Supporting information

Design of halogen-free hyper-crosslinked porous ionic polymers for efficient CO₂ capture and conversion

Xiaoqing Yang,‡^a Jinshan Zhao,‡^a Junfeng Zeng,‡^a Bihua Chen,^a Liang Tang,^a Jun Zhang,^a Akif Zeb,^a Zhiyong Li,^b Shiguo Zhang^a and Yan Zhang^{*a}

^a College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan,

China

^b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007,

Henan, China

‡Contributed equally to this work

* Corresponding author

E-mail addresses: zyan1980@hnu.edu.cn (Y. Zhang)

Preparation of [Gua][Bph₄]:

Generally, 0.05 mol of [Gua][Cl] and [Na][BPh₄] were dissolved in 50 mL of water in a 250 mL beaker, followed by a slow dropwise addition of the aqueous [Na][BPh₄] solution to the [Gua][Cl] at room temperature for 24 h. After the reaction, direct filtration and rinsing with large amounts of water to obtain a white solid. The resulting solid was dried under vacuum to obtain the [Gua][BPh₄] (yield: 95%). ¹H NMR (400 MHz, DMSO- d_6) δ 7.22 – 7.15 (m, 8H), 6.98 – 6.87 (m, 13H), 6.80 (t, J = 7.2 Hz, 4H) ¹³C NMR (101 MHz, DMSO- d_6) δ 164.57, 164.08, 163.59, 163.10, 158.31, 136.00, 125.82, 125.79, 125.77, 125.74, 122.00.

Fig. S1 Solid-state ¹¹B NMR spectrum of Gua-HCPIP-4.

Fig. S2. FT-IR spectra of FDA, [Gua][BPh₄] and Gua-HCPIP-x.

Fig. S3 (a) Survey XPS and (b) high resolution Cl 2p spectra of Gua-HCPIP-4.

Fig. S4. (a) SEM images of Gua-HCPIP-1, (b)Gua-HCPIP-2, and (c) Gua-HCPIP-3.

Fig. S5. The XRD patterns of HCPIPs.

Fig. S6. CO₂ adsorption isotherms for HCPIPs at different temperatures.

Fig. S7. N₂ adsorption isotherms for HCPIP at 273 K.

Fig. S8. (a)N₂ adsorption-desorption isotherm and (b) DFT pore distribution of HCP-[Na][BPh₄]; (c)CO₂ adsorption isotherm of HCP -[Na][BPh₄] at 273 K.

Fig. S9. (a)XRD patterns; (b)FT-IR spectra; and (c) TGA curves of fresh and recycled

Gua-HCPIP-4.

Fig. S10. Gas chromatography chart of reaction exhaust gas.

Scheme S1. N-methylaniline (1a) as a substrate and PhSiH₃ as a reducing agent for CO₂ N-formylation in CH₃CN to form the pharmaceutical intermediate N-methylformanilide (1b)

Sample	FDA/IL	FeCl ₃	Solvent	$S_{BET} (m^2 g^{-1})$			
		(mmol)	(mL)				
Gua-HCPIP-1	10	20	20	198			
Gua-HCPIP-2	20	20	20	392			
Gua-HCPIP-3	30	20	20	551			
Gua-HCPIP-4	40	20	20	598			
^a Hyper crosslinking conditions: N ₂ protection, 80 °C, 24 h. Solvent: 1,2 dichloroethane							

Table S1. Synthesis conditions, and S_{BET} of the HCPIPs.^a

Table S2. Textural parameters of the HCPIP.

Polymers	FDA/	S _{BET}	S _{micro}	S _{meso}	V _{total}	V _{micro}	N content	IL content
	IL	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	(%)	(mmol g ⁻¹)
Gua-HCPIP-1	10	196	84	112	0.196	0.083	1.50	0.357
Gua-HCPIP-2	20	392	203	189	0.376	0.177	1.35	0.321
Gua-HCPIP-3	30	522	268	254	0.588	0.228	1.21	0.288
Gua-HCPIP-4	40	598	311	287	0.457	0.263	1.02	0.243

Table S3. CO₂ adsorption Langmuir, Freundich parameters isotherms.

