Supplementary Information

Visible-light-induced oxytrifluoromethylthiolation of α-diazo

esters

Fei Tan,^a* Jian Yang,^b Tao Song,^a Zhangqun Hou,^a Xiao Huang,^a Jian Wang,^a Ling Mei^a and Hongbo Dong^a*

^aAntibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China ^bSichuan Insitute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu 611731, China

*E-mail: tanfei@cdu.edu.cn, donghongbo@cdu.edu.cn

CONTENTS:

(A) General information	S2
(B) Typical procedure for α-diazo carbonyls preparation	S2
(C) Procedure for PhtSMe and PhtOCF ₃ preparation	S3
(D) General procedure for the photochemical reaction	S4
(E) Optimization of the reaction conditions	S4
(F) Antimicrobial evaluation of 3ak	S8
(G) Control and transformation experiments	S9
(H) UV-vis absorption and fluorescence experiments	S11
(I) NMR experiments	S12
(J) DFT analysis	S16
(K) Spectral characterization data for the products	S19
(L) References	S26
(M)Copies of NMR spectra for the products	S28

(A)General information

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. ${}^{13}C{}^{1}H$ NMR data were collected on commercial instruments (101 MHz) with complete proton decoupling. ${}^{19}F{}^{1}H$ NMR spectra were collected on commercial instruments (376 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. HRMS was recorded on a commercial apparatus (FTMS+c ESI). Amidebased electrophilic trifluoromethylthiolating reagents 1a-1d, PhtSCHF₂ (6a) and PhtSCCl₃ (9a) were purchased from domestic suppliers, and used directly. PhtSMe (4a) and PhtOCF₃ (12a) are known compounds, which were synthesized according to the documents. Diazo compounds 2a-2t, 2v-2z are known compounds, which were prepared through the previously reported literature methods, diazo ester 2u was obtained from domestic supplier and used directly. Chromatography: Qingdao Hailang silica gel (300-400 mesh). The photochemical reactor and LEDs used in this manuscript were purchased from Technology Research: PhotoSyn 3.0.

(B)Typical procedure for α -diazo carbonyls preparation¹

Ph
$$CO_2Me$$
 $(p-ABSA)$ N_2
DBU, MeCN, 0 °C ~ r.t. Ph CO_2Me

To a solution of methyl 2-phenylacetate (5.0 mmol, 1.0 equiv) and *p*-acetamidobenzenesulfonylazide (*p*-ABSA) (7.5 mmol, 1.5 equiv) in dry CH₃CN (25 mL) was added DBU (15 mmol, 1.5 equiv) dropwise at 0 °C. Then the mixture was stirred overnight at room temperature. The reaction was then quenched with aqueous ammonium chloride solution, followed by extraction with Et₂O (2 × 10 mL). The combined organic extracts were anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The yellow crude product was purified by column chromatography (silica gel, Pet: Et₂O = 20:1) to give the product as an orange oil. For other α-diazoesters, this synthesis method could be applied.

2-Bromo-1-phenylethan-1-one (5 mmol, 1.0 equiv) and *N*,*N*'-ditosylhydrazine (5.5 mmol, 1.1 equiv) were dissolved in THF (25 mL) and cooled to 0 °C. DBU (7.5 mmol, 1.5 equiv) was added dropwise and stirred at the temperature for 1 hour. Then the mixture was quenched by the addition of saturated NaHCO₃ solution, followed by the extraction with ethyl acetate three times (3×30 mL). The organic phase was washed with brine, dried over MgSO₄ and evaporated to give the residue, which was purified by column chromatography (petroleum/EA = 10/1) to give the product as a yellow solid.

$$\begin{array}{c} O \\ H \\ H \\ \end{array} \rightarrow O + BnBr \xrightarrow{NaH} DMF, 0 ^{\circ}C ~ r.t. \end{array} \xrightarrow{O} O \\ \hline N \\ Bn \\ \end{array} \xrightarrow{NaH} O \xrightarrow{TsNHNH_2} O \xrightarrow{NnHTs} O \xrightarrow{NaOH} O \xrightarrow{N_2} O \\ \hline MeOH, 60 ^{\circ}C \\ Bn \\ \end{array} \xrightarrow{NaOH} O \xrightarrow{N_2} O \xrightarrow{NaOH} O \xrightarrow{N_2} O \xrightarrow{NaOH} O \xrightarrow{N_2} O \xrightarrow{NaOH} O \xrightarrow{N_2} O \xrightarrow{NaOH} O \xrightarrow{NaOH} O \xrightarrow{N_2} O \xrightarrow{NaOH} O \xrightarrow{NaOH} O \xrightarrow{N_2} O \xrightarrow{NaOH} O \xrightarrow{NaOH}$$

A solution of isatin (20 mmol, 1.0 equiv) in DMF (36 mL) was cooled to 0 °C (ice bath). NaH (60% dispersion in mineral oil, 22 mmol, 1.1 equiv) was added portionwise to the orange solution. The mixture was stirred for 10 min at 0 °C, followed by the addition of benzyl bromide (22 mmol, 1.1 equiv). Then the mixture was stirred at room temperature for 15 min, and cool brine was introduced to precipitate the product. After filtration and drying, the product was used directly for the next step.

1-Benzyl-isatin (4.2 mmol, 1.0 equiv) was suspended in MeOH (20 mL). The suspension was heated to 60 °C and tosylhydrazine (4.6 mmol, 1.1 equiv) was added in portions. Yellow precipitate appeared and the reaction mixture was stirred at 60 °C for 8 h, then cooled to room temperature. The tosylhydrazone product (yellow precipitate) was collected by filtration and was used without further purification.

To a solution of the tosylhydrazone (3 mmol, 1.0 equiv) in THF (10 mL) was added aqueous solution of NaOH (4.5 mmol, 1.5 equiv, in 10 mL H₂O). The reaction mixture was stirred at room temperature for 3 h. H₂O (30 mL) was added to the reaction mixture and followed by the extraction with EtOAc (30 mL). The organic layer was washed by brine twice and dried over Na₂SO₄, filtered, evaporated to give the residue. Flash chromatography (PE:EA = 10:1) afforded the 2-diazo-1-phenylethan-1-one as a deep-orange crystal.

