Supplementary Materials

Cytoplasm-peroxisomal spatial combination engineering in *Candida tropicalis* for enhanced terpenoid production

Lihua Zhang^{a,b,#}, Cheng Fan^{a,#}, Haibing Zhang^a, Manzhi Zhu^a, Haiquan Yang^a, Yuanyuan Xia^a,

Wei Shen^a, Xianzhong Chen^{a,*}

^aKey Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology,

Jiangnan University, Wuxi, 214122, China

^bCollege of Life Science, Xinyang Normal University, Xinyang, 464000, China

[#]These authors contributed equally to this work.

*Correspondence author.

E-mail addresses: xzchen@jiangnan.edu.cn

Fig. S1. The workflow for the construction of yeast strains for β -carotene production. (A) Flowchart for the construction of β -carotene synthetic pathway in different subcellular compartments. (B) Flowchart for the construction of strain CPP-07. Green box represents the

transformant obtained by expressing genes in the cytoplasm of the former strain. Black box represents the transformant obtained by expressing genes in mitochondria of the former strain. Orange box represents the transformant obtained by expressing genes in peroxisome of the former strain. The blue text in box represents expressed one copy of the cassette. The black text in box represents expressed double copies of the cassette.

Fig. S2. The workflow for the construction of the major yeast strains for miltiradiene and α humulene production. Green box represents the transformant obtained by expressing genes in the cytoplasm of the former strain. Orange box represents the transformant obtained by expressing genes in peroxisome of the former strain. The blue text in box represents expressed one copy of the cassette. The black text in box represents expressed double copies of the cassette.

Fig. S3. Confirmation of different peroxisomal targeting signals in *C. tropicalis* with green **fluorescence protein as a reporter.** Control represents a transformant expressed the yeGFP3 without target signal (*C. tropicalis* 05-3 [1]). *Ct*ICL, PTS1, ePTS1, *Bn*ICL, POX4-A, POX4-B, and *Ct*ERG10 represent transformants expressed yeGFP3-*Ct*ICL, yeGFP3-PTS1, yeGFP3-ePTS1, yeGFP3-*Bn*ICL, POX4-A-yeGFP3, POX4-B-yeGFP3 fusion protein, respectively. IDP2-yeGFP3 and yeGFP3-IDP2 represent transformants expressed *Ct*IDP2 and yeGFP3 in different order. All the gene was expressed under the control of the *GAP1* promoter and terminator, and the expression cassette was integrated into the *CAT* locus as described previously [2]. PTS1, the typical

peroxisomal targeting signal type 1 which consists of Ser-Lys-Leu (SKL); ePTS1, enhanced PTS1 (LGRGRR-SKL) [3]; *Ct*ICL, the C-terminal region of *C. tropicalis* isocitrate lyase; *Ct*ERG10, the C-terminal region of *C. tropicalis* acetoacetyl-CoA thiolase; *Bn*ICL, the C-terminal region of *Brassica napus* isocitrate lyase [4]; *Ct*IDP2, *C. tropicalis* isocitrate dehydrogenase [5]; POX4-A and POX4-B, amino acids 1-118 and 309-427 from *C. tropicalis* acyl-CoA oxidase respectively [6]. The pictures were observed using a Confocal Laser Scanning Microscope Leica TCS SP8 (Leica Microsystems, Germany) (10×63).

Fig. S4. Confirmation of mitochondrial targeting signals in *C. tropicalis* **with yeGFP3 as a reporter.** Control represents a transformant expressed the yeGFP3 without target signal (*C. tropicalis* 05-3). *Ct*IDP1, *Sc*COX4, and *Ct*COX4 represent transformants expressed *Ct*IDP1-yeGFP3, *Sc*COX4-yeGFP3, and *Ct*COX4-yeGFP3 fusion protein, respectively. Mitochondria (red) were counterstained with Mito-Tracker Red CMXRos (Beyotime, China). The pictures were observed using a Confocal Laser Scanning Microscope Leica TCS SP8 (10×63).

