Supporting Information

Solid-Phase Synthesis of Titanium-Oxo Clusters and Their Unprecedented Catalytic Performance in Oxidative Desulfurization of Fuel Oil

Xinchun Liu,^[a] Yanpeng Yuan,^[a] Jiawei Fu,^[a] Yuqing Kong,^[a] Yinyong Sun,*^[a] Xiaolin Li,*^[b] and Nan Qu^[c]

^[a] MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

^[b]Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China

^[c] School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China

* Corresponding author. E-mail: yysun@hit.edu.cn; lixiaolin0427@szpt.edu.cn

Table of Contents

1.1 MaterialsS11.2 Solid-phase synthesis of $Ti_6O_6(abz)_6(OPr)_6$ S11.3 Solid-phase synthesis of $Ti_6O_6(4tbbz)_{10}(OPr)_6$ S11.4 Solid-phase synthesis of $Ti_5O_8(4tbbz)_{10}(OPr)_2$ S11.5 Solid-phase synthesis of $Ti_5O_8(0-5)_{10}$ S21.6 Preparation of MUL-125(Ti) with Ti_6abz_6 S21.7 Preparation of MUV-10(Ti, Mn) with Ti_6abz_6 S21.8 Physical and chemical characterizationS21.9 Catalytic testsS41.10 Computational detailsS52 The detailed structural information about Ti_{29} clustersS72.1 XRD patterns of Ti_{29} clusters in different directionsS112.3 Comparison of XRD patterns of Ti_{29} clusters with $Ti_{28+6}NaO_{18}(OEt)_{39}$ clustersS122.4 FT-IR spectra of Ti_{29} clustersS132.5 TGA curve of Ti_{29} clustersS142.6 Detection of K in Ti_{29} clustersS153 SEM images and elemental mapping of TOCsS205 XPS spectra of TOCs.S216 The hot-filtration test over $Ti_6 tbbz_{10}$ before and after reactionS227 Structural characterization of $Ti_6 tbbz_{10}$ before and after reactionS238 Different combination modes of $Ti_6 tbbz_{10}$ clusters and H_2O_2 .S289 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexesS2910 Xidation of $Ti_6 abz_6$ clusters after H_2O_2 treatmentS3111 Oxidation of $Ti_6 abz_6$ clusters after H_2O_2 treatmentS3112 Detection of hydroxyl radicals in oxidative desulfurization processesS37	1 Materials and Methods	S1
1.2 Solid-phase synthesis of Ti ₆ O ₆ (abz) ₆ (OPr) ₆	1.1 Materials	S1
1.3 Solid-phase synthesis of Ti ₆ O ₆ (4-tbb2) ₁₀ (OPr) ₆ S11.4 Solid-phase synthesis of Ti ₂₉ KO ₃₉ (OE) ₃₈ S21.5 Solid-phase synthesis of Ti ₂₉ KO ₃₉ (OE) ₃₈ S21.6 Preparation of ML-125(Ti) with Ti ₆ abz ₆ S21.7 Preparation of MUV-10(Ti, Mn) with Ti ₆ abz ₆ S21.8 Physical and chemical characterizationS21.9 Catalytic testsS41.10 Computational detailsS52 The detailed structural information about Ti ₂₉ clustersS72.1 XRD patterns of Ti ₂₉ clusters prepared under different conditionsS72.2 Atomic arrangement of Ti ₂₉ clusters in different directionsS112.3 Comparison of XRD patterns of Ti ₂₉ clusters with Ti ₂₈₁₋₈ NaO ₃₈ (OEt) ₃₉ clustersS122.4 FT-IR spectra of Ti ₂₉ clustersS142.6 Detection of K in Ti ₂₉ clustersS153 SEM images and elemental mapping of TOCsS205 XPS spectra of TOCsS216 The hot-filtration test over Ti ₆ dbb2 ₁₀ in the ODS reaction of BTS227 Structural characterization of Ti ₆ tbb2 ₁₀ clusters and H ₂ O ₂ S289 Calculated Raman and FT-IR spectra of Ti ₆ bbz ₁₀ before and after reactionS2211 Didation of Ti ₆ dbz ₆ clusters after H ₂ O ₂ treatmentS312.5 Ti ₆ dbz ₆ clusters after H ₂ O ₂ treatmentS312.6 The hot-filtration test over Ti ₆ dbbz ₁₀ before and after reactionS222.7 Structural characterization of Ti ₆ dbz ₁₀ before and after reactionS222.8 Different combination modes of Ti ₆ dbz ₁₀ before and after reactionS2310 ESI-MS of Ti ₆	1.2 Solid-phase synthesis of Ti ₆ O ₆ (abz) ₆ (O ⁱ Pr) ₆	S1
1.4 Solid-phase synthesis of $Ti_6O_6(4-tbz)_{10}(OPr)_2$ S11.5 Solid-phase synthesis of $Ti_{29}KO_{39}(OEt)_{38}$ S21.6 Preparation of MUI-125(Ti) with Ti_6abz_6 S21.7 Preparation of MUV-10(Ti, Mn) with Ti_8abz_6 S21.8 Physical and chemical characterizationS21.9 Catalytic testsS41.10 Computational detailsS41.10 Computational detailsS72.1 XRD patterns of Ti_{29} clusters prepared under different conditionsS72.1 XRD patterns of Ti_{29} clusters prepared under different conditionsS72.1 XRD patterns of Ti_{29} clusters in different directionsS112.3 Comparison of XRD patterns of Ti_{29} clusters with $Ti_{28+\delta}NaO_{36}(OEt)_{39}$ clustersS122.4 FT-IR spectra of Ti_{29} clustersS132.5 TGA curve of Ti_{29} clustersS142.6 Detection of K in Ti_{29} clustersS153 SEM images and elemental mapping of TOCsS205 XPS spectra of TOCsS205 XPS spectra of TOCsS216 The hot-filtration test over $Ti_{6}tbbz_{10}$ in the ODS reaction of BTS227 Structural characterization of $Ti_{6}tbbz_{10}$ clusters and H_2O_2 S289 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexesS2210 ESI-MS of $Ti_{6}abz_6$ clusters after H_2O_2 treatmentS3111 Oxidation of $Ti_{6}abz_6$ clusters after H_2O_2 treatmentS3112 Detection of hydroxyl radicals in oxidative desulfurization processesS3413 Optimized reaction pathways for the DBT oxidation processesS38 <td>1.3 Solid-phase synthesis of Ti₆O₆(4-tbbz)₆(OⁱPr)₆</td> <td>S1</td>	1.3 Solid-phase synthesis of Ti ₆ O ₆ (4-tbbz) ₆ (O ⁱ Pr) ₆	S1
1.5 Solid-phase synthesis of Ti29KO30(OEt)38.S21.6 Preparation of MIL-125(Ti) with Ti28b76.S21.7 Preparation of MUV-10(Ti, Mn) with Ti28b76.S21.8 Physical and chemical characterizationS21.9 Catalytic testsS41.10 Computational detailsS52 The detailed structural information about Ti29 clustersS72.1 XRD patterns of Ti29 clusters prepared under different conditionsS72.1 XRD patterns of Ti29 clusters in different directionsS112.3 Comparison of XRD patterns of Ti29 clusters with Ti28t-8NaO38(OEt)29 clustersS122.4 FT-IR spectra of Ti29 clustersS132.5 TGA curve of Ti29 clustersS142.6 Detection of K in Ti29 clustersS142.6 Detection of K in Ti29 clustersS174 N2-adsorption-desorption isotherms of TOCsS205 XPS spectra of TOCsS216 The hot-filtration test over Ti4tbb210 in the ODS reaction of BTS227 Structural characterization of Ti6tbb210 before and after reactionS238 Different combination modes of Ti6tbb210 before and after reactionS229 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexesS2910 ESI-MS of Ti6ab26 clusters after H2O2 treatmentS3211 Oxidation of Ti6ab26, clusters after H2O2 treatmentS3212 Detection of hydroxyl radicals in oxidative desulfurization processesS3413 Optimized reaction pathways for the DBT oxidation processS3714 Comparison on the yield of products prepared by solid-phase synthesis and solvothermal methodsS38	1.4 Solid-phase synthesis of $Ti_6O_6(4-tbbz)_{10}(O^iPr)_2$	S1
