Supporting Materials

Industrial ultra-low carbon methanol synthesis routes: techno-

economic analysis, life cycle environment assessment and multi-

dimensional sustainability evaluation

Dongrui Zhang¹, Ruqiang Wang², Zhibo Zhang¹, Hao Yan¹, Xin Zhou^{3*}, Hui Zhao^{1*},

Chaohe Yang¹

1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China;

2. China Petroleum Engineering and Planning Institute, Changping, Beijing, People's Republic of China;

3. College of Chemistry and Chemical Engineering, Ocean University of China,

Qingdao, Shandong 266100, People's Republic of China;

*Corresponding Author: Hui Zhao, E-mail: <u>zhaohui@upc.edu.cn</u>

**Corresponding Author: Xin Zhou, E-mail: <u>xinzhou@ouc.edu.cn</u> <u>The two corresponding authors contribute equally.</u>

This file contains: 14 pages, 3 sections, 1 figure, 11 tables.

Summary of figures and tables

Figure S1. Distribution of crude syngas components with different key gasification parameters: (a)

Coal gasification temperature; (b) Coal gasification pressure; (c) Biomass gasification temperature;

(d) Biomass gasification pressure

 Table S1. Green low-carbon methanol project enterprises, processing capacity and output in

 China.

Table S2. Composition analysis of the feed coal and crop straw.

Table S3. CTM, GH₂-CTM and BTM processes industry/ literature and simulation data.

Table S4. Cost estimation of purchase equipment cost and total capital investment.

Table S5. CEPCI of different years.

Table S6. The prices of raw materials, products, utilities and transportation involved in the three synthetic routes.

Table S7. The price distribution of green hydrogen under different electricity prices.

Table S8. Detailed results of techno-economic analysis.

Table S9. The unified converted value of energy consuming working medium.

Table S10. The indirect GHG emission factors.

Table S11. The primary consumption factor of NED.

1. Low carbon methanol synthesis route process data

Green low-carbon methanol project enterprises, processing capacity and output in China are listed in Table S1.

Table S1. Green low-carbon methanol project enterprises, processing capacity and output in China.

Items	Process	Scale	Raw material
Dectang Energy	сн стм	6150000 t/a	Coal,
Baoleng Energy		0150000 1/a	Green H ₂
Shanyi Coal Group Vulin shamiaal	сн стм	5600000 t/a	Coal,
Shanxi Coal Group 4 unit chemical	бп ₂ -СТМ	3000000 t/a	Green H ₂
	CIL CTM	2200000 +/-	Coal,
Y ankuang Amjiang Energy&Chemical	GH ₂ -CTM	2200000 t/a	Green H ₂
China Chemical Saiding Green energy		290000 4/	Biomass,
Technology	BIM	380000 l/a	Green H ₂
Varahua Faranza	DTM	700000 4/-	Biomass,
i uannuo Energy	BIM	700000 t/a	Green H ₂
	DTM	500000 4/-	Biomass,
Goldwind green energy chemical industry	BIM	500000 t/a	Green H ₂
	DTM	200000 4/	Biomass,
China Energy Engineering Corporation Limited	BIM	300000 t/a	Green H ₂
Chifeng Green hydrogen chain Technology Co.	DTM	200000 4/-	Biomass,
LTD	BIM	300000 t/a	CO ₂ , Green H ₂

	Coal	Crop straw
Proximate analysis		
MOISTURE	9.54	5.53
FC	9.64	2.69
VM	39.45	80.79
ASH	50.91	11
Ultimate analysis		
С	74.455	45.01
Н	4.955	6.09
Ν	1.585	0.6
Cl	2.44	0.043
S	0.065	0.15
О	6.84	40.04

Approximate elemental analysis of crop straw and coal are shown in Table S2.

Table S2. Composition analysis of the feed coal and crop straw.

Distribution of crude syngas components with different key gasification parameters are shown in Fig.S1.

Fig.S1. Distribution of crude syngas components with different key gasification parameters:(a) Coal gasification temperature; (b) Coal gasification pressure; (c) Biomass gasification temperature; (d) Biomass gasification pressure

CTM, GH₂-CTM and BTM processes industry/ literature and simulation data are listed in the Table S3.