(C)Procedure for PhtSMe and PhtOCF₃ preparation²

Dimethyldisulfide (10 mmol, 1.0 equiv) was dissolved in 1,2-dichloroethane (20 mL) and cooled to 0 °C. A 1,2-dichloroethane solution (20 mL) of sulfuryl chloride (11 mmol) was added dropwise over 15 min via an addition funnel to the cooled dimethyldisulfide solution. The reaction was stirred at 0 °C for an additional 5 min and was then rapidly charged with potassium phthalimide (20 mmol). After 20 min at 0 °C and 90 min at room temperature, the reaction mixture was filtered under vacuum and the resultant yellow filtrate was concentrated to solids. The solids were triturated with MeOH overnight to afford PhtSMe as a white fluffy solid.

An oven-dried reaction tube with a stirrer bar was charged with NaHCO₃ (5 mmol, 0.5 equiv), CuSO₄·5H₂O (0.5 mmol, 0.05 equiv), and CF₃SO₂Na (20 mmol, 2.0 equiv). Then, H₂O (8.0 mL) and dimethyl carbonate (30.0 mL) were added. The reaction mixture was cooled to 0 °C. PhI(OAc)₂ (20 mmol, 2.0 equiv) and *N*-

hydroxyphthalimide (10 mmol, 1.0 equiv) were added at 0 °C. Then, the reaction mixture was stirred at room temperature for 2 h. The aqueous layer was separated and extracted with EtOAc three times. The combined organic layer was washed with saturated aqueous NaHCO₃, dried over anhydrous MgSO₄, then filtered and concentrated in vacuo to give a residue. The residue was purified with silica gel column chromatography (hexane/EtOAc = 20:1) to afford PhtOCF₃ as a white solid.

(D)General procedure for the photochemical reaction

A dry reaction tube was charged with **1a** (0.1 mmol) under N₂ atmosphere, then dichloromethane (0.5 mL) was added. Subsequently, α -diazo ester **2a** (0.2 mmol) was added and the mixture was stirred under the irradiation of blue LEDs (460 ± 5 nm, 3 W) at 25 °C for 2 h. Finally, the crude mixture was purified by column chromatography on silica gel (petroleum/ethyl acetate = 10:1 as eluent) at -20 °C to afford the product **3aa** as a colorless gum.

(E)Optimization of the reaction conditions

Τ	abl	le	SI	L:	Scr	een	of	the	SO	vent	a

. .

O N-SCF ₃ +	N ₂ CO ₂ Me	blue LEDs	MeO ₂ C	SCF3
	2a		TT 11 (0 ()	3aa
Entry	Solvent		Y1eld (%)	
1	CH_2Cl_2		50	
2	CHCl ₃		26	
3	CH ₂ ClCH ₂ C	1	49	
4	CHCl ₂ CH ₂ C	1	33	
5	CHCl ₂ CHCl ₂	2	b	
6	EA		46	
7	Methyl Aceta	ate	45	
8	Ethyl Format	te	37	
9	MeCN		48	
10	DMF		b	
11	DMSO		b	
12	toluene		b	

^aUnless otherwise noted, all reactions were performed with **1a** (0.1 mmol) and **2a** (0.1 mmol) in solvent (0.5 mL) under blue LEDs (460 ± 5 nm, 40 W) at 25 °C for 2 h. Isolated yield. ^b**2a** decomposed and **3aa** was undetected.

Table S2: Screen of the ratio between 1a and 2a^a

O N-SCF ₃	+ CO ₂ Me	blue LEDs CH ₂ Cl ₂ , 25 °C, 2 h	MeO ₂ C SCF ₃
1a	2a		3aa
x mmol	y mmol		
Entry	Х	у	Yield (%)
1	0.2	0.1	64
2	0.15	0.1	55
3	0.1	0.1	50
4	0.1	0.15	67

^aUnless otherwise noted, all reactions were performed with **1a** (x mmol) and **2a** (y mmol) in CH_2Cl_2 (0.5 mL) under blue LEDs (460 ± 5 nm, 40 W) at 25 °C for 2 h. Isolated yield.

Table S3: Screen of the irradiation conditions^a

0	Na		
		blue LEDs	MeO ₂ C _\ SCF ₃
	CO ₂ Me	CH ₂ Cl ₂ , 25 °C, 2 h	N CON NO
Ö			
1a	2a		3aa
Entry	Blue LEDs	Yie	ld (%)
1	$460 \pm 5 \text{ nm}, 2000$) W 31	
2	$460 \pm 5 \text{ nm}, 100$) W 53	
3	$460 \pm 5 \text{ nm}, 5^{\circ}$	W 53	
4	$460 \pm 5 \text{ nm}, 3^{\circ}$	W 67	
5	$460 \pm 5 \text{ nm}, 2^{-1}$	W 58	
6 ^b	$460 \pm 5 \text{ nm}, 2^{-1}$	W 64	
7°	$480 \pm 5 \text{ nm}, 3^{\circ}$	W 37	
8°	$470 \pm 5 \text{ nm}, 3^{\circ}$	W 46	
9	$450 \pm 5 \text{ nm}, 3^{\circ}$	W 39	
10	$440 \pm 5 \text{ nm}, 3^{\circ}$	W 47	
11 ^d	$460 \pm 5 \text{ nm}, 3^{\circ}$	W 76	
12 ^{d,e}	$460 \pm 5 \text{ nm}, 3^{\circ}$	W 39	
13 ^{d,f}	$460 \pm 5 \text{ nm}, 3^{\circ}$	W 49	
14 ^{d,g}	$460 \pm 5 \text{ nm}, 3^{\circ}$	W 34	
15 ^h		N.F	ξ.
16 ⁱ		N.F	ξ.
17 ^j	—	trac	e

^aUnless otherwise noted, all reactions were performed with **1a** (0.1 mmol) and **2a** (0.15 mmol) in CH₂Cl₂ (0.5 mL) under blue LEDs at 25 °C for 2 h. Isolated yield. ^bReaction time: 3 h. ^cReaction time: 4 h. ^d0.2 mmol **2a** was used. ^e0.2 mL CH₂Cl₂ was used. ^f1.0 mL CH₂Cl₂ was used. ^gAt -10 °C. ^hIn the dark at 35 °C for 2 h, N.R. = no reaction. ⁱIn the dark at 40 °C for 6 h. ^jIn the dark at 80 °C for 6 h, most of **2a** decomposed and **1a** remained, α -keto ester **16** and (*E*)-dimethyl 2,3-diphenylfumarate were detected.