Fig. S5. Investigation of the subcellular localization of enzymes of the β-carotene pathway. (A) Investigation of the subcellular localization of fusion proteins GFP-CarB and GFP-CarRP in *C. tropicalis.* (B) Investigation of the subcellular localization of fusion proteins ERG10-GFP-ePTS1, ERG13-GFP-ePTS1, tHMGR-GFP-ePTS1, ERG12-GFP-ePTS1, ERG8-GFP-ePTS1, ERG19-GFP-ePTS1, IDI1-GFP-ePTS1, ERG20-GFP-ePTS1, BTS1-GFP-ePTS1, GFP-CarB-

ePTS1, and GFP-CarRP-ePTS1 in *C. tropicalis*. Control represents *C. tropicalis* 05-3. The pictures were observed using a Nikon Eclipse 80i microscope (10×40).

Fig. S6. Compartmentalization of β -carotene pathway into peroxisome results in a lower titer of lycopene. (A) HPLC spectra of lycopene, β -carotene, and their standards. (B) The lycopene titer difference in the strain CCC-D, PPP-D and CU-207. Data are means values \pm standard deviations of biological triplicates.

Fig. S7. The effect of MI and MII genes overexpression on cell growth, metabolic intermediates change, squalene and ergosterol production. (A) Growth curve of *C. tropicalis* CC-D03, MM-D03, PP-D03, and the control strain CU-207. (B) Analysis of the metabolic intermediates levels in engineered strains CC-D03. (C) Squalene and ergosterol production of engineered strains CC-D03, MM-D03, PP-D03, CCC-D, MMM-D, PPP-D, and the control strain CU-207. Data are means values \pm standard deviations of biological triplicates. n.s., no significance, * for *p*<0.05, *** for *p*<0.01, *** for *p*<0.001.

Fig. S8. Effect of deletion of *PEX5* **gene on β-carotene production.** Strains were cultivated in a

250 mL shake flask containing 15 mL YPD60 medium for 3 d.

Fig. S9. β-Carotene titer and content depended on the glucose concentration in the medium. YPD20, YPD40, YPD60, YPD80, and YPD100 represent modified YPD medium with 20, 40, 60, 80, and 100 g/L of glucose, respectively. Data are means values \pm standard deviations of biological triplicates.

Fig. S10. Analysis of the metabolic intermediate levels in engineered strains CPP-D. Data are

mean values \pm standard deviations of biological triplicates.

Fig. S11. The effect of expressing genes *carB* and *carRP*, *ERG20* and *BTS1* on β -carotene production in the strain CPP-D. CPP-1 represents a transformant expressed double copies of *ERG20* and *BTS1* in the peroxisome of CPP-D, CPP-2 represents a transformant expressed double copies of *carB* and *carRP* in the peroxisome of CPP-D. Data are means values \pm standard deviations of biological triplicates.

Fig. S12. GC-MS analysis of miltiradiene in *C. tropicalis*. (A) Gas chromatography profile of miltiradiene produced by strain MIL-01 (retention time 17.99 min). (B) Mass spectrum of miltiradiene produced by strain MIL-01 (MW = 272). (C) Miltiradiene production by *C. tropicalis* expressing genes *CfTPS1* and *SmKSL1* in the cytoplasm. (D) Mass spectrum of miltiradiene standard (MW = 272) [7].

Fig. S13. Fed-batch fermentation of strain CPP-07 to produce β -carotene. (A) Fermentation profiles of the strain CPP-07 for β -carotene. The black arrow indicates the start of glucose concentration control. (B) Appearance of the fermentation broth for β -carotene (the ninth day).

Fig. S14. Production of β-carotene. (A) Chemical synthesis of β-carotene (Roche synthesis, and BASF synthesis) [8, 9]. (B) Process scheme of β-carotene production by *C. tropicalis*. (C) Extraction of β-carotene from bio-sources. (D) Advantages and disadvantages of different methods to produce β-carotene [10]. ^a*E*-factor for the chemical synthesis of fine chemicals [11], ^b*E*-factor associated with the production of β-carotene via the plant extraction method from carrot, estimated based on a β-carotene content of 190 µg/g of dry weight, ^c*E*-factor for β-carotene production utilizing *C. tropicalis* CPP-07, estimated from data obtained from a 5-L fermenter.