1.6 Preparation of MIL-125(Ti) with Ti ₆ abz ₆	1.5 Solid-phase synthesis of Ti ₂₉ KO ₃₉ (OEt) ₃₈	S2
1.7 Preparation of MUV-10(Ti, Mn) with Ti ₆ abz ₆	1.6 Preparation of MIL-125(Ti) with Ti ₆ abz ₆	S2
1.8 Physical and chemical characterizationS21.9 Catalytic testsS41.10 Computational detailsS52 The detailed structural information about Ti_{29} clustersS72.1 XRD patterns of Ti_{29} clusters prepared under different conditionsS72.2 Atomic arrangement of Ti_{29} clusters in different directionsS112.3 Comparison of XRD patterns of Ti_{29} clusters with $Ti_{28+3}NaO_{38}(OEt)_{39}$ clustersS122.4 FT-IR spectra of Ti_{29} clustersS132.5 TGA curve of Ti_{29} clustersS132.6 Detection of K in Ti_{29} clustersS142.6 Detection of K in Ti_{29} clustersS174 N_2 -adsorption-desorption isotherms of TOCsS205 XPS spectra of TOCsS216 The hot-filtration test over Ti_6tbz_{10} in the ODS reaction of BTS227 Structural characterization of Ti_6tbz_{10} before and after reactionS238 Different combination modes of Ti_6tbz_{10} clusters and H_2O_2 S289 Calculated Raman and FT-IR spectra of different Ti -hydroperoxo complexesS2910 ESI-MS of Ti_6abz_6 clusters before and after H_2O_2 treatmentS3111 Oxidation of Ti_6abz_6 clusters after H_2O_2 treatmentS3212 Detection of hydroxyl radicals in oxidative desulfurization processesS3413 Optimized reaction pathways for the DBT oxidation processesS3314 Comparison on the yield of products prepared by solid-phase synthesis and solvothermalmethodsS3815 Ti_6abz_6 clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10((Ti, Mn)S40 </td <td>1.7 Preparation of MUV-10(Ti, Mn) with Ti₆abz₆</td> <td>S2</td>	1.7 Preparation of MUV-10(Ti, Mn) with Ti ₆ abz ₆	S2
1.9 Catalytic tests	1.8 Physical and chemical characterization	S2
1.10 Computational details	1.9 Catalytic tests	S4
2 The detailed structural information about Ti_{29} clusters	1.10 Computational details	S5
2.1 XRD patterns of Ti22 clusters prepared under different conditions	2 The detailed structural information about $Ti_{29} \mbox{ clusters}$	S7
2.2 Atomic arrangement of Ti_{29} clusters in different directions	2.1 XRD patterns of Ti ₂₉ clusters prepared under different conditions	S7
2.3 Comparison of XRD patterns of Ti29 clusters with Ti28+ δ NaO3 δ (OEt)39 clusters\$122.4 FT-IR spectra of Ti29 clusters\$132.5 TGA curve of Ti29 clusters\$142.6 Detection of K in Ti29 clusters\$153 SEM images and elemental mapping of TOCs\$174 N2-adsorption-desorption isotherms of TOCs\$205 XPS spectra of TOCs\$216 The hot-filtration test over Ti $_6$ tbbz10 in the ODS reaction of BT\$227 Structural characterization of Ti $_6$ tbbz10 before and after reaction\$238 Different combination modes of Ti $_6$ tbbz10 clusters and H2O2\$289 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexes\$2210 ESI-MS of Ti $_6$ abz $_6$ clusters before and after H2O2 treatment\$3111 Oxidation of Ti $_6$ abz $_6$ clusters after H2O2 treatment\$3212 Detection of hydroxyl radicals in oxidative desulfurization processes\$3315 Ti $_6$ abz $_6$ clusters after H2O2 treatment\$3315 Ti $_6$ abz $_6$ clusters after the DBT oxidation process\$3714 Comparison on the yield of products prepared by solid-phase synthesis and solvothermal methods\$3815 Ti $_6$ abz $_6$ clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)\$40\$4216 Crystal structure data of Ti $_{29}$ clusters\$4217 Element content in different TOCs\$4318 Nitrogen sorption data for different TOCs\$44	2.2 Atomic arrangement of Ti ₂₉ clusters in different directions	S11
2.4 FT-IR spectra of Ti ₂₉ clusters \$13 2.5 TGA curve of Ti ₂₉ clusters \$14 2.6 Detection of K in Ti ₂₉ clusters \$15 3 SEM images and elemental mapping of TOCs \$17 4 N ₂ -adsorption–desorption isotherms of TOCs \$20 5 XPS spectra of TOCs \$21 6 The hot-filtration test over Ti ₆ tbbz ₁₀ in the ODS reaction of BT \$22 7 Structural characterization of Ti ₆ tbbz ₁₀ before and after reaction \$23 8 Different combination modes of Ti ₆ tbbz ₁₀ before and after reaction \$28 9 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexes \$29 10 ESI-MS of Ti ₆ abz ₆ clusters before and after H ₂ O ₂ treatment \$31 11 Oxidation of Ti ₆ abz ₆ clusters after H ₂ O ₂ treatment \$32 12 Detection of hydroxyl radicals in oxidative desulfurization processes \$33 13 Optimized reaction pathways for the DBT oxidation processes \$33 15 Ti ₆ abz ₆ clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)\$40 \$4 16 Crystal structure data of Ti ₂₉ clusters \$42 17 Element content in different TOCs \$43 18 Nitrogen sorption data for different TOCs \$44	2.3 Comparison of XRD patterns of Ti_{29} clusters with $Ti_{28+\delta}NaO_{38}(OEt)_{39}$ clusters	S12
2.5 TGA curve of Ti20 clustersS142.6 Detection of K in Ti20 clustersS153 SEM images and elemental mapping of TOCsS174 N2-adsorption-desorption isotherms of TOCsS205 XPS spectra of TOCsS216 The hot-filtration test over Ti6tbbz10 in the ODS reaction of BTS227 Structural characterization of Ti6tbbz10 before and after reactionS238 Different combination modes of Ti6tbbz10 clusters and H2O2S289 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexesS2910 ESI-MS of Ti6abz6 clusters after H2O2 treatmentS3212 Detection of hydroxyl radicals in oxidative desulfurization processesS3714 Comparison on the yield of products prepared by solid-phase synthesis and solvothermalS3815 Ti6abz6 clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40S4816 Crystal structure data of Ti20 clustersS4418 Nitrogen sorption data for different TOCsS44	2.4 FT-IR spectra of Ti ₂₉ clusters	S13
2.6 Detection of K in Ti_{29} clusters	2.5 TGA curve of Ti ₂₉ clusters	S14
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.6 Detection of K in Ti ₂₉ clusters	S15