Table S4: Full list of the products^a

^aUnless otherwise noted, all reactions were performed with **1** (0.1 mmol) and **2** (0.2 mmol) in CH₂Cl₂ (0.5 mL) under blue LEDs (460 \pm 5 nm, 3 W) at 25 °C for 2 h. Isolated yield. ^bUsing EA (0.5 mL) as the solvent.

(F) Antimicrobial evaluation of 3ak

The Gram-positive *Staphylococcus aureus* ATCC25923 and Gram-negative *Escherichia coli* ATCC25922 were treated with the DMSO solution of **3ak** (0.39 μ g/mL, 0.78 μ g/mL. 1.56 μ g/mL, 3.13 μ g/mL, 6.25 μ g/mL, 12.50 μ g/mL, 25.00 μ g/mL, 50.00 μ g/mL, 100.00 μ g/mL), respectively.

a) Survival probability of S. aureus ATCC25923

3ak(µg/mL)

b) Survival probability of *E. coli* ATCC25922

3ak(µg/mL)

(G)Control and transformation experiments

a) Variation of the trifluoromethylthio group

A dry reaction tube was charged with *N*-substituted phthalimide 4a/6a/9a/12a (0.1 mmol), then CH₂Cl₂ (0.5 mL) was added. Subsequently, α -diazo ester 2a (0.2 mmol) was added and the mixture was stirred under the irradiation of blue LEDs (460 ± 5 nm, 3 W) at 25 °C for 2 h. The reaction was monitored by TLC and purified by column chromatography on silica gel (petroleum/ethyl acetate = 10:1 as eluent) at -20 °C. For substrate 4a, the crude mixture was purified by column chromatography on silica gel (petroleum/ethyl acetate = 10:1 as eluent) at -20 °C. For substrate 4a, the crude mixture was purified by column chromatography on silica gel (petroleum/ethyl acetate = 8:1 as eluent) at room temperature to afford product 5aa as a colorless gum.

b) Radical termination experiment

A dry reaction tube was charged with **1a** (0.1 mmol) and TEMPO (0.2 mmol) under N₂ atmosphere, then dichloromethane (0.5 mL) was added. Subsequently, α -diazo ester **2a** (0.2 mmol) was added and the mixture was stirred under the irradiation of blue LEDs (460 ± 5 nm, 3 W) at 25 °C for 2 h. Finally, the crude mixture was purified by column

chromatography on silica gel (petroleum/ethyl acetate = 10:1 as eluent) at -20 °C to afford the product **3aa** as a colorless gum.

c) Carbene capture with (E)-stilbene

A dry reaction tube was charged with **1a** (0.1 mmol) and/or (*E*)-stilbene (0.1 mmol) under N₂ atmosphere, then dichloromethane (0.5 mL) was added. Subsequently, α -diazo ester **2a** (0.1 mmol) was added and the mixture was stirred under the irradiation of blue LEDs (460 ± 5 nm, 3 W) at 25 °C for 2 h. Finally, the crude mixture was purified by column chromatography on silica gel (petroleum/ethyl acetate = 20:1 as eluent) to afford product **15** as a white solid, or by column chromatography on silica gel (petroleum/ethyl acetate = 10:1 as eluent) at -20 °C to afford the product **3aa** as a colorless gum.

d) Decomposition of 3aa

A vial was charged with phosphate **3aa** (0.12 mmol), then CH_2Cl_2 (0.5 mL) was added. Subsequently, silica gel (200~300 mesh, 20 mg) was added and the mixture was stirred at 25 °C for ~15 min. Finally, the crude mixture was purified by column chromatography on silica gel (petroleum/ethyl acetate = 10:1~0:1 as eluent) to afford α -keto ester **16** as a yellow oil in 57% yield and phthalimide **17** as a white solid in near quantitative yield.

(H)UV-vis absorption and fluorescence experiments

a) UV-vis absorption spectra

The fresh solutions of **1a** (0.5 mM in DCM) and **2a** (0.5 mM in DCM) were prepared and measured by UV-2450 (A10834534597CS). The solution of the mixture of **1a** and **2a** (0.5 mM in DCM) was prepared by mixing equal volumes of **1a** (1.0 mM in DCM) and **2a** (1.0 mM in DCM) in *situ* before measurement.

b) fluorescence spectra

The fresh solution of **2a** (0.5 mM in DCM) was prepared and measured by FL970. The solution of the mixture of **1a** and **2a** (0.5 mM in DCM) was prepared by mixing equal volumes of **1a** (1.0 mM in DCM) and **2a** (1.0 mM in DCM) in *situ* before measurement.

