Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Intelligent Metal Recovery from Spent Li-ion Batteries: Machine Learning Breaks the Barriers of Traditional Optimizations

Shanshan E^a, Bo Niu^b*, Jia Liu^c, Yilin Yuan^b, Jiefeng Xiao^d and Zhenming Xu^e

^a College of Mechanical and Electrical Engineering, Hebei Agricultural University,

Hebei, Baoding 07100, China

^b Key Laboratory of Farmland Ecological Environment of Hebei Province, College of

Resources and Environmental Science, Hebei Agricultural University, Hebei, Baoding 071000, China

^c Xingtai Ecological and Environmental Monitoring Center of Hebei Province, Hebei, Xingtai 054000, People's Republic of China

^d Department of Environmental Science and Engineering, Huaqiao University, Jiemei Road 668, Xiamen 361021, China

^e School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author:

Bo Niu

E-mail: niubo@hebau.edu.cn

The dataset was collected from the following references about roasting integrated with water leaching for metal recovery from spent LIBs:

- J. Priyadarshini, M. Elangovan, M. Mahdal, M. Jayasudha, Machine-Learning-Assisted Prediction of Maximum Metal Recovery from Spent Zinc-Manganese Batteries, Processes, 10 (2022) 1034.
- [2] Y. Tang, X. Qu, B. Zhang, Y. Zhao, H. Xie, J. Zhao, Z. Ning, P. Xing, H. Yin, Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach, Journal of cleaner production, 279 (2021) 123633.
- [3] C. Yang, J. Zhang, Z. Cao, Q. Jing, Y. Chen, C. Wang, Sustainable and Facile Process for Lithium Recovery from Spent LiNi x Co y Mn z O2 Cathode Materials via Selective Sulfation with Ammonium Sulfate, ACS Sustainable Chemistry & Engineering, 8 (2020) 15732-15739.
- [4] Y. Ma, J. Tang, R. Wanaldi, X. Zhou, H. Wang, C. Zhou, J. Yang, A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching, Journal of Hazardous Materials, 402 (2021) 123491.
- [5] T. Lin, Y. Wang, S. Jin, D. Mu, J. Zhang, J. Liang, C. Dai, An enhanced strategy based on the pyrolysis of bean dregs for efficient selective recovery of lithium from spent lithium-ion batteries, Green Chemistry, 24 (2022) 9552-9564.
- [6] T. Lin, Y. Wang, S. Jin, D. Mu, J. Zhang, J. Liang, C. Dai, An enhanced strategy based on the pyrolysis of bean dregs for efficient selective recovery of lithium from spent lithium-ion batteries, Green Chemistry, 24 (2022) 9552-9564.
- [7] C. Liu, H. Ji, J. Liu, P. Liu, G. Zeng, X. Luo, Q. Guan, X. Mi, Y. Li, J. Zhang, An emissionfree controlled potassium pyrosulfate roasting-assisted leaching process for selective lithium recycling from spent Li-ion batteries, Waste Management, 153 (2022) 52-60.
- [8] J. Lin, L. Li, E. Fan, C. Liu, X. Zhang, H. Cao, Z. Sun, R. Chen, Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting, ACS applied materials & interfaces, 12 (2020) 18482-18489.
- [9] E. Fan, L. Li, J. Lin, J. Wu, J. Yang, F. Wu, R. Chen, Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries, ACS sustainable chemistry & engineering, 7 (2019) 16144-16150.