4 N2-adsorption-desorption isotherms of TOCs.S205 XPS spectra of TOCs.S216 The hot-filtration test over Ti6tbbz10 in the ODS reaction of BTS227 Structural characterization of Ti6tbbz10 before and after reactionS238 Different combination modes of Ti6tbbz10 clusters and H2O2S289 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexesS2910 ESI-MS of Ti6abz6 clusters before and after H2O2 treatmentS3111 Oxidation of Ti6abz6 clusters after H2O2 treatmentS3212 Detection of hydroxyl radicals in oxidative desulfurization processesS3714 Comparison on the yield of products prepared by solid-phase synthesis and solvothermalS3815 Ti6abz6 clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40S4216 Crystal structure data of Ti29 clustersS4218 Nitrogen sorption data for different TOCsS44	3 SEM images and elemental mapping of TOCs	S17
5 XPS spectra of TOCsS216 The hot-filtration test over Ti_6tbbz_{10} in the ODS reaction of BTS227 Structural characterization of Ti_6tbbz_{10} before and after reactionS238 Different combination modes of Ti_6tbbz_{10} clusters and H_2O_2 .S289 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexesS2910 ESI-MS of Ti_6abz_6 clusters before and after H_2O_2 treatmentS3111 Oxidation of Ti_6abz_6 clusters after H_2O_2 treatmentS3212 Detection of hydroxyl radicals in oxidative desulfurization processesS3714 Comparison on the yield of products prepared by solid-phase synthesis and solvothermalS3815 Ti_6abz_6 clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40S4816 Crystal structure data of Ti_{29} clustersS4318 Nitrogen sorption data for different TOCsS44	4 N2-adsorption-desorption isotherms of TOCs	S20
6 The hot-filtration test over Ti_6tbbz_{10} in the ODS reaction of BT	5 XPS spectra of TOCs	S21
7 Structural characterization of Ti_6tbbz_{10} before and after reactionS238 Different combination modes of Ti_6tbbz_{10} clusters and H_2O_2 .S289 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexesS2910 ESI-MS of Ti_6abz_6 clusters before and after H_2O_2 treatmentS3111 Oxidation of Ti_6abz_6 clusters after H_2O_2 treatmentS3212 Detection of hydroxyl radicals in oxidative desulfurization processesS3413 Optimized reaction pathways for the DBT oxidation processS3714 Comparison on the yield of products prepared by solid-phase synthesis and solvothermalS3815 Ti_6abz_6 clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40S4217 Element content in different TOCsS4318 Nitrogen sorption data for different TOCsS44	6 The hot-filtration test over Ti ₆ tbbz ₁₀ in the ODS reaction of BT	S22
8 Different combination modes of Ti_6tbbz_{10} clusters and H_2O_2	7 Structural characterization of Ti_6tbbz_{10} before and after reaction	S23
9 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexes S29 10 ESI-MS of Ti ₆ abz ₆ clusters before and after H ₂ O ₂ treatment S31 11 Oxidation of Ti ₆ abz ₆ clusters after H ₂ O ₂ treatment S32 12 Detection of hydroxyl radicals in oxidative desulfurization processes S34 13 Optimized reaction pathways for the DBT oxidation process S37 14 Comparison on the yield of products prepared by solid-phase synthesis and solvothermal methods S38 15 Ti ₆ abz ₆ clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40 S42 17 Element content in different TOCs S43 18 Nitrogen sorption data for different TOCs S44	8 Different combination modes of Ti ₆ tbbz ₁₀ clusters and H ₂ O ₂	S28
10 ESI-MS of Ti_6abz_6 clusters before and after H_2O_2 treatmentS3111 Oxidation of Ti_6abz_6 clusters after H_2O_2 treatmentS3212 Detection of hydroxyl radicals in oxidative desulfurization processesS3413 Optimized reaction pathways for the DBT oxidation processS3714 Comparison on the yield of products prepared by solid-phase synthesis and solvothermalmethodsS3815 Ti_6abz_6 clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S4016 Crystal structure data of Ti_{29} clustersS4217 Element content in different TOCsS4318 Nitrogen sorption data for different TOCsS44	9 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexes	S29
11 Oxidation of Ti ₆ abz ₆ clusters after H ₂ O ₂ treatment S32 12 Detection of hydroxyl radicals in oxidative desulfurization processes S34 13 Optimized reaction pathways for the DBT oxidation process S37 14 Comparison on the yield of products prepared by solid-phase synthesis and solvothermal methods S38 15 Ti ₆ abz ₆ clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40 S42 16 Crystal structure data of Ti ₂₉ clusters S43 18 Nitrogen sorption data for different TOCs S44	10 ESI-MS of Ti ₆ abz ₆ clusters before and after H ₂ O ₂ treatment	S31
12 Detection of hydroxyl radicals in oxidative desulfurization processes S34 13 Optimized reaction pathways for the DBT oxidation process S37 14 Comparison on the yield of products prepared by solid-phase synthesis and solvothermal methods S38 15 Ti ₆ abz ₆ clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40 S42 16 Crystal structure data of Ti ₂₉ clusters S42 17 Element content in different TOCs S43 18 Nitrogen sorption data for different TOCs S44	11 Oxidation of Ti ₆ abz ₆ clusters after H ₂ O ₂ treatment	S32
13 Optimized reaction pathways for the DBT oxidation process	12 Detection of hydroxyl radicals in oxidative desulfurization processes	S34
14 Comparison on the yield of products prepared by solid-phase synthesis and solvothermal methods S38 15 Ti ₆ abz ₆ clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40 16 Crystal structure data of Ti ₂₉ clusters S42 17 Element content in different TOCs S43 18 Nitrogen sorption data for different TOCs	13 Optimized reaction pathways for the DBT oxidation process	S37
methods	14 Comparison on the yield of products prepared by solid-phase synthesis and solvothe	ermal
 15 Ti₆abz₆ clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)S40 16 Crystal structure data of Ti₂₉ clusters	methods	S38
16 Crystal structure data of Ti ₂₉ clusters S42 17 Element content in different TOCs S43 18 Nitrogen sorption data for different TOCs S44	15 Ti_6abz_6 clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn).	S40
17 Element content in different TOCs S43 18 Nitrogen sorption data for different TOCs S44	16 Crystal structure data of Ti ₂₉ clusters	S42
18 Nitrogen sorption data for different TOCs	17 Element content in different TOCs	S43
	18 Nitrogen sorption data for different TOCs	S44
19 Proportion of carboxylic acid ligands in different TOCs	19 Proportion of carboxylic acid ligands in different TOCs	
20 Comparison of catalytic activities in the ODS reaction of DBT	20 Comparison of catalytic activities in the ODS reaction of DBT	

