**Electronic Supplementary Information** 

## Synthesis and Characterisation of Polycarbonates from Spent Lithium Battery Electrolytes

Haiyue Wang<sup>1‡</sup>, Lili Deng<sup>1‡</sup>, Bing Fang<sup>1</sup>, Xiaolong Li<sup>1</sup>, Liying Guo<sup>1,\*</sup>, Rongrong Zheng<sup>1</sup>

(1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 111003, China)

The supporting information includes thirteen pages and fifteen figures.



**General Information** 

Fig. S1 Reaction process diagram of  $ILs\xspace$  catalyst

X-Ray Energy Spectrum Analyzer (XFlash 630M), Bruker, Germany, point scanning analysis (depth of about 1  $\mu$ m), acceleration voltage of 0 ~ 20 keV ; X-ray diffractometer (ULTIMA) was used. The operating voltage was 45 kV, the current was 40 mA, the anode target material was Cu target, K $\alpha$  ray radiation, the scanning angle range was 10-80°, and the scanning speed was 5°/min.

|      | - C |    |         | 27    |       | 谱图 1 |
|------|-----|----|---------|-------|-------|------|
|      |     |    | Element | Wt./% | At./% |      |
|      | -   |    | СК      | 56.40 | 68.67 |      |
|      | -   |    | ОК      | 7.83  | 8.15  |      |
| s/eV | Ē   | Zn | NK      | 20.91 | 19.05 |      |
| ġ    | 5-  | Ť  | CI K    | 1.15  | 1.06  |      |
|      | - 6 | 5  | Zn K    | 13.71 | 3.06  |      |
|      |     | A  | Totals  | 100   | 100   |      |
|      |     | a  |         |       |       |      |
|      | 0   | 2  | 4       | 6     | 8     | keV  |

Fig. S2. X-Ray Energy Spectrum Analyzer of catalysis.



Fig. S3. Sigma-profile of the functionalized cation computed by COSMO-MS.



**Fig. S4** Interaction energy between EMC and ILs (a) IL-ZnCl<sub>3</sub>-EMC; (b) IL-CuCl<sub>3</sub>-EMC; (c) IL-FeCl<sub>4</sub>-EMC;



**Fig. S5** Interaction energy between DEC and ILs (a) IL-ZnCl<sub>3</sub>-DEC; (b) IL-CuCl<sub>3</sub>-DEC; (c) IL-FeCl<sub>4</sub>-DEC

|   | Temperature<br>(A)(°C) | Pressure<br>(B) (kPa) | Time<br>(C) (min) | Catalyst dosage<br>(D) (wt %) |
|---|------------------------|-----------------------|-------------------|-------------------------------|
| 1 | 165                    | 2                     | 20                | 0.2                           |
| 2 | 175                    | 4                     | 40                | 0.4                           |
| 3 | 185                    | 6                     | 60                | 0.6                           |

 $\label{eq:constraint} \textbf{Tab. S1} \ Factors \ and \ Levels \ of \quad (L_n 3^4) \quad orthogonal \ tests$ 

Tab. S2 Effects of different process parameters on the catalytic process

|                        |         | Conv.   | Viald   |            |          |       |
|------------------------|---------|---------|---------|------------|----------|-------|
| No.                    | A(℃)    | B(kPa)  | C(min)  | D(wt<br>%) | (%)<br>) | (%)   |
| 1                      | 165 (1) | 2 (1)   | 20(1)   | 0.2 (1)    | 84.83    | 81.52 |
| 2                      | 165 (1) | 4 (2)   | 40 (2)  | 0.4 (2)    | 87.43    | 85.69 |
| 3                      | 165 (1) | 6 (3)   | 60 (3)  | 0.6 (3)    | 86.24    | 83.44 |
| 4                      | 175 (2) | 2(1)    | 40 (2)  | 0.6 (3)    | 99.08    | 98.16 |
| 5                      | 175 (2) | 4 (2)   | 60 (3)  | 0.2(1)     | 98.14    | 97.05 |
| 6                      | 175 (2) | 6 (3)   | 20(1)   | 0.4 (2)    | 94.34    | 93.03 |
| 7                      | 185 (3) | 2(1)    | 60 (3)  | 0.4 (2)    | 96.41    | 94.51 |
| 8                      | 185 (3) | 4 (2)   | 20(1)   | 0.6 (3)    | 93.64    | 91.12 |
| 9                      | 185 (3) | 6 (3)   | 40 (2)  | 0.2(1)     | 94.04    | 92.18 |
| V                      | 258.5   | 280.32/ | 272.81  | 277.01     |          |       |
| κ <sub>jl</sub>        | /250.65 | 274.19  | /265.67 | /270.75    |          |       |
| V                      | 291.56  | 279.21/ | 280.55  | 278.18     |          | —     |
| <b>K</b> <sub>j2</sub> | /288.24 | 273.86  | /276.03 | /273.23    |          |       |
| V                      | 284.09  | 274.62/ | 280.79  | 278.96     |          |       |
| K <sub>j3</sub>        | /277.81 | 268.65  | /275    | /272.72    |          |       |
| 1.                     | 86.17   | 93.44   | 90.94   | 92.34      |          |       |
| K <sub>j1</sub>        | /83.55  | /91.40  | /88.56  | /90.25     |          |       |
| 1.                     | 97.19   | 93.07   | 93.52   | 92.73      |          |       |
| K <sub>j2</sub>        | /96.08  | /91.29  | /92.01  | /91.08     |          |       |
| 1.                     | 94.70   | 91.54   | 93.60   | 92.99      |          |       |
| к <sub>ј3</sub>        | /92.60  | /89.55  | /91.67  | /90.91     |          |       |
| р                      | 11.02   | 1.90    | 2.66    | 0.65       |          |       |
| К                      | /12.53  | /1.85   | /3.45   | /0.83      |          |       |



Fig. S6. 13C-NMR of PIB-0 (150 MHz, CDCl3).



Fig. S7. 13C-NMR of PIB-30 (150 MHz, CDCl3).



Fig. S8. 13C-NMR of PIB-50 (150 MHz, CDCl3).



Fig. S9. 13C-NMR of PIB-70 (150 MHz, CDCl3).



Fig. S10. 13C-NMR of PIB-100 (150 MHz, CDCI3).



Fig. S11. GPC of copolymerised PIBs.



Fig. S12. Photo of stretching spline for injection molding



Fig. S13. The GPC profiles for the PIB-100 analyzed by the MALDI-TOF MS.



Fig. S14. Spent lithium battery recycling process



Fig. S15. Gas chromatography of s-LIBs