Table S1. Primers used in this study

Primer name	Sequence (5' to 3')
SKL-F	GTATGGATGAATTGTACAAATCCAAGTTGTAACTATCCAACAAACTCT
	AGG
SKL-R	CCTAGAGTTTGTTGGATAGTTACAACTTGGATTTGTACAATTCATCCA
	TAC
CtICL-F	GTATGGATGAATTGTACAAAACTGAAGACCAATTCAAGGATAACAAA
	GCTAAGGTTTAACTATCCAACAAACTCTAGG
CtICL-R	CCTAGAGTTTGTTGGATAGTTAAACCTTAGCTTTGTTATCCTTGAATTG
	GTCTTCAGTTTTGTACAATTCATCCATAC
ePTS-F	GTATGGATGAATTGTACAAATTGGGTAGAGGTAGAAGATCCAAGTTG
	TAACTATCCAACAAACTCTAGG
ePTS-R	CCTAGAGTTTGTTGGATAGTTACAACTTGGATCTTCTACCTCTACCCA
	ATTTGTACAATTCATCCATAC
POX4A-F	CAATTAAAGAATTTAAACAATGACTTTTACAAAGAAAAACGTTAGT
POX4A-R	AATTCTTCACCTTTAGACATAGAACCACCACCACCGACACCAATTCTG
	GTACCG
POX4B-F	CAATTAAAGAATTTAAACAATGAGAATGTTGGCTAGAATGTCC
POX4B-R	AATTCTTCACCTTTAGACATAGAACCACCACCACCACATTGGTCAATG
	GCTTCAGC
PERG10-F	TGGATGAATTGTACAAAGGTGGTGGTGGTGGTTCTATGGCTCTCCCACCAG
	TCTACAT
PERG10-F	CTAGAGTTTGTTGGATAGTTACAACTTGGCGTCGGCGTC
IDP2-CF	GTATGGATGAATTGTACAAAGGTGGTGGTGGTGGTTCTATGGGCGAAATTC
	AGAAAAT
IDP2-CR	CCTAGAGTTT GTTGGATAGT CTAGTAGCCCAAGTTTTTGTTC
IDP2-NF	CAATTAAAGAATTTAAACAATGGGCGAAATTCAGAAAATA
IDP2-NR	AATTCTTCACCTTTAGACATAGAACCACCACCACCGTAGCCCAAGTTT
	TTGTTC
YURA3-F	ACGCGTGATTGTTTCCTTTGTTGATTG
YURA3-R	ACGCGTAAGTTCGGGTTTAATAAGTT
rURA3-F	AACTGCAGGTTGTACCCGTCGTTAGAGTA
rURA3-R	GCTCTAGACTTCTGCACTTTTGAAATCGGGT
ANT1-F	TCAATTAAAGAATTTAAACAATGTCACTTTCACCAATAGAA
ANT1-R	TACCTCTTTGCAGAAAACTCACTTTAACGACTTTATAGACTT
SmKSL1-F	ATCTACAAATCATCCAACAGCCACCATGTCCTTGGCTTTCAACCCT
SmKSL1-R	TAGAATAAATATTTCTGATCTACTTACCTCTAACGTTGTTAGCAACCA
	ATG
CfTPS1-F	TCAATTAAAGAATTTAAACAGCCACCATGGGTTCCTTGTC
CfTPS1-R	TACCTCTTTGCAGAAAACTTAAGCAACAGGTTCGAACAAA
ACHS2-F	ATCTACAAATCATCCAACAATGTCCCCAGCTCAAGCTC
ACHS2-R	CCACCAATTTCAGTACACCTAAATGGTGAATGGGTGGACCAACAA

Table 52. Flashing used in this study	Table S2	. Plasmids	used in	this	study
---------------------------------------	----------	------------	---------	------	-------