(I) NMR experiments

All the samples were dissolved in CDCl₃ and tested. a) ¹H spectra of 1a, 2a and the mixture of 1a & 2a

c) $^{19}\mathrm{F}\{^1\mathrm{H}\}$ spectra of 1a and the mixture of 1a & 2a

(J) DFT analysis

a) Computational details

Geometry optimizations were performed using Gaussian 16³, employing the B3LYP functional⁴ and 6-31G*⁵ basis set. The geometry optimizations were run with dispersion corrections from Grimme's D3 model⁶ with Becke-Johnson damping factors⁷. Harmonic vibrational frequencies calculations were performed to confirm the stationary points as true minima or transition states, as well as to provide thermodynamic corrections to the SCF energies. According to the excited state calculation of TDDFT method, it is found that the wavelength band of 455~465nm corresponds to the second excited state of two carbenes, so the energies of two carbenes are calculated by setting spin multiplicity 1 and 3 respectively with high accuracy scheme. Single point energy calculations were carried out using def2-TZVP⁸ basis set, SMD solvation model⁹ with dichloromethane as the solvent. The ball and stick structures were created using GaussView 6.1.1¹⁰. In addition, to correct the Gibbs free energies under pressure of 1 atm to the standard state in solution (1 mol/L), a correction of RT ln(cs/cg) (1.89 kcal/mol) is added to energies of all species, cs is the standard molar concentration in solution (1 mol/L), cg is the standard molar concentration in gas phase (0.0446 mol/L), and R is the gas constant. The 3D diagrams of molecules were generated using CYLView¹¹.

b) The energies of the excited singlet carbene I and triplet carbene II

singlet free carbene G = -312230.862419 kcal/mol E = -312208.500487 kcal/mol triplet free carbene II

G = -312200.745723 kcal/mol E = -312177.199053kcal/mol

c) Energies and coordinates

Singlet carbene

	8		
С	-2.96064100	-1.15265200	-0.18526600
С	-1.58016400	-1.17250700	-0.33353100
С	-0.80366300	0.01861100	-0.17281800
С	-1.51168100	1.22782700	0.10126600
С	-2.89549900	1.23970400	0.19990800
С	-3.62400900	0.05181600	0.06741000
Η	-3.53025300	-2.07323700	-0.28548000
Η	-1.05601600	-2.09740800	-0.54931700
Η	-0.93645100	2.13906700	0.22966900
Η	-3.41510200	2.17238900	0.40384200
Η	-4.70598300	0.06531800	0.16211700
С	0.58032400	0.00415400	-0.31943000
С	1.89815400	-0.11424700	0.17520500
0	2.85267900	0.36206000	-0.67328200
С	4.20304300	0.19017000	-0.22405600
Η	4.82884000	0.42892700	-1.08508800
Η	4.42789100	0.87228400	0.60252900
Η	4.38352600	-0.83612900	0.10805200
0	2.16836700	-0.66562000	1.24347600
Th	ermal correction	to Gibbs Free	Energy = 0.108399
			S17

E(DCM) = -497.679844

Temperature	298.150	Kelvin
Pressure	1.00000	atm
Frequencies scaled by	1.0000	
Electronic Energy (EE)	-497.679844	Hartree
Zero-point Energy Correction	0.144035	Hartree
Thermal Correction to Energy	0.153563	Hartree
Thermal Correction to Enthalpy	0.154508	Hartree
Thermal Correction to Free Energy	0.108399	Hartree
EE + Zero-point Energy	-497.535809	Hartree
EE + Thermal Energy Correction	-497.526280	Hartree
EE + Thermal Enthalpy Correction	-497.525336	Hartree
EE + Thermal Free Energy Correction	-497.571445	Hartree
E (Thermal)	96.363	kcal/mol
Heat Capacity (Cv)	35.341	cal/mol-kelvin
Entropy (S)	97.044	cal/mol-kelvin

Triplet carbene

С	2.82872900	1.24531800	0.28028600
С	1.45374700	1.16747200	0.42705800
С	0.74948700	-0.04301300	0.12829800
С	1.52297400	-1.15995100	-0.32797300
С	2.89702000	-1.06111100	-0.47042900
С	3.56162400	0.13686700	-0.16884600
Н	3.34242000	2.17388400	0.51522500
Н	0.88374800	2.02326100	0.77504900
Н	1.00572900	-2.08577700	-0.55920300
Н	3.46346800	-1.92105700	-0.81823200
Н	4.63971300	0.20571900	-0.28237900
С	-0.61960100	-0.13057200	0.27529300
С	-1.89501100	-0.42244900	0.31962600
0	-2.78718700	-0.20923900	-0.75959900
С	-3.54003100	1.01346100	-0.69279800
Н	-3.87679200	1.19816000	-1.71595900
Η	-4.40754900	0.90497700	-0.03685000
Η	-2.90409200	1.83604300	-0.35187600
0	-2.70034700	-0.89217800	1.24099100
ті		the Cilling Energy	$E_{1} = 0.100$

Thermal correction to Gibbs Free Energy = 0.106166 E(DCM) = -497.629617

Temperature	298.150	Kelvin
Pressure	1.00000	atm
Frequencies scaled by	1.0000	
Electronic Energy (EE)	-497.629617	Hartree
Zero-point Energy Correction	0.143690	Hartree
Thermal Correction to Energy	0.153981	Hartree
Thermal Correction to Enthalpy	0.154926	Hartree
Thermal Correction to Free Energy	0.106166	Hartree
EE + Zero-point Energy	-497.485927	Hartree
EE + Thermal Energy Correction	-497.475636	Hartree
EE + Thermal Enthalpy Correction	-497.474691	Hartree
EE + Thermal Free Energy Correction	-497.523451	Hartree
E (Thermal)	96.625	kcal/mol
Heat Capacity (Cv)	37.861	cal/mol-kelvin
Entropy (S)	102.623	cal/mol-kelvin

(K)Spectral characterization data for the products

Methyl 2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-phenyl-2-((trifluoromethyl)thio)acetate (3aa)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3aa** (76% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400

MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 2H), 7.83 – 7.78 (m, 1H), 7.75 – 7.70 (m, 1H), 7.69 – 7.62 (m, 2H), 7.54 – 7.43 (m, 3H), 3.78 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.6, 179.5, 165.8, 135.2, 135.0, 134.6, 133.54, 133.51, 129.9, 128.91 (q, J = 311.1 Hz), 128.87, 125.7, 124.6, 121.0, 93.4 (q, J = 2.0 Hz), 54.5. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.3. HRMS (FTMS-ESI) calcd for C₁₈H₁₂F₃NNaO₄S⁺ ([M+Na⁺]): 418.0331, found: 418.0331.