		Industry/literature data ¹			Simulation data		
``	Units	CTM	GH ₂ -CTM	BTM	CTM	GH ₂ -CTM	BTM
Temperature	°C	1	320	1050	1	320	1050
Pressure	KPa	6	300	3000	6300		3000
Coal/Biomass	t/h	1036.53		1188.46	10	1042.53	
O ₂	t/h	839.81		-	860.06		200
(CO+H ₂)	×10 ⁴ Nm ³ /h	168.69			168.37		168.46
Converted gas	t/h	156.78	130.51	-	162.02	132.32	87.55
Unconverted gas	t/h	693.79	847.9	-	677.16	832.92	747.34
Synthesis gas	t/h	850.57	978.41	850.57	839.18	965.24	834.89
GH ₂ supplement	t/h	-	28.07	-	-	29.08	-
Methanol	t/h	780.94	926.88	780.94	774.48	924.02	786.79
Purge gas	t/h	23.62	25.3	23.62	26.42	27.77	17.14

Table S3. CTM, GH2-CTM and BTM processes industry/ literature and simulation data.

2. Technical and economic analysis

Cost estimation of purchase equipment cost and total capital investment are listed in the Table S4.

Douomotou Douohumouly		C.	TCI ₀ ,		C.	TCI _{CTM} ,	C.	TCI _{CTM-GH2} ,	c.	TCI _{BTM} ,	Deferrer	D.f
Parameter Be	Benchmark	\mathbf{S}_0	M\$	α	SCTM	M\$	SCTM-GH2	M\$	SBTM	M\$	Kei. year	Kei.
		Ref	erence		C	ГМ	СТ	M-GH ₂	В	ТМ		
ASU	O ₂ supply (kg/s)	21.3	45.7	0.5	238.9	177.63	159.27	145.04	79.6	102.54	2018	2
	Raw coal (kg/s)	27.4	29.1	0.67	289.6	163.94	289.6	163.94	\	\	2018	2
KAPI	Straw (t/h)	33.5	11.46	0.85	\	\	\	\	1188.5	421.02	2002	3
CU	Coal input (t/d)	9000	148.05	0.67	25020	340.89	25020	340.89	\	١	2018	4
GU	Biomass input (t/d)	2000	63.4	0.67	\	\	\	\	28523	500.96	2007	5
WGS	CO+H ₂ (kmol/h)	8819	14.4	0.65	38312	49.82	30048	42.54	22543	35.30	2007	5
AGR	CO ₂ removal (t/h)	327	64.6	0.67	1368	195.59	1161	175.23	809	137.56	2018	2
MS	Feed syngas (kmol/s)	10.8	20.4	0.29	20.8	28.63	24.8	30.13	20.8	28.63	2018	2
MD	Feed methanol (kg/s)	3.66	1.72	0.65	215.1	28.20	256.7	31.63	218.6	28.49	2018	2
Electrolyzer	Feed H_2 (t/d)	50	53.2	0.92	\	\	697.92	692.67	\	١	2019	6

Table S4. Cost estimation of purchase equipment cost and total capital investment.

CEPCI of different years is shown in Table S5.

	Years	Value	Ref.
CEPCI	2021	699.7	7
	2019	607.5	7
	2018	603.1	7
	2017	567.5	8
	2007	525.4	8
	2002	395.6	8

 Table S5. CEPCI of different years.

The prices of raw materials, products, utilities and transportation involved in the three synthetic routes are shown in Table S6. Among them, the price of green hydrogen is simply estimated, and the formula is shown as S1. Electricity price has the greatest influence on the cost of green hydrogen, and the price distribution of green hydrogen under different electricity prices is shown in Table S7.

$$TPC_{GH_2} = P_e \times EC_e + P_w \times EC_w + P_i + P_m + P_s$$
(S1)

 TPC_{GH_2} represents the price of green hydrogen, the unit is CNY/t; P_e represents the price of electricity, the unit is CNY/kwh; EC_e represents the electricity consumption, the unit is kwh; P_w represents the price of water, the unit is CNY/t; EC_w represents the water consumption, the unit is t; P_i , P_m , P_s respectively represents the depreciation cost of electrolytic cell equipment, maintenance costs and staff salaries, the unit is CNY/t.