Polymers	T(K)	Q _{exp}	Langumuir	Freundich

			q _{mod}	Q _{max}	kl	R ²	q _{mod}	K_{f}	n	R ²
Gua-	273.15	2.022	1.968	4.081	0.755	0.997	2.022	1.755	1.462	0.999
HCPIP-1	298.15	1.261	1.217	4.376	0.315	0.999	1.237	1.046	1.207	0.999
Gua-	273.15	2.601	2.556	5.895	0.622	0.999	2.626	2.261	1.383	0.999
HCPIP-2	298.15	1.605	1.587	6.195	0.284	0.999	1.605	1.370	1.184	0.999
Cue	273.15	3.114	3.041	6.805	0.653	0.998	3.125	2.686	1.406	0.999
HCPIP-3	298.15	1.901	1.884	11.75 2	0.157	0.999	1.900	1.596	1.106	0.999
Gua-	273.15	3.154	3.078	7.669	0.542	0.998	3.154	1.737	1.171	0.999
HCPIP-4	298.15	2.074	2.047	8.599	0.254	0.999	2.074	2.692	1.349	0.999

Table S4. CO_2 adsorption performance of previous materials.

- 1	CO, uptake (mmol	CO_2/N_2 se		
Sample	g ⁻¹) (273 K, 1bar)		(273 K, 1 bar)	Ref.
Gua-HCPIP-4	2.72	IAST	332	This work
PIPs-6	2.35	IAST	256	1
COP-222	1.08	-	-	2
ILs-POF _{0.5}	2.14	-	-	3
PAF-167	1.68	IAST	49.7	4
PCP-Cl	2.31	IAST	48	5

HPILs-Cl-1	3.25	IAST	44	6
SCHPP-3	1.32	-	-	7
PDI-HIP-1	2.11	-	-	8
PTPIM-IL	2.69	-	-	9
HIP-Br-His	2.90	IAST	53	10
HBIM(2)@QA	2.97	-	-	11
HPMBr0.5	1.83	-	-	12
[HBIM- 2]Br- DCX (3)	1.80	-	-	13
Al-HIP-3	2.10	-	-	14
IHCP-2	2.87	IAST	24.5	15

Table S5. Comparison of catalysts for CO_2 N-formylation reaction

Sample	Solvent	Temperature (°C) / Time (h)	Pressure (bar)	Yeild (%)	Ref.
ZIF-90-C	CH ₃ CN	50/24	1	87	16
Zn(OAc) ₂ /phen	CH ₃ CN	25/72	5	92	17
Pd/Bi-ZnOx	CH ₃ CN	30/24	5	29.6	18
$(C_5H_7N_2)_5[CuW_{12}O_{40}]$	CH ₃ CN	25/24	1	94	19
[Fe(acac) ₂]+pp ₃	THF	25/18	1	45	20
[Ph ₃ PMe]CO ₃ Me	THF	70/16	1	72	20

NSC1	DMF	50/24	1	77	21
43# ILHCP	-	35/16	5	99	22
TB-G/H-COF	CH ₃ CN	80/7	1	97	23
Gua-HCPIP-4	CH3CN	80/24	3	94	This work

N N

1b ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.53 (s, 1H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 7.4 Hz, 2H), 7.25 (t, *J* = 7.4 Hz, 1H), 3.21 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.48, 142.53, 129.86, 126.04, 121.93, 31.43.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.22 (s, 1H), 8.88 – 8.29 (m, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.33 (t, *J* = 7.9 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.09 (d, *J* = 7.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.99, 160.06, 138.73, 129.84, 129.31, 124.06, 119.63, 117.99.

3b ¹H NMR (400 MHz, DMSO- d_6) δ 8.52 (s, 1H), 8.15 (s, 1H), 7.41 – 7.19 (m, 5H), 4.31 (d, J = 6.2 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 165.40, 161.50, 139.46, 128.81, 127.77, 127.35, 45.01, 41.18.

4b ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.12 (s, 1H), 8.25 (s, 1H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.11 (t, *J* = 7.1 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.92, 159.79, 136.26, 136.23, 133.17, 132.98, 130.24, 129.67, 119.56, 118.15, 20.90, 20.76.

¹H NMR (400 MHz, DMSO- d_6) δ 10.29 (d, J = 46.1 Hz, 1H), 8.89 – 8.22 (m, 1H), 7.58 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 162.97, 160.23, 138.32, 138.05, 132.59, 132.15, 121.54, 119.79, 115.64.

6b

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.92 (s, 1H), 3.68 – 3.53 (m, 1H), 1.81 – 1.46 (m, 4H), 1.19 (dt, J = 42.6, 12.1 Hz, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 160.32, 50.67, 46.51, 34.64, 32.75, 25.61, 24.81.

H**_O** __N__

7b ¹H NMR (400 MHz, DMSO- d_6) δ 7.77 (s, 1H), 2.98 – 2.83 (m, 4H), 1.23 (dh, J = 14.9, 7.4 Hz, 4H), 0.57 (td, J = 7.5, 2.5 Hz, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 163.00, 48.43, 43.22, 21.80, 20.59, 11.58, 11.08.