Ethyl 2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-phenyl-2-((trifluoromethyl)thio)acetate (3ab)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3ab** (72% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.84 – 7.78 (m, 1H), 7.76 – 7.70 (m, 1H), 7.69 –

7.62 (m, 2H), 7.53 - 7.42 (m, 3H), 4.36 - 4.17 (m, 2H), 1.19 (t, J = 8.0 Hz, 3H). ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 182.5, 179.5, 165.1, 135.4, 135.25, 135.19, 134.6, 133.5, 129.8, 129.0 (q, J = 311.1 Hz), 128.8, 125.7, 124.5, 121.0, 93.5 (q, J = 2.0 Hz), 64.1, 13.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.3. HRMS (FTMS-ESI) calcd for C₁₉H₁₄F₃NNaO₄S⁺ ([M+Na⁺]): 432.0488, found: 432.0487.

Isopropyl2-((1-oxo-1H-isoindol-3-yl)oxy)-2-phenyl-2-((trifluoromethyl)thio)acetate (3ac)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 15:1) at -20 °C to afford **3ac** (71% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.83 – 7.78 (m, 1H), 7.76 – 7.70 (m, 1H), 7.69 –

7.62 (m, 2H), 7.53 – 7.41 (m, 3H), 5.15 – 5.04 (m, 1H), 1.19 (d, J = 8.0 Hz, 3H), 1.16 (d, J = 8.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.4, 179.4, 164.4, 135.4, 135.2, 134.6, 133.4, 129.7, 129.0 (q, J = 311.1 Hz), 128.7, 125.6, 124.5, 121.0, 93.6 (d, J = 1.0 Hz), 72.6, 21.2, 21.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.4. HRMS (FTMS-ESI) calcd for C₂₀H₁₆F₃NNaO₄S⁺ ([M+Na⁺]): 446.0644, found: 446.0636.

tert-Butyl ((trifluoromethyl)thio)acetate (3ad)

*t*BuO₂C SCF₃

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 15:1) at -20 °C to afford **3ad** (36% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.83 – 7.78 (m, 1H), 7.74 – 7.69 (m, 1H), 7.68

2-((1-oxo-1H-isoindol-3-yl)oxy)-2-phenyl-2-

 $-7.61 \text{ (m, 2H)}, 7.52 - 7.41 \text{ (m, 3H)}, 1.41 \text{ (s, 9H)}. {}^{13}C{}^{1}H} \text{ NMR (101 MHz, CDCl_3)} \delta \\ 182.4, 179.6, 163.5, 135.9, 135.3, 134.8, 133.39, 133.38, 129.6, 129.1 \text{ (q, } J = 311.1 \text{ Hz)}, \\ 128.7, 125.6, 124.4, 121.0, 93.8, 86.2, 27.5. {}^{19}F{}^{1}H} \text{ NMR (376 MHz, CDCl_3)} \delta -37.5. \\ \text{HRMS (FTMS-ESI) calcd for } C_{21}H_{18}F_3NNaO_4S^+ \text{ ([M+Na^+]): 460.0801, found: 460.0788.} \\ \end{array}$

Benzyl 2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-phenyl-2-((trifluoromethyl)thio)acetate (3ae)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3ae** (74% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.83 (m, 2H), 7.83 – 7.78 (m, 1H), 7.75 – 7.69 (m, 1H), 7.69 – 7.62

(m, 2H), 7.54 - 7.42 (m, 3H), 7.30 - 7.21 (m, 3H), 7.14 (d, J = 8.0 Hz, 2H), 5.22 (dd, J = 16.0, 12.0 Hz, 2H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 182.4, 179.3, 165.0, 135.4, 135.0 (d, J = 9.1 Hz), 134.6, 134.0, 133.5 (d, J = 4.0 Hz), 129.9, 129.0 (q, J = 311.1 Hz), 128.8, 128.6, 128.5, 128.2, 125.8, 124.7, 124.5, 121.0, 93.6 (d, J = 2.0 Hz), 69.3. ${}^{19}F{}^{1}H$ NMR (376 MHz, CDCl₃) δ -37.2. HRMS (FTMS-ESI) calcd for $C_{24}H_{17}F_{3}NO_{4}S^{+}$ ([M+H⁺]): 472.0825, found: 472.0814.

Allyl 2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-phenyl-2-((trifluoromethyl)thio)acetate (3af)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3af** (58% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.84 – 7.78 (m, 1H), 7.76 – 7.70

(m, 1H), 7.69 – 7.62 (m, 2H), 7.55 – 7.42 (m, 3H), 5.86 – 5.68 (m, 1H), 5.21 – 5.10 (m, 2H), 4.68 (d, J = 4.0 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.5, 179.4, 164.9, 135.4, 135.1 (d, J = 6.1 Hz), 134.6, 133.5 (d, J = 3.0 Hz), 130.3, 129.9, 128.9 (q, J = 311.1 Hz), 128.8, 125.8, 124.7, 124.5, 121.0, 119.7, 93.5 (q, J = 2.0 Hz), 68.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.3. HRMS (FTMS-ESI) calcd for C₂₀H₁₅F₃NO₄S⁺ ([M+H⁺]): 422.0668, found: 422.0661.