Table S6. The prices of raw materials, products, utilities and transportation involved in the three

synthetic routes.

	Items	Units	Price	Ref.
	Coal	CNY/t	400	
	Straw	CNY/t	450	
	LP steam	CNY/t	170.22	9
	MP steam	CNY/t	200.26	9
	HP steam	CNY/t	220.24	9
C	ooling water	CNY/t	0.34	9
	Electricity	CNY/kwh	0.4	10
	Fuel coal	CNY/t	800	10
Refr	igerant(-40°C)	CNY/GJ	46.2	9
Transportation	Coal/Biomass-Railway	CNY/t·km	0.167	
	Coal/Biomass-Highway	CNY/t·km	0.37	

	H ₂ -Hi	ghway	CNY/tH	CNY/tH₂·km		11
	O ₂ -Hi	ghway	CNY/tO	CNY/tO ₂ ·km		12
Table S7. The price distribution of green hydrogen under different electricity prices.						
Items	Value					
Electricity price	0.4	0.35	0.3	0.25	0.2	0.13
Green H ₂ price	19526.6	17276.6	15026.6	12776.6	10526.6	7376.6

Items	CTM	GH2-CTM	BTM
Production scale (t/h)	770	918	772
Fixed investment (M\$)	984.7	929.4	1254.5
Raw Material cost (CNY/t)	541.6	1071.8	692.1
Pretreatment cost (CNY/t)	34.4	28.9	101.9
Transportation cost (CNY/t)	163.2	152.4	202.4
Utilities cost (CNY/t)	1081.6	891.6	999.6
Employee salary (CNY/t)	3.2	2.7	4.9
Maintenance and depreciation cost (CNY/t)	78.3	62.1	99.5
Administrative and overhead cost (CNY/t)	40.7	46.3	45.4
Marketing cost (CNY/t)	38.1	44.2	42.1
Total production cost (CNY/t)	1981.1	2299.9	2187.9

The outcomes of fixed investment and cost estimation are shown in Table S8.

Table S8. Detailed results of techno-economic analysis.

3. Life cycle environmental assessment

The unified converted value of the energy-consuming working medium is listed in the Table S9.

Itoma	Energy conversion value ^a		
nems	(kgEo)		
LP steam (1.0 MPa, 125°C)	76/t		
MP steam (4.0 MPa, 180°C)	88/t		
HP steam (10.0 MPa, 250°C)	92/t		
Electricity	0.22/kwh		
Cooling water	0.06/t		
Fuel coal	700/t		
Refrigerant(-50°C)	0.06/MJ		

Table S9. The unified converted value of energy consuming working medium.¹³

a: This standard stipulates that the data unit of energy consumption is kgEo, and the energy consumption data unit of the calculation results under this standard is converted to kgce. (1 kgEo \approx 1.4286 kgce)

GHG indirect emission factors are listed in the Table S8.

$$IE_{CO_2} = I_{CO_2} \times LHV_{CO_2} \times EC \times 44/12$$
(S2)
$$IE_{CH_4} = I_{CH_4} \times LHV_{CH_4} \times EC$$
(S3)
$$IE_{N_2O} = I_{N_2O} \times LHV_{N_2O} \times EC$$
(S4)

Where IE represents an indirect emission, unit is tCO₂; I is indirect emission factor, unit is t[·]CO₂/MJ; EC is process energy consumption quality, unit is t; LHV is the low calorific value, unit is MJ/t. Emission data is calculated according to Formula S2-S4.

