, E. Masai, K. N. Houk, J. E. McGeehan and G. T. Beckham, *Proc Natl Acad Sci U S A*, 2023, **120**, e2212246120.
- 9. J. M. Blatny, T. Brautaset, H. C. Winther-Larsen, P. Karunakaran and S. Valla, Plasmid, 1997, 38, 35-51.