- [10] X. Qu, H. Xie, X. Chen, Y. Tang, B. Zhang, P. Xing, H. Yin, Recovery of LiCoO2 from spent lithium-ion batteries through a low-temperature ammonium chloride roasting approach: thermodynamics and reaction mechanisms, ACS sustainable chemistry & engineering, 8 (2020) 6524-6532
- [11] C. Peng, F. Liu, Z. Wang, B.P. Wilson, M. Lundström, Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, Journal of Power Sources, 415 (2019) 179-188.
- [12] J. Xiao, J. Li, Z. Xu, Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy, Environmental science & technology, 51 (2017) 11960-11966.
- [13] . Hu, J. Zhang, H. Li, Y. Chen, C. Wang, A promising approach for the recovery of high valueadded metals from spent lithium-ion batteries, Journal of Power Sources, 351 (2017) 192-199.
- [14] J. Zhang, J. Hu, W. Zhang, Y. Chen, C. Wang, Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries, Journal of cleaner production, 204 (2018) 437-446.
- [15] A. Zhou, Z. Liu, Z. Liu, Efficient separation of Li and Mn from spent LiMn2O4 cathode materials by NH4HSO4 reduction roasting-selective ammonia leaching, Separation and Purification Technology, 332 (2024) 125561.
- [16] Z. Cun, P. Xing, C. Wang, H. Li, S. Ma, Z. Sun, Q. Wang, X. Guan, Stepwise recovery of critical metals from spent NCM lithium-ion battery via calcium hydroxide assisted pyrolysis and leaching, Resources, Conservation and Recycling, 202 (2024) 107390.
- [17] D. Wei, W. Wang, L. Jiang, Z. Chang, H. Lei, M. Zhang, H. Anwar, M. Liu, M.A. Hassan, B. Dong, Preferential lithium extraction and regeneration of LiCoO2 cathodes from spent lithiumion batteries via two-step (NH4) 2SO4 roasting approach, Separation and Purification Technology, 335 (2024) 126168.
- [18] X. Qu, J. Ma, B. Zhang, J. Zhao, B. Qiu, X. Chen, F. Zhou, X. Li, S. Gao, D. Wang, Fast ammonium sulfate salt assisted roasting for selectively recycling degraded LiFePO4 cathode, Journal of Cleaner Production, 435 (2024) 14042.
- [19] Y. Zha, Y. Li, Z. Fei, C. Fan, Q. Meng, X. Peng, P. Dong, Leaching Li from mixed cathode

materials of spent lithium-ion batteries via carbon thermal reduction, Dalton Transactions, 53 (2024) 5592-5600.

- [20] F. Su, Q. Meng, X. Liu, W. Yang, Y. Chen, J. Yang, J. Tang, H. Wang, Y. Ma, X. Zhou, Recovery of valuable metals from spent lithium-ion batteries via zinc powder reduction roasting and cysteine leaching, Science of The Total Environment, 912 (2024) 169541.
- [21] Y. Liu, X. Zhang, W. Ma, Q. Zhao, Z. Liang, Research on the recycling of waste lithium battery electrode materials using ammonium sulfate roasting, Materials Chemistry and Physics, 318 (2024) 129221.

Fig. S1 The multiple influencing factors on the metal recovery from spent LIBs

Figure S2 Box plots representing the descriptive statistics of the data for the other 6 features.

Figure S3 Scatter plot of predicted leaching efficiency of Co by four ML algorithms

Figure S4 Scatter plot of predicted leaching efficiency of Mn by four ML algorithms

Figure S5 Scatter plot of predicted leaching efficiency of Ni by four ML algorithms

Figure S6 Partial dependence plots for waste property impacted Li leaching

Figure S7 Partial dependence plots for waste property impacted Co leaching

Figure S8 Partial dependence plots for roasting and water-leaching impacted Co leaching

Figure S9 Partial dependence plots for waste property impacted Mn leaching

Figure S10 Partial dependence plots for roasting and water-leaching impacted Mn leaching

Figure S11 Partial dependence plots for waste property impacted Ni leaching

Figure S12 Partial dependence plots for roasting and water-leaching impacted Ni leaching

	-
Additive type	Labeled values
NH4Cl	53.5
NH4HSO4	115
$(NH_4)_2SO_4$	132
H_2SO_4	98
HNO ₃	63
graphite	12
Ca(OH) ₂	74
$K_2S_2O_7$	254
Zn	56
Lignite	1.1
Bean dregs	2
Atmosphere	
Air	1
Inert gas	2
Vacuum	3

Table S1 The labeled values for the additives and roasting atmosphere used for

machine learning

Note: These labeled values do not impact the machine learning results but rather

facilitate the identification of these input features.

Cathode powder	Particle size	Composition (wt%)				
	(um)	Li	Co	Mn	Ni	
1-LiCoO ₂	~50	6.21	53.42	0.09	0.08	
1-LiMn ₂ O ₄	~50	3.96	0.08	48.7	0.06	
1-LiNi _x Mn _y Co _z O ₂	~50	6.37	19.58	20.18	19.34	
2-LiCoO ₂	~50	6.41	52.35	-	-	
	~100	6.36	51.83	-	-	
$2-LiNi_xMn_yCo_zO_2$	~50	6.25	21.24	21.37	20.88	
	~100	6.28	21.59	20.86	21.11	
3-LiCoO ₂	~50	6.73	57.15	-	-	
	~100	6.69	56.97	-	-	
3-LiNi _x Mn _y Co _z O ₂	~50	6.97	17.61	18.52	21.33	
	~100	7.02	17.42	18.73	20.14	

Table S2 The compositions of waste feed

Note: the 1, 2 and 3 (such as 1- LiCoO₂, 2-LiCoO₂, 3-LiCoO₂ and 3-LiNi_xMn_yCo_zO₂)

repent different commercial LIBs from different companies.