8b

¹H NMR (400 MHz, DMSO- d_6) δ 8.02 (s, 1H), 3.58 (t, J = 4.9 Hz, 2H), 3.53 (t, J = 5.0 Hz, 2H), 3.39 (q, J = 5.6 Hz, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 161.36, 67.18, 66.21, 45.54.

REFERENCES

- 1. K. Cai, P. Liu, Z. Chen, P. Chen, F. Liu, T. Zhao and D.-J. Tao, Chem. Eng. J., 2023, 451, 138946.
- S. Subramanian, J. Oppenheim, D. Kim, T. S. Nguyen, W. M. H. Silo, B. Kim, W. A. Goddard and C. T. Yavuz, 2. Chem, 2019, 5, 3232-3242.
- 3. Y. Yang, Y. Guo, J. Yuan, H. Xie, C. Gao, T. Zhao and Q. Zheng, ACS Sustainable Chem. Eng., 2022, 10, 7990-8001
- 4. T. Wang, Y. Du, Y. Yang, X. Jing and G. Zhu, Ind. Eng. Chem. Res., 2022, 61, 7284-7291.
- 5. O. Buyukcakir, S. H. Je, D. S. Choi, S. N. Talapaneni, Y. Seo, Y. Jung, K. Polychronopoulou and A. Coskun, Chem. Commun., 2015, 52, 934-937.
- Y. Sang and J. Huang, Chem. Eng. J., 2020, 385, 123973. 6.
- 7. X. Meng, Y. Liu, S. Wang, J. Du, Y. Ye, X. Song and Z. Liang, ACS Appl. Polym. Mater., 2020, 2, 189-197.
- S. H. Goudar, D. S. Ingle, R. Sahu, S. Kotha, S. K. Reddy, D. J. Babu and V. R. Kotagiri, ACS Appl. Polym. Mater., 8. 2023, 5, 2097-2104.
- 9. G. Feng, M. Yang, H. Chen, B. Liu, Y. Liu and H. Li, Sep. Purif. Technol., 2023, 323, 124484.
- C. Guo, G. Chen, N. Wang, S. Wang, Y. Gao, J. Dong, Q. Lu and F. Gao, Sep. Purif. Technol., 2023, 312, 123375. 10.
- X. Liao, Z. Wang, L. Kong, X. Gao, J. He, D. Huang and J. Lin, *Wiol. Cucul.*, 2020, 2020, 12000 ...
 H. Lyu, X. Wang, W. Sun, E. Xu, Y. She, A. Liu, D. Gao, M. Hu, J. Guo, K. Hu, J. Cheng, Z. Long, Y. Liu and P. Cucular, and the second second
- X. Liao, Z. Wang, Z. Li, L. Kong, W. Tang, Z. Qin and J. Lin, Chem. Eng. J., 2023, 471, 144455. 13.
- W. Xu, M. Chen, Y. Yang, K. Chen, Y. Li, Z. Zhang and R. Luo, ChemCatChem, 2023, 15, e202201441. 14.
- 15. J. Gu, Y. Yuan, T. Zhao, F. Liu, Y. Xu and D.-J. Tao, Sep. Purif. Technol., 2022, 301, 121971.
- 16. K. Zhu, Y. Li, Z. Li, Y. Liu, H. Wu and H. Li, Chem. Commun., 2022, 58, 12712-12715.
- 17. Q. Zhang, X.-T. Lin, N. Fukaya, T. Fujitani, K. Sato and J.-C. Choi, Green Chem., 2020, 22, 8414-8422.
- 18. P. Bai, Y. Zhao and Y. Li, Catal. Today, 2024, 430, 114551.
- 19. P. Sood, S. Bhatt, H. Bagdwal, A. Joshi, A. Singh, S. L. Jain and n. Monika Singh, J. Mater. Chem. A, 2024, 12, 19168-19175.
- 20. Y. Li, X. Cui, K. Dong, K. Junge and M. Beller, ACS Catal., 2017, 7, 1077-1086.
- 21. F. D. Bobbink, S. Das and P. J. Dyson, *Nature Protoc.*, 2017, **12**, 417-428.
- Q. Ren, Y. Chen, Y. Qiu, L. Tao and H. Ji, *Catal. Lett.*, 2021, **151**, 2919-2927.
 Z. Mu, Y. Zhu, Y. Zhang, A. Dong, C. Xing, Z. Niu, B. Wang and X. Feng, *Angew. Chem. Int. Ed.*, 2023, **62**, e202300373.