Table S10. The indirect GHG emission factors.¹⁴

Items	LHV (MJ/t)	I _{CO2} (tCO ₂ /MJ)	I _{N2O} (tCO ₂ /MJ)	I _{CH4} (tCO ₂ /MJ)
Standard oil	41868	25.33 × 10 ⁻⁶	0.41 × 10 ⁻⁹	0.07×10^{-6}
Standard coal	29308	5.73×10^{-6}	0.17×10^{-9}	0.43×10^{-6}
Crude oil	41816	16×10^{-6}	0.27×10^{-9}	0.05×10^{-6}
Crude coal	20908	4.26×10^{-6}	0.06 × 10 ⁻⁹	0.42×10^{-6}
Fuel gas	45998	25.33×10^{-6}	0.41 × 10 ⁻⁹	0.07×10^{-6}
Fuel oil	41816	25.33×10^{-6}	0.41 × 10 ⁻⁹	0.07×10^{-6}
Fuel coal	29308	5.73×10^{-6}	0.17 × 10 ⁻⁹	0.43×10^{-6}
Electricity ^a	10.89	248.02×10^{-6}	0.62 × 10 ⁻⁹	2.16×10^{-6}

a: Unit is $kW \cdot h$

PFCF in Table S11 represents the energy consumption factor, unit is MJ/MJ; and LHV is the low calorific value, unit is MJ/t.

T.	LHV	PFCF Crude oil	PFCF Crude coal	PFCF Crude gas
Items	(MJ/t)	(MJ/MJ)	(MJ/MJ)	(MJ/MJ)
Standard oil	41868	1.06	0.14	0.03
Standard coal	29308	0.11	1.06	0.00
Crude oil	41816	1.05	0.1	0.02
Crude coal	20908	0.00	1.05	0.00
Fuel gas	45998	1.06	0.14	0.03
Fuel oil	41816	1.06	0.14	0.03
Fuel coal	29308	0.11	1.06	0.00
Electricity ^a	10.89	0.37	2.86	0.03

 Table S11. The primary consumption factor of NED.14

a: Unit is Kw/h.

References

1. Z. Bai, Q. B. Liu, L. Gong and J. Lei, *Appl. Energy*, 2019, **243**, 91-101.

2. H. Huang, S. Y. Yang and P. Z. Cui, *Energy Conv. Manag.*, 2018, **157**, 186-194.

3. C. N. Hamelinck, A. P. C. Faaij, H. den Uil and H. Boerrigter, *Energy*, 2004, **29**, 1743-1771.

4. Y. J. Zhao, Q. Liu, Y. Y. Duan, Y. K. Zhang, Y. Huang, L. J. Shi, J. C. Wang and Q. Yi, *Energy Conv. Manag.*, 2022, **268**, 20.

5. H. F. Zhang, L. G. Wang, M. Pérez-Fortes, J. Van Herle, F. Maréchal and U. Desideri, *Appl. Energy*, 2020, **258**, 14.

6. D. D. James B, Huya-Kouadio J, *Analysis of advanced H2* production & delivery Pathways.,

https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review 18/pd102 james 2018 p.pdf, 2018.

7. R. Junsittiwate, T. R. Srinophakun and S. Sukpancharoen, *Energy Sustain Dev.*, 2022, **66**, 140-150.

8. E. Adu, Y. D. Zhang, D. H. Liu and P. Tontiwachwuthikul, *Energies*, 2020, **13**, 28.

9. J. X. Liu, X. Zhou, G. F. Yang, H. Zhao, Z. B. Zhang, X. Feng, H. Yan, Y. B. Liu, X. B. Chen and C. H. Yang, *Chin. J. Chem. Eng.*, 2023, **57**, 290-308.

10. Sinopec Project Feasibility Study Technical Economy-Parameter & Data., Sinopec Economic & Development Research Institute., 2021.

11. Y. J. Zhao, Q. Liu, Y. Y. Duan, Y. K. Zhang, Y. Cui, Y. Huang, D. Gao, L. J. Shi, J. C. Wang and Q. Yi, *Int. J. Hydrog. Energy*, 2022, **47**, 19338-19352.

12. M. Balys, E. Brodawka, A. Korzeniewska, J. Szczurowski and K. Zarebska, *Sci. Total Environ.*, 2021, **786**, 14.

13. Standard for calculation of energy consumption in petrochemical engineering design. *GB/T* 50441-2016., 2016.

14. X. Zhou, H. Yan, X. Feng, H. Zhao, Y. B. Liu, X. B. Chen and C. H. Yang, *Ind. Eng. Chem. Res.*, 2020, **59**, 20086-20101.