21 Catalytic performance of Ti ₆ tbbz ₁₀ clusters in the other oxidation reactions	S48
22 Space-time yields of TOCs	S49
23 References	

1 Materials and Methods

1.1 Materials

Titanium ethoxide (Ti(OEt)₄), titanium isopropoxide (Ti(O[/]Pr)₄), 4-aminobenzoic acid (abz), 4-tert-butylbenzoic acid (tbbz), biphenyl-4,4'-dicarboxylic acid (BPDC), MnCl₂·4H₂O, 1,4-benzenedicarboxylic acid (BDC), anhydrous ethanol, isopropanol, *n*-octane, benzothiophene (BT), dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO), tertiary butanol (TBA), *p*-benzoquinone (BQ), dimethyl sulfoxide (DMSO) were purchased from Beijing InnoChem Science & Technology Co., Ltd. Acetone was purchased from Adamas Biochemical Technology Co., Ltd. Hydrogen peroxide (H₂O₂, 30 wt%), was purchased from Aladdin Biochemical Technology Co., Ltd. All the chemicals and solvents were used as received without further purification.

1.2 Solid-phase synthesis of Ti₆O₆(abz)₆(OⁱPr)₆

 $Ti(O^{i}Pr)_{4}$ (10 mmol, 3.0 mL) was taken by a pipette gun and immediately transferred into a 25 mL high-pressure autoclave (Anhui Kemi Machinery Technology Co., Ltd) at room temperature. Subsequently, abz (13.75 mmol, 1.886 g) was added and sealed. The autoclave was heated in an oven to 150 °C for 12 h. After cooling, the product obtained as bright yellow rod-like crystals $Ti_{6}O_{6}(abz)_{6}(O^{i}Pr)_{6}^{-1}$ (named $Ti_{6}abz_{6}$) were washed fourth with 30 mL of isopropanol and dried at 60 °C for 12 h.

1.3 Solid-phase synthesis of Ti₆O₆(4-tbbz)₆(O⁷Pr)₆

Colorless rod-like crystals $Ti_6O_6(4-tbbz)_6(O^iPr)_6^2$ (named Ti_6tbbz_6) were synthesized by substituting abz with tbbz (15 mmol, 2.674 g) in the above synthetic procedure for Ti_6abz_6 .

1.4 Solid-phase synthesis of Ti₆O₆(4-tbbz)₁₀(OⁱPr)₂

Colorless needle-like crystals $Ti_6O_6(4-tbbz)_{10}(O^iPr)_2^2$ (named Ti_6tbbz_{10}) were synthesized by varying the dosage of $Ti(O^iPr)_4$ (3 mmol, 0.9 mL) and tbbz (24 mmol, 4.30 g) in the above synthetic procedure for Ti_6tbbz_6 .

1.5 Solid-phase synthesis of Ti₂₉KO₃₉(OEt)₃₈

 $Ti(OEt)_4$ (20 mmol, 4.2 mL) was taken by a pipette gun and immediately transferred into a 25 mL high-pressure autoclave at room temperature. Subsequently, BPDC (10 mmol, 2.422 g) was added and sealed. The autoclave was heated in an oven to 150 °C for 12 h. After cooling, the obtained product was washed with 30 mL of absolute ethanol (fourth), acetone (twice) and absolute ethanol (once) at room temperature, separately. Then, the obtained as colorless rhombic-like crystals $Ti_{29}KO_{39}(OEt)_{38}$ (named Ti_{29}) were dried at 60 °C for 12 h.

1.6 Preparation of MIL-125(Ti) with Ti₆abz₆

MIL-125(Ti) was synthesized using a modified method based on previous reports.³ Ti₆abz₆ (0.167 mmol, 0.259 g) and BDC (6 mmol, 1 g) were added into a mixture solution containing 18 mL of DMF and 2 mL of methanol under vigorous agitation at room temperature. After stirring for 30 min, the mixture was transferred to a 50 mL Teflon-lined autoclave and placed in an oven at 150 °C for 24 h. After cooling, the obtained white solid was washed thoroughly with ethanol and then dried at 60 °C for 12 h.

1.7 Preparation of MUV-10(Ti, Mn) with Ti₆abz₆

MUV-10(Ti, Mn) was synthesized with Ti_6abz_6 according to the previously reported procedure.⁴

1.8 Physical and chemical characterization

Powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 advance diffractometer in Bragg-Brentano geometry equipped with a Ge-focusing primary monochromator (Cu-K α radiation, $\lambda = 0.15406$ nm) at 40 kV and 40 mA with a scanning speed at 9° min⁻¹ and a step size of 0.02°.

Scanning electron microscopy (SEM) images were obtained using a SUPRA 55 instrument with an acceleration voltage of 15 kV. SEM energy dispersive spectroscopy (EDS, Oxford Instrument) was used for composition analysis.

The diffuse ultraviolet-visible (UV-vis) spectra of all the samples were measured against

BaSO₄ in the region of 200-700 nm with a Hitachi UH4150 UV-VIS-NIR spectrophotometer.

Fourier transform infrared (FT-IR) spectra were collected in the range of 400-4000 cm⁻¹ on the Thermo Fisher Scientific Nicolet iS20 spectrometer.

Raman spectra were acquired by a Horiba LabRAM HR Evolution Raman spectrometer using a 532 nm laser line.

The contact angle was measured using SL200B contact angle meter. The contact angle was measured by depositing water drops ($4 \mu L / drop$) at 3 different locations on each sample.

The N_2 adsorption-desorption isotherms were obtained at 77 K on a BSD-PS1 Static Volumetric Specific Surface and Aperture Analyzer. Before nitrogen adsorption, the samples were pretreated at 373K for 6 h under vacuum condition to remove the solvent molecules. The total surface area was calculated via the Brunauer-Emmett-Teller (BET) equation.

X-ray photoelectron spectrometer (XPS) was used to analyze chemical composition of all the samples on the Thermo Scientific K-Alpha spectrometer. The binding energy for Ti_{29} was based on the C 1s peak position at 284.8 eV. The binding energies of aromatic ring-rich Ti_6abz_6 , Ti_6tbbz_6 and Ti_6tbbz_{10} were based on the C 1s peak position of 284.6 eV.

Thermogravimetric analysis (TGA) was performed on a HITACHI STA200 instrument under air conditions at a ramp rate of 10 °C/min.

The electron paramagnetic resonance (EPR) spectra were recorded on a Bruker A300 spectrometer at ambient temperature. The weight of all samples used to measure oxygen vacancies was 20 mg. The samples used to measure reactive oxygen species were prepared as follows. 10 mg of sample was dissolved in 2.5 mL of deionized water or anhydrous ethanol solution and mixed well by sonication, followed by the addition of 50 μ L of H₂O₂ (30 wt.%) and 50 μ L of 5,5'-dimethyl-1-pirroline-*N*-oxide (DMPO).

The inductively coupled plasma optical emission spectroscopy (ICP-OES) was conducted using an Avio 220 Max instrument.

Electrospray ionization mass spectrometry (ESI-MS) was carried out on an Agilent 6540

Q-TOF instrument. 20 mg of Ti_6tbbz_{10} was dissolved in 1 mL of dichloromethane and injected into ESI-MS port using positive-ion mode. Then 50 uL H_2O_2 was added to the above solution to test the intermediate catalysts.