Table S3 The experimental roasting and water-leaching parameters were set according to the GUI

Waste feed	Additive	Mass ratio	Roasting	Roasting	Atmosphere	Leaching	Leaching	Pulp	CO ₂
		of additive	temperature	time		temperature	time (min)	density	flow rate
		to waste	(°C)	(min)		(°C)		(g/L)	(ml/min)
1-LiCoO ₂ (50 um)	graphite	0.25	700	180	vacuum	25	120	25	30
	NH ₄ Cl	4.0	350	30	air	25	30	150	0
1-LiMn ₂ O ₄	graphite	0.25	700	30	vacuum	25	60	50	30
	NH ₄ Cl	3.6	350	30	air	25	30	150	0
1-LiNi _x Mn _y CoO ₂	graphite	0.25	750	180	vacuum	25	20	25	30
	NH ₄ Cl	3.8	350	25	air	25	120	160	0
2-LiCoO ₂	graphite	0.28	700	150	vacuum	25	30	30	25.5
~100 um	graphite	0.28	700	150	vacuum	25	30	30	25.5
~100 um	NH ₄ Cl	4.0	300	20	air	25	30	170	0
2-LiNi _x Mn _y Co _z O ₂	graphite	0.5	680	100	vacuum	25	30	30	30
~100 um	NH ₄ Cl	3.8	375	30	air	25	30	200	0
3-LiCoO ₂	graphite	0.25	700	100	vacuum	25	30	25	30
~100 um	NH ₄ Cl	4.0	320	20	air	30	20	250	0
3-LiNi _x Mn _y Co _z O ₂	graphite	0.5	680	100	vacuum	25	30	30	30
~100 um	NH ₄ Cl	3.5	300	30	air	30	30	250	0

Note: for the waste feed, the particle sizes are all \sim 50 um except the sample marked as (100) with \sim 100 um.

		during		
Optimizing	Parameter	NH ₄ Cl	Electric energy	Leaching waste
parameters	values	consumption (g)	(kW•h)	water production
				(mL)
^a NH ₄ Cl (g)	5	5	2	60
	10	10	2	60
	15	15	2	60
	20	20	2	60
	25	25	2	60
^b Roasting	300	20	2	60
temperature (°C)				
	350	20	2	60
	400	20	2	60
	450	20	2	60
	500	20	2	60
^c Roasting time	10	20	0.7	60
(min)				
	20	20	1.3	60
	30	20	2	60
	60	20	4	60
	90	20	6	60
Total	-	275	34	900
ML (only one-	-	20	1.3	52
time experiment)				

Table S4 The comparison with the traditional optimization and ML approach about

 the consumption of chemicals and electric energy and the production of waste water

Note: we take the roasting of one type of spent $LiCoO_2$ (5 g) with NH₄Cl followed by water leaching as a typical example. The $LiCoO_2$ was chosen as the sample in **Table S2** of 2-LiCoO₂ with the particle size ~100 um. During the traditional optimization, we considered the NH₄Cl additive amount, roasting temperature, and roasting time as the required optimizing parameters, while the water leaching process was controlled as the

leching temperature of 25 °C, pulp density of 150 g/L, and leaching time of 30 min. The power of the Muffle furnace used for the roasting process was 4 kW. The marked blue superscripts a, b, and c represent controlling other parameter values. **a**: roasting temperature of 400 °C, roasting time of 30 min; **b**: NH₄Cl additive amount of 20 g, roasting time of 30 min; **c**: roasting temperature of 300 °C, NH₄Cl additive amount of 20 g. After the roasting process under different conditions (as listed in **Table S3**), the mass of products (LiCl, CoCl₂, and residual LiCoO₂) was about 6~8.8 g. Then, the water-leaching process was conducted. Since the pulp density of 150 g/L, the added H₂O amount was 40~60 mL. Since most of the mass of products after roasting was distributed around 8.8 g, we chose the water-adding amount as 60 mL. Therefore, after each water leaching, the production amount of wastewater was about 60 mL. The GUI based on machine learning provided the parterres of NH₄Cl additive amount of 20 g, roasting temperature of 300 °C, roasting time of 20 min, leching temperature of 20 g.