Novel sustainable synthesis of resorcinol-terephthalaldehyde thermosetting phenolic resin through solvent-free reactive extrusion

Alex Maokhamphiou^{a,b}, Matthieu Zinet^a, William Guerin^b, Arnaud Soisson^b, Morgane Petit^b, Guillaume Jobard^a, Fernande da Cruz-Boisson^a, Karim Delage^a, Romain Tavernier^a, Véronique Bounor-Legaré^a

^oUniversité Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères F-69621 Villeurbanne Cédex, France

^bSaint-Gobain Research Paris, département Produits Composites et Revêtements de Surface, groupe Liants Polymères, 39 Quai Lucien Lefranc 93300 Aubervilliers, France

Supporting Information

Table des matières

1.	Sustainable synthesis routes for bio-based monomers
2.	Structural characterization of the resin synthesized by reactive extrusion4
a	2D 1H/13C HSQC NMR spectrum4
b	¹³ C-NMR and DEPT135 NMR spectra5
C.	2D ¹ H/ ¹³ C HMBC NMR spectrum5
d	. Flash chromatography6
e	Mass spectrometry7
3.	Thermal analyses of the resin synthesized by reactive extrusion (TGA-IR)
a	TGA of TPA8
b	Absorption spectra of TPA8
c.	Absorption spectra of the resin synthesized by reactive extrusion
d	. TGA of the resin synthesized by reactive extrusion10

1. Sustainable synthesis routes for bio-based monomers

TPA can be produced from oxidation of bio-sourced para-xylene (which is used in large-scale production of bio-based PET). **Figure S1** shows a pathway for obtaining bio-based para-xylene for the production bio-terephthalic acid.¹

Figure S1 : General scheme for biobased paraxylene for bio-PET production

Other sustainable pathways for p-xylene production include cycloaddition of biomass-derived furans, direct conversion of lignocellulose via catalytic fast pyrolysis or synthesis from isobutanol.²

Resorcinol is a promising monomer as it can be produced from the biomass following different pathways. In fact, resorcinol can be synthesized from catechin or glucose by fermentation.³ Glucose is first converted into inositol via fermentation, which is then chemically transformed into 1,3,5-benzenetriol (phloroglucinol). This intermediate can subsequently be reduced to resorcinol (**Figure S2**).

Figure S2 : Resorcinol synthesis from glucose via inositol

Glucose can also undergo fermentation to produce triacetic acid lactone. This compound is further converted to 1,3,5-benzenetriol methyl ether, which can be reduced to resorcinol either directly or via intermediate steps. (Figure S3)

Figure S3 : Resorcinol synthesis from glucose via triacetic acid lactone

2. Structural characterization of the resin synthesized by reactive extrusion

a. 2D 1H/13C HSQC NMR spectrum

Figure S4 : 2D ¹H/¹³C HSQC NMR spectrum in DMSO-d₆ (298K) of the resin for a TPA-to-resorcinol molar ratio of 1.6. The extrusion temperature was set to 150 °C with a flow rate of 1 kg·h⁻¹ and a screw speed of 100 rpm (RT1.6_T150[3'10]). The signal attributions of the residual monomers is shown on the spectra.

b. ¹³C-NMR and DEPT135 NMR spectra

Figure S5: ¹³C-NMR and DEPT135 NMR spectra in DMSO- d_6 (298K) of the resin for a TPA-to-resorcinol molar ratio of 1.6. The extrusion temperature was set to 150 °C with a flow rate of 1 kg·h⁻¹ and a screw speed of 100 rpm (RT1.6_T150[3'10]). The signal attributions of the residual monomers are shown on the spectra. The a_2 signal corresponds to a quaternary carbon but has not been but fully suppressed on the DEPT 135 NMR spectrum.

c. 2D ¹H/¹³C HMBC NMR spectrum

Figure S6: 2D ¹H/¹³C HMBC NMR spectrum in DMSO-d₆ (298K) of the resin for a TPA-to-resorcinol molar ratio of 1.6. The extrusion temperature was set to 150 °C with a flow rate of 1 kg·h⁻¹ and a screw speed of 100 rpm (RT1.6_T150[3'10]. The signal attributions of the trimer 1 synthesized is shown on the spectra.

d. Flash chromatography

Figure S7: Chromatogram obtained from the flash chromatography of the resin for a TPA-to-resorcinol molar ratio of 1.6. The extrusion temperature was set to 150 °C with a flow rate of 1 kg·h⁻¹ and a screw speed of 100 rpm (RT1.6_T150[3'10]). The oligomers were separated with a gradient program of solvent A (dichloromethane) and solvent B (methanol). Initially, the separation started with a low percentage of solvent B (95% A, 5% B), which was gradually increased to reach 100% of solvent B as eluent.

Figure S8: ¹H NMR spectra of the different fractions obtained from the separation by flash chromatography with a magnification on fractions 4 and 5. The weight percentage of each fraction is summarized in the tables.

e. Mass spectrometry

Figure S9: APCI mass spectra of two fractions in negative mode. A) Fraction 6; B) Fraction 7.

3. Thermal analyses of the resin synthesized by reactive extrusion (TGA-IR)

Figure S10: Thermogravimetric analysis of TPA at 10 °C·min⁻¹ under inert atmosphere.

b. Absorption spectra of TPA

Figure S11 : Absorption spectra of the TPA obtained with the TGA-IR analysis at 196 °C (black) vs. the absorption spectra of TPA from the database (red)

Figure S12 : Absorption spectra from TGA-IR analyses of the resin of molar ratio 1.6 at 107 °C (black) and at 283 °C (red).

d. TGA of the resin synthesized by reactive extrusion

Figure S13 : TGA thermogram of the resin of molar ratio 1.6 correlated with the absorbance profiles at 1716 cm⁻¹ (TPA) and 3745 cm⁻¹ (water).

References

1 V. Siracusa and I. Blanco, *Polymers*, 2020, **12**, 1641.

- 2 A. Maneffa, P. Priecel and J. A. Lopez-Sanchez, ChemSusChem, 2016, 9, 2736-2748.
- 3 C. Gioia, M. B. Banella, M. Vannini, A. Celli, M. Colonna and D. Caretti, *Eur. Polym. J.*, 2015, 73, 38–49.