Plasmid name	Characteristics	Source
Ts-CAT1-gda324-URA3-PGAP1-	The plasmid harboring cassette CAT1-	Lab
yeGFP3-T _{GAP1}	gda324-URA3-PGAP1-yeGFP3-TGAP1-CAT1	stock
Ts-CAT1-gda324-URA3-PGAP1-	The plasmid harboring cassette CAT1-	Lab
yeGFP3-PTS1-T _{GAP1}	gda324-URA3-PGAP1-yeGFP3-PTS1-TGAP1-	stock
	CAT1	
Ts-ALD1-gda-URA3-P _{GAP1} -PEX3-	The plasmid harboring cassette ALD1-gda-	Lab
mScarlet-T _{GAP1}	URA3-P _{GAP1} -PEX3-mScarlet-T _{GAP1} -ALD1	stock
Ts-CAT1-gda324-URA3-PGAP1-	The plasmid harboring cassette CAT1-	This
yeGFP3-ePTS1-T _{GAP1}	$gda324$ -URA3- P_{GAP1} -yeGFP3-ePTS1- T_{GAP1} -	study
Ts-CAT1-gda324-URA3-PCARI-	The plasmid harboring cassette CAT1-	This
veGFP3-CtICL-TCAP1	gda324-URA3-PCADI-veGEP3-CtICL-TCADI-	study
	CAT1	study
Ts-CAT1-gda324-URA3-PGAP1-	The plasmid harboring cassette CAT1-	This
yeGFP3-BnICL-T _{GAP1}	gda324-URA3-PGAP1-yeGFP3-BnICL-TGAP1-	study
	CAT1	
Ts-CAT1-gda324-URA3-PGAP1-	The plasmid harboring cassette CAT1-	This
POX4-A-yeGFP3-T _{GAP1}	gda324-URA3-P _{GAP1} -POX4-A-yeGFP3-	study
	T _{GAP1} -CAT1	
Ts-CAT1-gda324-URA3-P _{GAP1} -	The plasmid harboring cassette CAT1-	This
POX4-B-yeGFP3-T _{GAP1}	gda324-URA3-P _{GAP1} -POX4-B-yeGFP3-	study
	T _{GAP1} -CAT1	
Ts-CATT-gda324-URA3-P _{GAP1} -	The plasmid harboring cassette CATI-	This
yeGFP3-ERG10-1 _{GAP1}	gda324-URA3-PGAP1-yeGFP3-CtERG10-	study
Ta CAT1 ada224 UDA2 D	IGAPI-CAII The plasmid horhoring accepts CAT1	This
IS-CATT-gda524-UKA5-PGAP1-	rhe plasmid harboning casselle CATT-	1 IIIS
yeorrs-cubr2-1GAP1	CAT1	study
Ts-CAT1-gda324-URA3-PGAP1-	The plasmid harboring cassette CAT1-	This
CtIDP2-yeGFP3-T _{GAP1}	gda324-URA3-PGAP1-CtIDP2-yeGFP3-TGAP1-	study
	CAT1	-
Ts-CAT1-gda324-URA3-PGAP1-	The plasmid harboring cassette CAT1-	This
CtIDP1-yeGFP3-T _{GAP1}	gda324-URA3-P _{GAP1} -CtIDP1-yeGFP3-T _{GAP1} -	study
	CAT1	
Ts-CAT1-gda324-URA3-P _{GAP1} -	The plasmid harboring cassette CAT1-	This
ScMLS-yeGFP3-T _{GAP1}	gda324-URA3-P _{GAP1} -ScMLS-yeGFP3-T _{GAP1} -	study
Ts-CAT1-gda324-URA3-PCADI-	The plasmid harboring cassette CAT1-	This
CtMLS-veGFP3-T _{CAD1}	oda324-URA3-PGADI-CtMI S-veGFP3-TCADI-	study
	CAT1	Study
Ts-POX5-gda324-URA3-TPGK1-	The plasmid harboring cassette POX5-	This
carB-P _{FBA1} -P _{GAP1} -ERG20-T _{syn7} -	gda324-URA3-T _{PGK1} -carB-P _{FBA1} -P _{GAP1} -	study