Single-crystal diffraction data was collected on a Bruker D8 Venture diffractometer equipped with Mo-K α X-ray source ($\lambda = 0.71073$ Å, monochromatic graphite) at room temperature. APEX2 program was used to record the number of data frames and the program SAINT routine in PEX2 was used for processing. Data were scaled and corrected for absorption effects using the multi-scan procedure as implemented in SADABS. The structure was solved by SHELXT-2018/2⁵ and refined by full-matrix least-squares on F² using OLEX2⁶ software package. All non-hydrogen atoms were refined by anisotropic displacement parameters. The coordinated ethoxide with huge thermal ellipsoid were refined by using EADP constraints to clear the warning of non-positive definite matrix. Hydrogen atoms were placed in geometrically suitable positions and refined riding with isotropic thermal parameter related to the equivalent isotropic thermal parameter of the parent atom. Crystallographic data of Ti₂₉KO₃₉(OEt)₃₈ (CCDC 2286846) had been deposited with the Cambridge Crystallographic Data Centre. Copy of data can be obtained free of charge on application to the CCDC, Cambridge, UK via https://www.ccdc.cam.ac.uk/structures/.

1.9 Catalytic tests

The oxidation of sulfocompound in model fuel was used as probe reaction to evaluate the catalytic performance of titanium-oxo clusters (TOCs). An amount of BT, DBT, or DMDBT dissolved in *n*-octane (1000 ppm sulfur content of BT, DBT, or DMDBT) was used as a model fuel. The reactions were carried out in a closed 50 mL double-necked glass flask equipped with a powerful magnetic stirrer (800 r/min) and immersed in a 50 °C water bath. In a standard run, catalyst (40 mg) was added to a mixture of model fuel (15 mL) and ethanol (10 mL) and then stirred at 50 °C for 30 min to reach thermal equilibrium. The catalytic reaction process is initiated by the addition of H_2O_2 (30 wt %, 135 µL) as oxidant with a H_2O_2 /S molar ratio of 4:1.

The right amount of liquid in the *n*-octane phase was taken at different times under stirring and analyzed by an Agilent 7890A gas chromatography (GC) with an FID detector using a 30 m packed HP-5 column. The removal content of BT, DBT or DMDBT was calculated according to the equation $R = (1 - C_t/C_0) \times 100\%$, where C_0 and C_t stand for the initial concentration and the reaction concentration of BT, DBT or DMDBT in *n*-octane phase after *t* minutes, respectively.

In the recycling procedure, Ti_6tbbz_{10} was recovered by centrifugation, carefully washed and dried at the end of each reaction cycle. The recovered and treated catalysts were weighed and all experimental conditions, i.e., amount of reactants, were adjusted and maintained while performing successive reaction cycles.

1.10 Computational details

Density functional theory was employed to simulate Raman and FT-IR spectra of Ti_6tbbz_{10} clusters and Ti_6tbbz_{10} combined with H_2O_2 by different binding modes. The initial molecular structure model of Ti_6tbbz_{10} was constructed based on its single-crystal structure data. The molecular structure models of Ti_6tbbz_{10} combined with H_2O_2 were constructed based on the structure of Ti_6tbbz_{10} by incorporating two molecules of H_2O_2 , owing to the centrosymmetric nature of Ti_6tbbz_{10} . The detailed structure was shown in Figure S22. All molecular structures were optimized using the PBE0⁷ functional in conjunction with Grimme's DFT-D3(BJ)⁸ semiempirical dispersion correction and 6-31G (d) basis set. All stationary points were confirmed as minima through frequency calculations, ensuring that all frequencies were positive. The resonant frequency correction factor⁹ of 0.9512 was applied to compensate for the non-resonant effects in the computation of Raman and FT-IR spectra. The interaction energy (ΔE) for the combination of TOCs and H_2O_2 was calculated using the following equation:

 $\Delta E = E (\text{TOCs} + \text{OOH}^{-}) - E (\text{TOCs}) - E (\text{OOH}^{-})$

where E (TOCs + OOH⁻), E (TOCs) and E (OOH⁻) represent the electronic energies of

TOCs combined with OOH⁻, TOC, and OOH⁻, respectively. A negative value of ΔE indicates an exothermic process, while more negative values imply a stronger binding affinity. All calculations were performed using Gaussian 16 programs.

2 The detailed structural information about Ti₂₉ clusters

2.1 XRD patterns of Ti₂₉ clusters prepared under different conditions

Figure S1. XRD patterns of Ti_{29} clusters prepared with different molar ratios of BPDC to $Ti(OEt)_4$.

Figure S2. XRD patterns of Ti_{29} clusters prepared at different crystallization temperatures.

Figure S3. XRD patterns of Ti_{29} clusters prepared at different crytallization time.

Figure S4. XRD patterns of Ti_{29} clusters prepared with different addition amount of ethanol.

2.2 Atomic arrangement of Ti₂₉ clusters in different directions

Figure S5. Atomic arrangement of Ti_{29} clusters in different directions. H atoms are omitted for clarity.

2.3 Comparison of XRD patterns of Ti₂₉ clusters with Ti_{28+δ}NaO₃₈(OEt)₃₉ clusters

Figure S6. Comparison on XRD patterns of Ti_{29} clusters with reported $Ti_{28+\delta}NaO_{38}(OEt)_{39}$ clusters.

 Ti_{29} clusters are different from the reported $Ti_{28+\delta}NaO_{38}(OEt)_{39}$ clusters¹⁰ in terms of its physical phase structure, number of ligands and elemental composition although they possess similar structure.

Figure S7. FT-IR spectroscopy of Ti₂₉ clusters.

2.5 TGA curve of Ti₂₉ clusters

Figure S8. TGA curve of Ti₂₉ clusters.

TGA curve of Ti₂₉ clusters shows three distinct weight losses. The first loss before 150°C results from the physisorbed ethanol and water The second one between 200°C and 350°C is attributed to the removal of unstable ethoxylates in the structure of Ti₂₉ clusters with a mass fraction of 12.1% corresponding to the molecular mass of 10 ethoxylates. The third one between 350°C and 550°C comes from the removal of relatively stable ethoxylates in Ti₂₉ clusters with a mass fraction of 32.3% corresponding to the molecular mass of 28 ethoxylates. The total number of lost ethoxy groups is 38, which is the same as the number of ethoxy groups in Ti₂₉ clusters.

2.6 Detection of K in Ti₂₉ clusters

Figure S9. XPS spectrum for K 2p of Ti_{29} clusters.

Figure S10. EDS patterns of Ti_{29} (a) clusters and BPDC (b).

The presence of the element K in Ti_{29} clusters may result from the impurities present in the BPDC ligand.

3 SEM images and elemental mapping of TOCs

Figure S11. SEM image and elemental mapping of Ti_6abz_6 clusters.

Figure S12. SEM image and elemental mapping of Ti_6tbbz_6 clusters.

Figure S13. SEM image and elemental mapping of Ti_{29} clusters.

4 N_2 -adsorption-desorption isotherms of TOCs

Figure S14. N_2 adsorption-desorption isotherms of different clusters.

5 XPS spectra of TOCs

Figure S15. Survey spectra of different TOCs.

6 The hot-filtration test over $Ti_6 tbbz_{10}$ in the ODS reaction of BT

As shown, the removal of BT is almost inhibited when Ti_6tbbz_{10} catalyst is removed from the reaction system. The ICP analysis for the solution after reaction indicated a trace amount of Ti (6.5 ppm). These results demonstrated that Ti_6tbbz_{10} catalyst is a heterogeneous catalyst and can be reused.