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2phenyl-2-((trifluoromethyl)thio)acetate (3ag)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 15:1) at -20 °C to afford **3ag** (73% yield, 1:1 dr) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 4H), 7.83 – 7.77 (m, 2H), 7.76 – 7.70 (m, 2H), 7.69 – 7.61 (m, 4H), 7.53 – 7.40 (m, 6H),

4.78 - 4.70 (m, 1H) [4.70 - 4.62 (m, 1H)], 2.02 (d, J = 12.0 Hz, 1H) [1.94 (d, J = 12.0Hz, 1H)], 1.63 – 1.52 (m, 5H), 1.45 – 1.36 (m, 2H), 1.35 – 1.18 (m, 3H), 1.18 – 1.08 (m, 1H), 0.96 (d, J = 8.0 Hz, 1H), 0.94 – 0.86 (m, 1H), 0.84 (d, J = 8.0 Hz, 6H), 0.78 (d, J = 12.0 Hz, 1H), 0.76 - 0.68 (m, 2H), 0.65 (d, J = 8.0 Hz, 3H), 0.61 (d, J = 8.0 Hz, 3H)3H) [0.59 (d, J = 8.0 Hz, 3H), 0.44 (d, J = 4.0 Hz, 3H)]. ¹³C{¹H} NMR (101 MHz, CDCl₃) & 182.4 [182.2], 179.3 [179.1], 164.6, 135.57 [135.56], 135.20 [135.17], 134.72 [134.70], 133.43, 133.40, 129.7 [129.6], 129.10 (q, J = 310.1 Hz) [129.06 (q, J = 310.1 Hz)], 128.7 [128.6], 125.7 [125.6], 124.5 [124.4], 121.00 [120.96], 93.9 [93.8], 79.2 [78.5], 47.0 [46.6], 39.6 [39.0], 34.0 [33.9], 31.32 [31.26], 25.8 [25.3], 23.0 [20.6], 22.8 [20.4], 21.84 [21.81], 15.7 [15.4]. ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -37.26 [-37.30]. HRMS (FTMS-ESI) calcd for $C_{27}H_{28}F_3NNaO_4S^+$ ([M+Na⁺]): 542.1583, found: 542.1589. (Note: **3ag** is a mixture of two inseparable diastereomers, so there are two sets of peaks on ¹H, ¹³C and ¹⁹F spectra. On the ¹H spectrum, most of the peaks of the two diastereomers could not be well distinguished, which were integrated together, except for the methyl of isopropyl group and the hydrogen of the tertiary carbon linked to the oxygen atom, so the total number of hydrogen doubled. For ¹H, ¹³C and ¹⁹F spectra, the peaks in the square brackets belong to the diastereomer.)

Methyl 2-(2-fluorophenyl)-2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-((trifluoromethyl)thio)acetate (3ah)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3ah** (39% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (td, J = 7.6, 1.6 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.81 – 7.73 (m, 1H),

7.69 – 7.60 (m, 2H), 7.31 (td, J = 7.6, 0.8 Hz, 2H), 7.21 – 7.13 (m, 2H), 3.97 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 183.8, 167.8, 164.4, 162.8 (d, J = 258.6 Hz), 136.9, 136.8, 134.4, 132.6, 130.9 (d, J = 1.4 Hz), 129.1 (q, J = 293.9 Hz), 124.9 (d, J = 4.0 Hz), 123.6, 121.8 (d, J = 11.1 Hz), 116.6 (d, J = 21.2 Hz), 93.1, 53.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -31.1, -111.6. HRMS (FTMS-ESI) calcd for C₁₈H₁₁F₄NNaO₄S⁺ ([M+Na⁺]): 436.0237, found: 436.0243.

Methyl 2-(3-fluorophenyl)-2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-((trifluoromethyl)thio)acetate (3ai)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3ai** (<44% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.84 - 7.80 (m, 1H), 7.74 - 7.70 (m, 1H), 7.68 - 7.62 (m,

3H), 7.61 – 7.56 (m, 1H), 7.51 – 7.44 (m, 1H), 7.16 (td, J = 12.0, 4.0 Hz, 1H), 3.80 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 182.4, 179.3, 165.4, 162.8 (d, J = 248.5 Hz), 135.0, 134.6, 134.4, 133.6 (d, J = 6.1 Hz), 130.6 (d, J = 8.1 Hz), 128.8 (q, J = 311.1 Hz), 126.1 (d, J = 4.0 Hz), 124.7, 123.6, 121.0, 117.0 (d, J = 21.2 Hz), 113.2 (d, J = 25.2 Hz), 93.6 (d, J = 3.0 Hz), 54.7. ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -37.3, -110.9. HRMS (FTMS-ESI) calcd for C₁₈H₁₁F₄NNaO₄S⁺ ([M+Na⁺]): 436.0237, found: 436.0239. (Note: According to the NMR, there should be a small amount of impurity in the product **3ai**, which was hard to be separated and identified.)

Methyl 2-(4-fluorophenyl)-2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-((trifluoromethyl)thio)acetate (3aj)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3aj** (40% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.79 (m, 3H), 7.72 – 7.63 (m, 3H), 7.22 – 7.14 (m, 2H), 3.79 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 182.5, 179.3,

165.6, 163.4 (d, J = 251.5 Hz), 135.0, 134.6, 133.63, 133.55, 130.9 (d, J = 3.0 Hz), 128.9 (q, J = 311.1 Hz), 128.0 (d, J = 9.1 Hz), 124.7, 121.0, 116.0 (d, J = 22.2 Hz), 93.1, 54.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.3, -110.8. HRMS (FTMS-ESI) calcd for C₁₈H₁₁F₄NNaO₄S⁺ ([M+Na⁺]): 436.0237, found: 436.0243.

Methyl 2-(4-chlorophenyl)-2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-((trifluoromethyl)thio)acetate (3ak)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3ak** (79% yield) as a white solid, mp: 136 – 138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.77 (m, 3H), 7.72 – 7.64 (m, 3H), 7.50 – 7.44 (m, 2H), 3.78 (s, 3H). ¹³C {¹H} NMR (101 MHz,

CDCl₃) δ 182.4, 179.3, 165.5, 136.2, 135.0, 134.6, 133.7, 133.64, 133.57, 129.2, 128.8 (q, *J* = 311.1 Hz), 127.2, 124.7, 121.0, 93.0 (d, *J* = 2.0 Hz), 54.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.2. HRMS (FTMS-ESI) calcd for C₁₈H₁₁ClF₃NNaO₄S⁺ ([M+Na⁺]): 451.9942, 453.9912, found: 451.9946, 453.9913.