T _{ADH2} -BTS1-P _{FBA1} -P _{GAP1} -carRP-	ERG20-T _{syn7} -T _{ADH2} -BTS1-P _{FBA1} -P _{GAP1} -carRP-	
T _{ENO1}	T _{EN01} -POX5	
Ts-FAO1-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette FAO1-	This
ERG13-ScMLS-PFBA1-PGAP1-	gda324-URA3-TPGK1-ERG13-ScMLS-PFBA1-	study
ScMLS-tHMGR-T _{syn7} -P _{GAP1} -	PGAP1-ScMLS-tHMGR-T _{syn7} -PGAP1-ScMLS-	-
ScMLS-ERG10-T _{ENO1}	ERG10-T _{ENO1} -FAO1	
Ts-ALD1-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette ALD1-	This
ERG12-ScMLS-P _{FBA1} -P _{GAP1} -	gda324-URA3-T _{PGK1} -ERG12-ScMLS-P _{FBA1} -	study
ScMLS-ERG8-T _{syn7} -T _{ADH2} -	P _{GAP1} -ScMLS-ERG8-T _{syn7} -T _{ADH2} -ERG19-	-
ERG19-ScMLS-P _{FBA1} -P _{GAP1} -	ScMLS-PFBA1-PGAP1-ScMLS-IDI1-TENO1-	
ScMLS-IDI1-T _{ENO1}	ALD1	
Ts-POX5-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette POX5-	This
carB-ScMLS-P _{FBA1} -P _{GAP1} -ScMLS-	gda324-URA3-TPGK1-carB-ScMLS-PFBA1-	study
ERG20-T7syn-T _{ADH2} -BTS1-	P _{GAP1} -ScMLS-ERG20-T _{syn7} -T _{ADH2} -BTS1-	
ScMLS-PFBA1-PGAP1-ScMLS-	ScMLS-PFBA1-PGAP1-ScMLS-carRP-TENO1-	
carRP-T _{ENO1}	POX5	
Ts-FAO1-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette FAO1-	This
ePTS1-ERG13-P _{FBA1} -P _{GAP1} -	gda324-URA3-T _{PGK1} -ePTS1-ERG13-P _{FBA1} -	study
tHMGR-ePTS1-T _{syn7} -P _{GAP1} -	P _{GAP1} -tHMGR-ePTS1-T _{syn7} -P _{GAP1} -ERG10-	
ERG10-ePTS1-T _{ENO1}	ePTS1-T _{ENO1} -FAO1	
Ts-ALD1-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette ALD1-	This
ePTS1-ERG12-PFBA1-PGAP1-ERG8-	gda324-URA3-TPGK1-ePTS1-ERG12-PFBA1-	study
ePTS1-T _{syn7} -T _{ADH2} -ePTS1-ERG19-	PGAP1-ERG8-ePTS1-Tsyn7-TADH2-ePTS1-	
P _{FBA1} -P _{GAP1} -IDI1-ePTS1-T _{ENO1}	ERG19-P _{FBA1} -P _{GAP1} -IDI1-ePTS1-T _{ENO1} -	
	ALD1	
Ts-POX5-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette POX5-	This
ePTS1-carB-P _{FBA1} -P _{GAP1} -ERG20-	gda324-URA3-T _{PGK1} -ePTS1-carB-P _{FBA1} -	study
ePTS1-T _{syn7} -T _{ADH2} -ePTS1-BTS1-	PGAP1-ERG20-ePTS1-T _{syn7} -T _{ADH2} -ePTS1-	
P _{FBA1} -P _{GAP1} -carRP-ePTS1-T _{ENO1}	BTS1-P _{FBA1} -P _{GAP1} -carRP-ePTS1-T _{ENO1} -POX5	
Ts-DLD1a-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette DLD1a-	Lab
ERG13-PFBA1-PGAP1-tHMGR-Tsyn7-	gda324-URA3-TPGK1-ERG13-PFBA1-PGAP1-	stock
P _{GAP1} -ERG10-T _{ENO1}	tHMGR-T _{syn7} -P _{GAP1} -ERG10-T _{ENO1} -DLD1a	
Ts-DLD1a-gda-URA3-T _{PGK1} -	The plasmid harboring cassette DLD1a-gda-	Lab
ERG12-P _{FBA1} -P _{GAP1} -ERG8-T _{syn7} -	URA3-T _{PGK1} -ERG12-P _{FBA1} -P _{GAP1} -ERG8-	stock
T _{ADH2} -ERG19-P _{FBA1} -P _{GAP1} -IDI1-	T _{syn7} -T _{ADH2} -ERG19-P _{FBA1} -P _{GAP1} -IDI1-T _{ENO1} -	
T _{ENO1}	DLD1a	
Ts-DLD1a-gda-URA3-T _{PGK1} -	The plasmid harboring cassette DLD1a-gda-	This
ePTS1-ERG12-PFBA1-PGAP1-ERG8-	URA3-T _{PGK1} -ePTS1-ERG12-P _{FBA1} -P _{GAP1} -	study
ePTS1-T _{syn7} -T _{ADH2} -ePTS1-ERG19-	ERG8-ePTS1-T _{syn7} -T _{ADH2} -ePTS1-ERG19-	
P _{FBA1} -P _{GAP1} -IDI1-ePTS1-T _{ENO1}	P _{FBA1} -P _{GAP1} -IDI1-ePTS1-T _{ENO1} -DLD1a	
Ts-DLD1a-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette DLD1a-	This
ePTS1-carB-P _{FBA1} -P _{GAP1} -ERG20-	gda324-URA3-T _{PGK1} -ePTS1-carB-P _{FBA1} -	study
ePTS1-T _{syn7} -T _{ADH2} -ePTS1-BTS1-	P _{GAP1} -ERG20-ePTS1-T _{syn7} -T _{ADH2} -ePTS1-	
P _{FBA1} -P _{GAP1} -carRP-ePTS1-T _{ENO1}	BTS1-P _{FBA1} -P _{GAP1} -carRP-ePTS1-T _{ENO1} -	
	DLD1a	