7 Structural characterization of Ti₆tbbz₁₀ before and after reaction

Figure S17. XRD patterns of Ti_6tbbz_{10} clusters before and after reaction.

Figure S18. FT-IR spectra of Ti_6tbbz_{10} before and after reaction.

Figure S19. SEM images and elemental mapping of Ti_6tbbz_{10} clusters after one cycle.

Figure S20. SEM images and elemental mapping of Ti_6tbbz_{10} clusters after five cycles.

Figure S21. XRD patterns of Ti_6tbbz_{10} clusters before and after H_2O_2 treatment.

8 Different combination modes of Ti_6tbbz_{10} clusters and H_2O_2 .

Figure S22. Different combination modes of Ti_6tbbz_{10} clusters and H_2O_2 . (a) H_2O_2 replaces alkoxy to form Ti-peroxo-3MR-R. (b) H_2O_2 combines with Ti_6tbbz_{10} to form Ti-peroxo-3MR-C. (c) H_2O_2 is bridged at binuclear Ti sites. (d) H_2O_2 replaces alkoxy to form Ti-hydroperoxo-5MR-R. (e) H_2O_2 combines with the alkoxy group of Ti_6tbbz_{10} clusters to form Ti-hydroperoxo-5MR-C. (f) Ti-hydroperoxo-5MR structure formed by the interaction between binuclear titanium sites and H_2O_2 . Symbols S, R, C, B and MR stand for simulation, replacement, combination, bridging and membered-ring, respectively. The part of Ti_6tbbz_{10} combined with H_2O_2 is highlighted. Ti (green), O (red).

9 Calculated Raman and FT-IR spectra of different Ti-hydroperoxo complexes

Figure S23. The Raman spectra of different Ti-hydroperoxo complexes obtained by experiment and calculations.

After H₂O₂ treatment, the Raman spectroscopy of Ti₆tbbz₁₀ clusters showed obvious absorption peaks at 680 and 798 cm⁻¹ corresponding to the stretching vibration of Ti-O bond. The oxygen in Ti-O bond comes from isopropoxy group and the binuclear titanium site, respectively. These results are consistent with Ti-hydroperoxo-5MR structure. It is noted that no absorption peaks belonging to the binding modes of Ti-peroxo-3MR-R, Ti-peroxo-3MR-C, Binuclear-Ti-sites-B, Ti-hydroperoxo-5MR-R and Ti-hydroperoxo-5MR-C were observed in the simulated Raman spectra.

Figure S24. The FT-IR spectra of different Ti-hydroperoxo complexes obtained by experiment and calculations.

The FT-IR spectroscopy of Ti_6tbbz_{10} clusters binding with H_2O_2 showed an absorption peak at 1690 cm⁻¹ corresponding to the stretching vibration of the C=O bond associated with the monodentate bridging coordination mode in the carboxylic acid ligand. Notably, this peak was present in the combined mode of Ti-hydroperoxo-5MR. No absorption peak corresponding to Ti-peroxo-3MR-R, Ti-peroxo-3MR-C, Binuclear-Ti-sites-B, Ti-hydroperoxo-5MR-R, and Ti-hydroperoxo-5MR-C were observed at 1690 cm⁻¹ in the simulated FT-IR spectra.

10 ESI-MS of Ti_6abz_6 clusters before and after H_2O_2 treatment

Figure S25. ESI-MS of Ti_6tbbz_{10} before and after adding H_2O_2 . Insert show the locally enlarged information. 4-tbbz = 4-tert-butylbenzoic acid, O'Pr = isopropanol.

As shown in Figure S24, before adding H_2O_2 the peak at 2274.8 in the locally amplified mass spectrum belongs to $\{Ti_6O_6(4-tbbz)_{10}(O'Pr)_2\}^+$ (calcd m/z = 2274.6), which corresponds to Ti_6tbbz_{10} clusters combined with one H⁺. After the addition of H_2O_2 into the above solution, the peak at 2340.4 is observed, which is attributed to $\{Ti_6O_6(4-tbbz)_{10}(O'Pr)_2(OOH)_2\}^+$ (calcd m/z = 2340.6) corresponding to Ti_6tbbz_{10} combined with two -OOH and one H⁺. These results are consistent with the structure of Ti-hydroperoxo-5MR.

11 Oxidation of Ti_6abz_6 clusters after H_2O_2 treatment

Figure S26. N 1s high-resolution XPS spectra of Ti_6abz_6 and Ti_6nbz_6 (Ti_6abz_6 oxidized by H_2O_2) clusters..

Figure S27. FT-IR spectra of Ti_6abz_6 and Ti_6nbz_6 clusters.

12 Detection of hydroxyl radicals in oxidative desulfurization processes

Figure S28. EPR spectrum of 10 mg Ti_6tbbz_{10} clusters, 2.5 mL H_2O, 50 μL H_2O_2 and 50 μL DMPO.

Figure S29. Quenching experiments over Ti_6tbbz_{10} clusters in the ODS reaction of DBT. Reaction conditions: catalyst amount (40 mg), model oil (15 mL), ethanol (10 mL), sulfur content (1000 ppm), oxidant (H₂O₂), O/S molar ratio (4:1), reaction temperature (50 °C), reaction time (1 min).

Figure S30. EPR spectrum of 10 mg Ti_6tbbz_{10} clusters, 2.5 mL absolute ethanol, 50 μL H_2O_2 and 50 μL DMPO.

13 Optimized reaction pathways for the DBT oxidation process

Figure S31. Optimized reaction pathways for the oxidation process of DBT at the PBE0-D3 / 6-31G (d) level. 4-tert-butylbenzoic acid substituted with formic acid and isopropoxy substituted with hydroxyl to simplify the calculations.

14 Comparison on the yield of products prepared by solid-phase synthesis and solvothermal methods

Figure S32. Yields of Ti_6tbbz_{10} clusters synthesized with autoclaves of the same size by solidphase (left) and solvothermal method (right).

Figure S33. XRD patterns of Ti_6abz_6 clusters synthesized at small and large scales.

15 Ti₆abz₆ clusters as precursors for the synthesis of MIL-125(Ti) and MUV-10(Ti, Mn)

Figure S34. SEM images (a, b), PXRD patterns (c) and N_2 adsorption–desorption isotherms (d) of MIL-125(Ti) synthesized with Ti₆abz₆ clusters as precursors.

Figure S35. SEM images (a, b), PXRD patterns (c) and N_2 adsorption-desorption isotherms (d) of MUV-10(Ti, Mn) synthesized with Ti₆abz₆ clusters as precursors.

16 Crystal structure data of Ti₂₉ clusters

Compounds	Ti ₂₉
CCDC No	2286846
Formula	Ti ₂₉ KO ₇₇ C ₇₆ H ₁₉₀
FW	3764.47
Т (К)	298.3
λ (Å)	0.71073
Crystal system	Triclinic
Space group	PĪ
a (Å)	16.5381(9)
b (Å)	17.0084(9)
c (Å)	28.4386(16)
α (deg)	85.261(3)
β (deg)	79.664(3)
γ (deg)	68.022(2)
V (Å ³)	7296.6(7)
Ζ	2
$ \rho_{\rm calc} ({\rm g/cm^3}) $	1.713
$\mu (\mathrm{mm}^{-1})$	1.603
F(000)	3838
Crystal size (mm ³)	0.20 imes 0.15 imes 0.08
2θ range (deg)	$2.6 \sim 50.0$
h, k, l ranges	-19/19, -20/20, -33/33
Reflections collected	134312
Independent (R _{int})	25683 (0.0799)
Data/restraints/parameters	25683/148/1345
GOF on F ²	1.044
$\mathbf{R}_{1}, \mathbf{w}\mathbf{R}_{2} \left[I >= 2\sigma \left(I \right) \right]$	0.0697, 0.1844
R ₁ , wR ₂ [all data]	0.1019, 0.2087
Largest diff. peak/hole (e/Å ³)	1.07/-1.06

Table S1. The summary of crystal data and structure refinement for Ti_{29} clusters.