Methyl2-(4-bromophenyl)-2-((1-oxo-1H-isoindol-3-yl)oxy)-2-((trifluoromethyl)thio)acetate (3al)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3al** (71% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.84 - 7.79 (m, 1H), 7.76 - 7.72 (m, 2H), 7.72 - 7.65 (m, 3H), 7.65 - 7.61 (m, 2H), 3.78 (s, 3H). ¹³C{¹H} NMR (101

MHz, CDCl₃) δ 182.4, 179.2, 165.4, 135.0, 134.6, 134.3, 133.64, 133.57, 132.1, 128.8 (q, *J* = 311.1 Hz), 127.5, 124.7, 124.4, 121.0, 93.0 (d, *J* = 1.0 Hz), 54.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.2. HRMS (FTMS-ESI) calcd for C₁₈H₁₁BrF₃NNaO₄S⁺ ([M+Na⁺]): 495.9436, 497.9416, found: 495.9443, 497.9421.

Methyl2-(4-acetoxyphenyl)-2-((1-oxo-1H-isoindol-3-yl)oxy)-2-((trifluoromethyl)thio)acetate (3am)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 6:1) at -20 °C to afford **3am** (<38% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.0 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.86 - 7.80 (m, 1H), 7.76 - 7.71 (m, 1H), 7.71 - 7.63

(m, 2H), 3.96 (s, 3H), 3.79 (s, 3H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 182.4, 179.2, 166.2, 165.3, 139.7, 134.9, 134.6, 133.7, 133.6, 131.6, 130.1, 128.4 (d, *J* = 246.4 Hz), 125.9, 124.7, 121.1, 93.0 (d, *J* = 1.0 Hz), 54.7, 52.5. ${}^{19}F{}^{1}H$ NMR (376 MHz, CDCl₃) δ -37.2. HRMS (FTMS-ESI) calcd for C₂₀H₁₄F₃NNaO₆S⁺ ([M+Na⁺]): 476.0386, found: 476.0384.

Methyl 2-(4-methoxyphenyl)-2-((1-oxo-1*H*-isoindol-3-yl)oxy)-2-((trifluoromethyl)thio)acetate (3an)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 5:1) at -20 °C to afford **3an** (22% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.85 (m, 2H), 7.81 – 7.77 (m, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 3.84 (s, 3H), 3.77 (s,

3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 189.1, 181.1, 166.2, 160.4, 134.8, 131.45, 131.42, 130.78, 129.8, 129.0 (d, J = 341.4 Hz), 123.93, 123.90, 123.6, 113.5, 91.7, 55.33, 54.32. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.9. HRMS (FTMS-ESI) calcd for C₁₉H₁₄F₃NNaO₅S⁺ ([M+Na⁺]): 448.0437, found: 448.0444.

Methyl2-(naphthalen-2-yl)-2-((1-oxo-1H-isoindol-3-yl)oxy)-2-((trifluoromethyl)thio)acetate (3ao)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3an** (60% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.06 (d, *J* = 12.0 Hz, 1H), 7.99 (d, *J* = 8.0 Hz,

1H), 7.96 – 7.89 (m, 2H), 7.88 – 7.86 (m, 2H), 7.79 – 7.73 (m, 2H), 7.66 (t, J = 8.0 Hz, 1H), 7.59 (t, J = 8.0 Hz, 1H), 4.04 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 186.0, 167.9, 164.2, 136.4, 134.4, 133.6, 132.7, 132.3, 130.1, 129.8, 129.6, 129.3 (d, J = 309.1 Hz), 129.0, 128.0, 127.2, 124.0, 123.6, 90.5, 52.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -31.1. HRMS (FTMS-ESI) calcd for C₂₂H₁₄F₃NNaO₄S⁺ ([M+Na⁺]): 468.0488, found: 468.0490.

Methyl2-((1-oxo-1H-isoindol-3-yl)oxy)-2-(thiophen-3-yl)-2-((trifluoromethyl)thio)acetate (3ap)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3ao** (39% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 1.2 Hz, 1H), 7.91 – 7.83 (m, 2H), 7.80 – 7.73 (m, 2H), 7.70 (d, *J*

= 4.0 Hz, 1H), 7.39 – 7.34 (m, 1H), 3.96 (s, 3H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 177.7, 167.8, 162.7, 138.0, 137.6, 134.4, 132.7, 131.5 (d, *J* = 307.0 Hz), 127.9, 126.7, 123.6, 85.5, 53.0. {}^{19}F{}^{1}H NMR (376 MHz, CDCl₃) δ -31.1. HRMS (FTMS-ESI) calcd for C₁₆H₁₀F₃NNaO₄S₂⁺ ([M+Na⁺]): 423.9896, found: 423.9903.

Methyl 2-((2-oxo-3,4-dihydro-2*H*-pyrrol-5-yl)oxy)-2-phenyl-2-((trifluoromethyl)thio)acetate (3ba)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 10:1) at -20 °C to afford **3ba** (75% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.73

(m, 2H), 7.48 – 7.39 (m, 3H), 3.75 (s, 3H), 3.12 - 3.01 (m, 1H), 2.97 - 2.88 (m, 1H), 2.83 - 2.78 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.1, 189.8, 165.7, 135.0, 129.8, 129.0 (q, *J* = 311.1 Hz), 128.8, 125.7, 93.4, 54.4, 32.2, 29.6. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -37.5. HRMS (FTMS-ESI) calcd for C₁₄H₁₂F₃NNaO₄S⁺ ([M+Na⁺]): 370.0331, found: 370.0338.

Methyl 2-(1,3-dioxoisoindolin-2-yl)-2-(methylthio)-2-phenylacetate (5aa)

following the general procedure, the reaction mixture was purified by silica gel column chromatography (petroleum/EtOAc = 8:1) to afford **5aa** (60% yield) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.82 (m, 2H), 7.80 – 7.75 (m, 2H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.31

(m, 3H), 3.79 (s, 3H), 2.10 (s, 3H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 167.7, 167.1, 134.5, 134.1, 131.4, 128.6, 128.22, 128.18, 123.7, 73.1, 53.6, 14.8. HRMS (FTMS-ESI) calcd for C₁₈H₁₆NO₄S⁺ ([M+H⁺]): 342.0795, found: 342.0786.