Ts-DLD1b-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette DLD1b-	This
ERG13-P _{FBA1} -P _{GAP1} -tHMGR-T _{syn7} -	gda324-URA3-TPGK1-ERG13-PFBA1-PGAP1-	study
PGAP1-ERG10-TENO1	tHMGR-T _{syn7} -P _{GAP1} -ERG10-T _{EN01} -DLD1b	
Ts-DLD1b-gda324-URA3-TPGK1-	The plasmid harboring cassette DLD1b-	This
NADH-HMGR-PFBA1-PGAP1-	gda324-URA3-TPGK1-NADH-HMGR-PFBA1-	study
ERG10-T _{ENO1}	P _{GAP1} -ERG10-T _{EN01} -DLD1b	
Ts-LPP2-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette LPP2-gda324-	This
ERG12-P _{FBA1} -P _{GAP1} -ERG8-T _{syn7} -	URA3-T _{PGK1} -ERG12-P _{FBA1} -P _{GAP1} -ERG8-	study
T _{ADH2} -ERG19-P _{FBA1} -P _{GAP1} -IDI1-	T _{syn7} -T _{ADH2} -ERG19-P _{FBA1} -P _{GAP1} -IDI1-T _{ENO1} -	
T _{ENO1}	LPP2	
Ts-LPP2-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette LPP2-gda324-	This
ePTS1-ERG12-P _{FBA1} -P _{GAP1} -ERG8-	URA3-T _{PGK1} -ePTS1-ERG12-P _{FBA1} -P _{GAP1} -	study
ePTS1-T _{svn7} -T _{ADH2} -ePTS1-ERG19-	ERG8-ePTS1-T _{syn7} -T _{ADH2} -ePTS1-ERG19-	
P _{FBA1} -P _{GAP1} -IDI1-ePTS1-T _{ENO1}	P _{FBA1} -P _{GAP1} -IDI1-ePTS1-T _{ENO1} -LPP2	
Ts-YURA3-gda324-URA3-PGAP1-	The plasmid harboring cassette YURA3-	This
ANT1-T _{ENO1}	gda324-URA3-PGAP1-ANT1-TENO1-YURA3	study
Ts-POX5-gda324-URA3-TPGK1-	The plasmid harboring cassette POX5-	This
SmKSL1-P _{FBA1} -P _{GAP1} -ERG20-	gda324-URA3-TPGK1-SmKSL1-PFBA1-PGAP1-	study
T _{syn} 7-T _{ADH2} -BTS1-P _{FBA1} -P _{GAP1} -	ERG20-T _{svn7} -T _{aDH2} -BTS1-P _{FBA1} -P _{GAP1} -	
CfTPS1-T _{ENO1}	CfTPS1-T _{FN01} -POX5	
Ts-POX5-gda324-URA3-T _{PGK1} -	The plasmid harboring cassette POX5-	This
ePTS1-SmKSL1-PEBA1-PGAP1-	$gda324-URA3-T_{PGK1}-ePTS1-SmKSL1-P_{FBA1}-$	study
ERG20-ePTS1-T _{svn7} -T _{ADH2} -ePTS1-	PGAP1-ERG20-ePTS1-T _{syn} 7-T _{ADH2} -ePTS1-	j
BTS1-PFBA1-PGAP1-CfTPS1-ePTS1-	BTS1-PFBA1-PGAP1-CfTPS1-ePTS1-TENO1-	
T _{ENO1}	POX5	
Ts-DLD1a-gda324-URA3-TPGK1-	The plasmid harboring cassette DLD1a-	This
ePTS1-SmKSL1-P _{FBA1} -P _{GAP1} -	gda324-URA3-TPGK1-ePTS1-SmKSL1-PERA1-	study
ERG20-ePTS1-T _{syn7} -T _{ADH2} -ePTS1-	PGAP1-ERG20-ePTS1-T _{syn7} -T _{ADH2} -ePTS1-	
BTS1-PEBA1-PGAP1-CfTPS1-ePTS1-	BTS1-PFBA1-PGAP1-CfTPS1-ePTS1-TENO1-	
	DLD1a	
Ts-POX5-gda324-URA3-PGAP1-	The plasmid harboring cassette POX5-	This
ERG20-T _{syn} 7-T _{ADH2} -ACHS2-P _{FBA1}	gda324-URA3-PGAPI-ERG20-Tsyn7-TADH2-	study
	ACHS2-P _{FBA1} -POX5	2000
Ts-POX5-gda324-URA3-PGAP1-	The plasmid harboring cassette POX5-	This
ERG20-ePTS1-T _{svn7} -T _{ADH2} -ePTS1-	gda324-URA3-P _{GAP1} -ERG20-ePTS1-T _{syn7} -	study
ACHS2-PEBA1	T _{ADH2} -ePTS1-ACHS2-P _{FBA1} -POX5	2000
Ts-DLD1a-gda324-URA3-PGAP1-	The plasmid harboring cassette DLD1a-	This
ERG20-ePTS1-T _{sym7} -T _{ADH2} -ePTS1-	$gda324-URA3-P_{GAP1}-ERG20-ePTS1-T_{sum7}$ -	study
ACHS2-P _{FBA1}	T _{ADH2} -ePTS1-ACHS2-P _{FBA1} -DLD1a	