17 Element content in different TOCs

	Ti (at %)	O (at %)	C (at %)	K (at %)
Theoretical value	15.8	42.2	41.5	0.5
XPS	12.7	32.8	54.4	0.1
EDS	9.8	43.1	46.8	0.3

Table S2. Element content in Ti_{29} clusters.

Table S3. Element content in Ti₆tbbz₆ clusters.

	Ti (at %)	O (at %)	C (at %)
Theoretical value	5.3	21.0	73.7
XPS	4.5	18.1	77.4
EDS	4.0	26.2	69.8

Table S4. Element content in Ti_6abz_6 clusters.

	Ti (at %)	O (at %)	C (at %)	N (at %)
Theoretical value	6.2	25.0	62.5	6.3
XPS	5.5	21.7	66.3	6.5
EDS	4.7	32.3	41.0	22.0

Table S5. Element content of Ti_6tbbz_{10} clusters.

	Ti (at %)	O (at %)	C (at %)
Theoretical value	4.0	18.7	77.3
XPS	4.4	17.9	77.7
EDS	3.9	28.6	67.5

18 Nitrogen sorption data for different TOCs

Entry	Clusters	Surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Average pore size (nm)
1	Ti ₂₉	213	0.136	2.56
2	Ti ₆ tbbz ₆	5	0.004	3.28
3	Ti ₆ abz ₆	10	0.004	1.48
4	Ti ₆ tbbz ₁₀	80	0.325	16.30

Table S6. Nitrogen sorption data for different TOCs.

Table S7. Proportion of carboxylic acid ligands and binding energy of the Ti $2p_{3/2}$ peaks in different clusters.

Entry	Clusters	N ₁ ^a	N_2^{b}	N_1/N_2	Ti 2p _{3/2} (eV)
1	Ti ₂₉	0	38	0	458.66
2	Ti ₆ tbbz ₆	6	12	0.50	458.78
3	Ti_6abz_6	6	12	0.50	458.95
4	Ti_6tbbz_{10}	10	12	0.83	459.00

^a N₁ represents the number of carboxylic acid ligands in each cluster.

 $^{\rm b}$ N_2 represents the total number of ligands in each cluster.

20 Comparison of catalytic activities in the ODS reaction of DBT

Catalysts	Dosage of catalyst (mg)	Metal content (wt %)	Sulfur content (ppm)	Oxidant	O/S molar ratio	Temp. (°C)	TOF ^a (h ⁻¹)	Activity ^b (mmol h ⁻¹ g ⁻¹)	Ref.
Ti ₃₂ -BTA	50	22.3	200	H_2O_2	6	60	0.6	2.7	11
MIL-125(Ti)	17.3	24.4	500	TBHP	10	80	5.6	21.4	12
MIL-125-CA-5	100	24.4	1000	H_2O_2	8	60	4.4	22.4	13
COK-47s	32.5	22.1	3594	TBHP	2.5	60	8.0	36.9	14
Hier-NTU-9	20	26.9	1000	TBHP	4	80	0.3	1.9	15
Ti-BDC-180	50	23.0	1000	H_2O_2	6	60	7.8	37.2	16
Ti-BDC-A	30	26.8	500	CHP	6	50	33.2	185.8	17
H-TiNTs	100	59.9	320	H_2O_2	4	40	0.4	5.2	18
UiO-66(Zr,Ti)	50	5.1	1000	H_2O_2	6	60	0.7	2.9	19
10%MIL-101(Cr)- TiO ₂	100	33.0	100	CHP	6	60	0.9	6.1	20
M-TS-1	120	0.6	200	CHP	15	80	6.3	0.8	21
Ti-MCM-41S	25	1.3	1740	TBHP	2.5	80	18.2	4.8	22
Ti-SBA-2	30	5.5	500	TBHP	3	40	48.6	56.1	23
Ti-B-M-DA	50	5.5	1000	TBHP	6	60	58.8	65.9	24
TS-1	55	0.9	500	TBHP	2	60	232.2	45.6	25
Meso-TS-6H	20	3.2	1000	TBHP	2	60	480.7	316.4	26
${\rm Ti}_6{\rm tbbz}_{10}$	10	12.6	1000	H_2O_2	4	50	729.0	1918.8	This work

Table S8. Comparison of catalytic activities over representative Ti-containing catalysts in the ODS reaction of DBT.

^a TOF = (mole number of converted sulfur) / (mole of active species in catalyst × reaction time (h)),

^b Activity = (millimole number of converted DBT) / (reaction time (h) × dosage of catalyst (g)).

Catalysts	Dosage of catalyst (mg)	Active species and content (wt %)	Sulfur content (ppm)	Oxidant	O/S molar ratio	Temp. (°C)	TOF ^a (h ⁻¹)	Activity ^b (mmol h ⁻¹ g ⁻¹)	Ref.
Mo-INFs	1000	Mo/2	500	H_2O_2	5	60	0.7	0.1	27
Mo ₂ N/rGO-A	20	Mo/20.9	1000	H_2O_2	10	60	28.1	61.3	28
MoO ₃ @NPC	5	Mo/1.5	200	H_2O_2	3	60	96.2	20.6	29
MoWP ₂ /C	3	MoW/19.6	500	H_2O_2	4	60	105.4	87.9	30
Fe ₃ O ₄ @CTS@PMoW	50	MoW/-	500	H_2O_2	5	60	-	1.0	31
PW ₁₂ @UiO-67(Zr)	50	W/28	1000	H_2O_2	13	70	21.5	5.3	32
30W/HNT/M	60	W/0.5	500	H_2O_2	5	60	34.5	2.9	33
Meso-SiO ₂	25	W/15.3	500	H_2O_2	4	60	15.7	13.2	34
Co@C-P5	10	Co/1.1c	1000	H_2O_2	7.5	60	104.0	158.2	35
CrN@C-6	20	Cr/4.5	250	H_2O_2	10	60	32.5	9.9	36
UiO-66(Zr)	15	Zr/33.1	500	H_2O_2	45	50	0.3	1.1	37
${\rm Ti}_6 tbbz_{10}$	10	Ti/12.6	1000	H_2O_2	4	50	729.0	1918.8	This work

Table S9. Comparison of catalytic activities over representative catalysts in the ODS reaction of DBT.

^a TOF = (mole number of converted sulfur) / (mole of active species in catalyst × reaction time (h)),

^b Activity = (millimole number of converted DBT) / (reaction time (h) × dosage of catalyst (g)).

^c Atomic percentage.