(2R,3R)/(2S,3S)-Methyl 1,2,3-triphenylcyclopropane-1-carboxylate (15)

Ph. CO₂Me ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 1H), 7.25 – 7.18 (m, 5H), 7.16 – 7.09 (m, 3H), 6.97 (d, J = 8.0 Hz, 2H), 3.88 (d, J = 8.0 Hz, 1H), 3.57 (d, J = 8.0 Hz, 1H), 3.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 136.4, 136.3, 135.7, 131.3, 129.0, 128.3, 128.2, 128.0, 127.9, 127.2, 127.1, 126.4, 52.4, 46.0, 36.8, 34.8. This compound is known and the characterization is in consistence with the reported literature.¹²

Methyl 2-oxo-2-phenylacetate (16)

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.99 (m, 2H), 7.71 – 7.63 (m, 1H), 7.55 – 7.49 (m, 2H), 3.99 (s, 3H). $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 186.1, 164.1, 135.0, 132.4, 130.1, 128.9, 52.8. This compound is known and the characterization is in consistence with

the reported literature.¹³

Isoindoline-1,3-dione (17)

¹H NMR (400 MHz, DMSO-d6) δ 11.29 (s, 1H), 7.77 (s, 4H). This compound is known and the characterization is in consistence with the reported literature.¹⁴

(E)-Dimethyl 2,3-diphenylfumarate

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.35 (m, 10H), 3.57 (s, 6H). This compound is known and the characterization is in consistence with the reported literature.¹⁵

(L)References

(1) For the synthesis of α -diazoester and α -diazoketone, see: (a) Li, W.; Wang, J.; Hu, X. L.; Shen, K.; Wang, W. T.; Chu, Y. Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. Catalytic asymmetric Roskamp reaction of α -alkyl- α -diazoesters with aromatic aldehydes: Highly enantioselective synthesis of α-alkyl-β-keto esters. J. Am. Chem. Soc. 2010, 132, 8532-8533. (b) Tan, F.; Liu, X. H.; Hao, X. Y.; Tang, Y.; Lin, L. L.; Feng, X. M. Asymmetric catalytic insertion of a-diazo carbonyl compounds into O-H bonds of carboxylic acids. ACS Catal. 2016, 6, 6930-6934. (c) Xia, Z. L.; Hu, J. D.; Gao, Y.-Q.; Yao, Q. Z.; Xie, W. Q. Facile access to 2,2-disubstituted indolin-3-ones via a cascade Fischer indolization/Claisen rearrangement reaction. Chem. Commun. 2017, 53, 7485–7488. For the synthesis of 1-benzyl-3-diazoindolin-2-one, see: (d) Marti, C.; Carreira, E. M. Total synthesis of (-)-spirotryprostatin B: Synthesis and related studies. J. Am. Chem. Soc. 2005, 127, 11505-11515. For the synthesis of (1-diazo-2,2,2trifluoroethyl)benzene, see: (e) Denton, J. R.; Sukumaran, D.; Davies, H. M. L. Enantioselective synthesis of trifluoromethyl-substituted cyclopropanes. Org. Lett. 2007, 9, 2625–2628. For the synthesis of 2-diazo-2-phenylacetonitrile, see: (f) Jiang, Z.; Niu, S.-L.; Zeng, Q.; Ouyang, Q.; Chen, Y.-C.; Xiao, Q. Selective alkynylallylation of the C-C bond of cyclopropenes. Angew. Chem. Int. Ed. 2021, 60, 297-303.

(2) For the synthesis of PhtOCF₃, see: (a) Yuan, W.-J.; Tong, C.-L.; Xu, X.-H.; Qing, F.-L. *N*-Triffuoromethoxyphthalimide: A shelf-stable reagent for nucleophilic triffuoromethoxylation. *J. Org. Chem.* **2023**, *88*, 4434–444. For the synthesis of PhtSMe, see: (b) Cesario, C.; Miller, M. J. Syntheses of carbocyclic uracil polyoxin C analogs: Application of Pd(0)/InI-allylation of 4-acetoxy-2-azetidinone. *J. Org. Chem.* **2009**, *74*, 5730–5733.

(3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16, Rev. A.03*; Gaussian, Inc.: Wallingford, CT, 2016.

(4) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

- (7) Johnson, E. R.; Becke, A. D. J. Chem. Phys. 2006, 124, 174104.
- (8) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.

⁽⁵⁾ Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789.

⁽⁶⁾ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.

(9) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378–6396.

(10) Dennington, R.; Keith, T.; Millam, J. *GaussView*, *Version 6.1.1*; Semichem Inc.: Shawnee Mission, KS, 2019.

(11) Legault, C. Y. *CYLview*, *1.0b*: Universitéde Sherbrooke, 2009 (http://www.cylview.org).

(12) Thompson, J. L.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 6090-6091.

(13) Bannon, R.; Morrison, G.; Smyth, M.; Moody, T. S.; Wharry, S.; Roth, P. M. C.; Gauron, G.; Baumann, M. Continuous flow approach for benzylic photo-oxidations using compressed air. *Org. Process Res. Dev.* **2024**, *28*, 3307–3312.

(14) Xin, X. Q.; Xiang, D. X.; Yang, J. M.; Zhang, Q.; Zhou, F. G.; Dong, D. W. Homogeneous and stereoselective copper(II)-catalyzed monohydration of methylenemalononitriles to 2-cyanoacrylamides. *J. Org. Chem.* **2013**, *78*, 11956–11961.

(15) Zhao, R.; Teng, J.; Wang, Z.; Dong, W.; Lin J.; Chu, C. Copper on charcoal: Cu^0 nanoparticle catalysed aerobic oxidation of α -diazo esters. *Org. Biomol. Chem.* **2021**, *19*, 6120–6126.

(M) Copies of NMR spectra for the products

