Supporting Information

Cascade fractionation of poplar into xylose, glucan oligomers and lesscondensed lignin via synergistic formic acid–LiBr molten salt hydrate

pretreatment

Weiyu Xia,^a Lupeng Shao,^{*a} Chao Wang,^a Yu Liu,^a Xianhai Zeng,^c and Feng Xu^{a, b}

^a Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China

^b Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China

^c College of Energy, Xiamen University, Xiamen, 361102, China

Fig. S1 The content of furfural and levulinic acid in the hydrolysate during FA pretreatment

Fig. S2 Morphological characteristics of the control poplar (a) and FApretreated substrate (b)

Fig. S3 The XRD pattern of raw material and FA-pretreated substrate

	Ref ¹	Ref ²	This Work
Raw material	Corn stover	Cellulose	Poplar
Pretreatment	Auto-hydrolysis	/	12 wt% FA
Reaction conditions	190 °C, 20 min	/	160 °C, 1h
Hemicellulose removal rate	94.4%	/	91.24%
MSH	60 wt% LiBr	60 wt% LiBr	60 wt% LiBr
Deaction conditions	120 % 24	120 °C 55	100°C, 0.5h,
Reaction conditions	150 C, 211	130 C, Sh	30mM HCl
Glucan oligomers yield	59.9%	90.4%	42.68%
Glucose yield	21.4%		41.87%

Table S1 Comparison of results of different treatment

Table S2 The purity and yield of lignin samples

	Yield of acid-insoluble	Yield of acid-soluble	D :: (0()
Lignin samples (L _{a/b-c})	lignin (%)	lignin (%)	Purity (%)
L _{C/40 mM-110} ℃	81.35	6.18	87.53
L _{FA/20} mM-90℃	40.77	3.32	44.09
L _{FA/20 mM-100} ℃	73.22	3.57	76.79
L _{FA/20} mM-110 ℃	88.80	3.32	92.12
L _{FA/30} mM-90 ℃	62.84	3.66	66.50
L _{FA/30} mM-100 ℃	91.73	3.84	95.57
L _{FA/30} mM-110 ℃	91.86	3.44	95.30
L _{FA/40} mM-90 ℃	69.09	3.58	72.67
L _{FA/40} mM-100 ℃	92.68	3.70	96.38
L _{FA/40 mM-110} ℃	94.04	3.34	97.38

 $L_{a/b\text{-}c}\!\!:$ a-Conventional or Formic Acid, b-HCl concentration, c-Temperature

Lable	$δ_{C}/\delta_{H}(ppm)$	Assignment
A _α	71.58/4.86	C_{α} -H _{α} in β -O-4 (A)
OMe	56.63/3.72	C-H in Methoxy
Aγ	59.46/3.23-3.64	C_{γ} -H $_{\gamma}$ in β -O-4 (A)
l _γ	61.42/4.09	C _v -H _v in <i>p</i> -hydroxycinnamyl alcohol end-groups
Cα	86.48-87.61/5.44-5.59	$C_{\alpha}\text{-}H_{\alpha}$ in Phenylcoumarin substructure
Cγ	62.49/3.70	$C_{\gamma}\text{-}H_{\gamma}$ in Phenylcoumarin substructure
B _α	83.19-84.87/4.81-4.65	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}\beta$ resinol substructures (B)
B _β	53.25/3.03	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}\beta$ resinol substructures (B)
Bγ	70.18-71.10/3.82-4.19	$C_{\gamma}\text{-}H_{\gamma}$ in $\beta\text{-}\beta$ resinol substructures (B)
X ₂	69.68/3.51	C_2 -H ₂ in β -D-xylopyranoside (X)
X ₃	72.27/3.21-3.43	C_3 -H ₃ in β -D-xylopyranoside (X)
X ₄	74.17/3.22-3.50	C_4 -H ₄ in β -D-xylopyranoside (X)
A _β (G/H)	83.47/4.26-4.45	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4$ linked to G/H (A)
A _β (S)	85.72-87.11/3.96-4.08	C_{β} -H _{β} in β -O-4 linked to S (A)
BD_α	75.48/4.89	$C_{\alpha}\text{-}H_{\alpha}$ in benzodioxane substructures
HK _α	44.34/3.65	C_{α} -H _{α} in Hibbert ketone
НКγ	66.99/4.15	C_{γ} -H $_{\gamma}$ in Hibbert ketone
S _{2,6}	103.42/6.70	C _{2,6} -H _{2,6} in syringyl units (S)
S' _{2,6}	106.41/7.30	C _{2,6} -H _{2,6} in oxidized S units (S')
S" _{2,6}	106.68/6.49	C _{2,6} -H _{2,6} in condensed S units (S'')
G ₂	110.47/6.96	C ₂ -H ₂ in guaiacyl units (G)
G ₅	114.69/6.78	C_5 -H ₅ in guaiacyl units (G)
G ₆	118.74/6.78	C ₆ -H ₆ in guaiacyl units (G)
PB _{2,6}	131.17/7.50-7.87	$C_{2,6}$ -H _{2,6} in benzoate
Iα	128.18/6.22	$C_{\alpha}\text{-}H_{\alpha}$ in acylated cinnamyl alcohol
Ι _β	128.39/6.45	$C_{\beta}\text{-}H_{\beta}$ in acylated cinnamyl alcohol
ľγ	125.95/6.77	C _v -H _v in acylated <i>p</i> -hydroxycinnamyl alcohol end-groups

Table S3 2D HSQC NMR data for the signal assignments in lignin

References

- 1. Q. Liu, L. Zhou, X. Xie, D. Fan, X. Ouyang, W. Fan and X. Qiu, *Green Chem.*, 2022, **24**, 8812-8819.
- Q. Liu, Q. Ma, S. Sabnis, W. Zheng, D. G. Vlachos, W. Fan, W. Li and L. Ma, *Green Chem.*, 2019, 21, 5030-5038.