21 Catalytic performance of $Ti_6 tbbz_{10}$ clusters in the other oxidation reactions

Substrate	Time	Temperature	Catalyst	Oxidant	Solvent	Conversion ^a		
Benzyl alcohol	00 min	600C	50 m a	H_2O_2	Ethanol	21.20/		
(0.25 mmol)	90 mm	00°C	min ou Joing		(1 mmol)	(10 mL)	51.270	
Cyclohexene	00	(000	50	H_2O_2	Ethanol	47 40/		
(0.25 mmol)	90 min	60°C	50 mg	(1 mmol)	(10 mL)	47.4%		

Table S10. Catalytic performance of Ti_6tbbz_{10} in the other oxidation reactions.

^a Based on substrate.

22 Space-time yields of TOCs

	Yields (g)	Formula weight —	Space-time yields (kg·m ⁻³ ·h ⁻¹)	
			Reference	This work
Ti ₂₉	0.5982	3764.47	-	8.31
Ti ₆ abz ₆	0.7629	1554.68	0.161	14.54
Ti ₆ tbbz ₆	0.2324	1801.20	0.15 ²	3.48
Ti_6tbbz_{10}	1.134	2273.71	0.182	18.84

Table S11. Space-time yields of different TOCs prepared by different methods.

23 References

- 1 K. Hong and H. Chun, *Inorg. Chem.*, 2013, **52**, 9705–9707.
- 2 K. Hong, W. Bak and H. Chun, Inorg. Chem., 2014, 53, 7288–7293.
- 3 M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez and G. Férey, J. Am. Chem. Soc., 2009, 131, 10857–10859.
- 4 J. Castells-Gil, N. M. Padial, N. Almora-Barrios, J. Albero, A. R. Ruiz-Salvador, J. González-Platas, H. García and C. Martí-Gastaldo, *Angew. Chem. Int. Ed.*, 2018, 57, 8453–8457.
- 5 D. Kratzert, J. J. Holstein and I. Krossing, J. Appl. Crystallogr., 2015, 48, 933-938.
- 6 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
- 7 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 8 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 9 J. P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 2007, 111, 11683–11700.
- 10 Y. Chen, E. Trzop, A. Makal, J. D. Sokolow and P. Coppens, *Inorg. Chem.*, 2013, **52**, 4750–4752.
- 11H.-T. Lv, Y. Cui, G.-D. Zou, N. Li, P. Yang and Y. Fan, *Dalton Trans.*, 2019, **48**, 14044–14048.
- 12N. D. McNamara and J. C. Hicks, ACS Appl. Mater. Interfaces, 2015, 7, 5338–5346.
- 13 Y. Zhang, G. Li, L. Kong and H. Lu, Fuel, 2018, 219, 103-110.
- 14S. Smolders, T. Willhammar, A. Krajnc, K. Sentosun, M. T. Wharmby, K. A. Lomachenko, S. Bals, G. Mali, M. B. J. Roeffaers, D. E. De Vos and B. Bueken, *Angew. Chem. Int. Ed.*, 2019, **58**, 9160–9165.
- 15S. Yu, Y. Xiao, Z. Liu, J.-M. Lyu, Y.-L. Wang, Z.-Y. Hu, Y. Li, M.-H. Sun, L.-H. Chen and B.-L. Su, *Chem. Commun.*, 2023, **59**, 1801–1804.
- 16G. Ye, Y. Sun, D. Zhang, W. Zhou, C. Lancelot, A. Rives, C. Lamonier and W. Xu, *Microporous Mesoporous Mater.*, 2018, **270**, 241–247.
- 17G. Ye, Y. Gu, W. Zhou, W. Xu and Y. Sun, ACS Catal., 2020, 10, 2384–2394.
- 18S. Lu, H. Zhong, D. Mo, Z. Hu, H. Zhou and Y. Yao, Green Chem., 2017, 19, 1371-1377.
- 19G. Ye, H. Qi, X. Li, K. Leng, Y. Sun and W. Xu, ChemPhysChem, 2017, 18, 1903–1908.
- 20X. Li, Y. Mao, K. Leng, G. Ye, Y. Sun and W. Xu, *Microporous Mesoporous Mater.*, 2017, **254**, 114–120.
- 21 S.-T. Yang, K.-E. Jeong, S.-Y. Jeong and W.-S. Ahn, *Mater. Res. Bull.*, 2012, 47, 4398–4402.
- 22A. Chica, A. Corma and M. Domine, J. Catal., 2006, 242, 299-308.
- 23C. Shi, W. Wang, N. Liu, X. Xu, D. Wang, M. Zhang, P. Sun and T. Chen, *Chem. Commun.*, 2015, **51**, 11500–11503.
- 24K. Leng, X. Li, G. Ye, Y. Du, Y. Sun and W. Xu, Catal. Sci. Technol., 2016, 6, 7615–7622.
- 25 R. Bai, Q. Sun, Y. Song, N. Wang, T. Zhang, F. Wang, Y. Zou, Z. Feng, S. Miao and J. Yu, *J. Mater. Chem. A*, 2018, **6**, 8757–8762.
- 26S. Yu, Z. Liu, J.-M. Lyu, C.-M. Guo, X.-Y. Yang, P. Jiang, Y.-L. Wang, Z.-Y. Hu, M.-H. Sun, Y. Li, L.-H. Chen and B.-L. Su, *Natl. Sci. Rev.*, 2024, **11**, nwae085.

- 27X. Zhang, J. Zhang, J. Yin, X. Liu, W. Qiu, J. He, W. Jiang, L. Zhu, H. Li and H. Li, Sep. Purif. Technol., 2025, 353, 128289.
- 28 W. Song, D. Wang, X. Yue, C. Jin, Y. Wu, Y. Shi, J. Liu, A. Wu, C. Tian and H. Fu, *Inorg. Chem. Front.*, DOI:10.1039/D4QI02670E.
- 29X. An, X. Gao, J. Yin, L. Xu, B. Zhang, J. He, H. Li, H. Li and W. Jiang, *Chem. Eng. J.*, 2024, **480**, 147879.
- 30J. Zou, S. Wu, Y. Lin, X. Li, Q. Niu, S. He and C. Yang, *Environ. Sci. Technol.*, 2024, **58**, 14895–14905.
- 31 S. Gooneh-Farahani and M. Anbia, J. Ind. Eng. Chem., 2025, 141, 477-488.
- 32Y.-L. Peng, J. Liu, H.-F. Zhang, D. Luo and D. Li, *Inorg. Chem. Front.*, 2018, 5, 1563–1569.
- 33 Y. Xiao, N. Jiang, M. Liao, X. Pi, Z. Zhang, C. Peng, L. Zhang, H. Wu and J. Guo, *ACS Appl. Mater. Interfaces*, 2024, **16**, 63470–63481.
- 34D. Shen, Y. Dai, J. Han, L. Gan, J. Liu and M. Long, Chem. Eng. J., 2018, 332, 563-571.
- 35B. N. Bhadra, M. M. H. Mondol and S. H. Jhung, Sep. Purif. Technol., 2024, 330, 125425.
- 36M. A. Hossain and S. H. Jhung, Fuel, 2024, 372, 132178.
- 37C. M. Granadeiro, S. O. Ribeiro, M. Karmaoui, R. Valença, J. C. Ribeiro, B. de Castro, L. Cunha-Silva and S. S. Balula, *Chem. Commun.*, 2015, 51, 13818–13821.