Table S3. Codon-optimized gene sequences, peroxisomal targeting signal sequences, and

mitochondrial	targeting	signals	sequences	used in	this	study
		8				~~~~

Name	Sequences (5'-3')	Source
SmKSL1	ACTAGTGCCACCATGTCCTTGGCTTTCAACCCTGCTGCTACCGC	Salvia
	TTTCTCCGGTAACGGTGCTAGATCTAGAAGAGAAAACTTCCCT	miltiorrhiza
	GTTAAGCACGTTACCGTTAGAGGTTTCCCAATGATTACCAACA	(NCBI
	AGTCCTCCTTCGCTGTTAAGTGTAACTTGACCACTACCGATTTG	Accession
	ATGGGTAAGATTGCTGAAAAGTTCAAGGGTGAAGATTCCAACT	Number:
	TCCCTGCTGCCGCTGCTGTTCAACCTGCTGCTGATATGCCATCC	EF635966.2)
	AACTTATGTATTATCGATACCTTGCAAAGATTGGGTGTTGATAG	
	ATACTTCAGATCCGAAATTGATACCATTTTGGAAGATACCTACA	
	GATTGTGGCAGAGAAAGGAAAGAGCCATTTTCTCCGATACCGC	
	TATTCACGCTATGGCTTTCAGATTGTTGAGAGTTAAGGGTTACG	
	AAGTTTCCTCCGAAGAATTGGCTCCATACGCTGATCAAGAACA	
	CGTTGATTTGCAAACCATTGAAGTTGCTACCGTTATTGAATTGT	
	ACAGAGCTGCTCAAGAAAGAACCGGTGAAGATGAATCCTCCTT	
	GAAGAAGTTGCACGCTTGGACCACTACCTTCTTGAAGCAAAAG	
	TTGTTGACCAACTCCATTCCTGATAAGAAATTGCACAAGTTGGT	
	TGAATACTACTTGAAGAACTACCACGGTATTTTGGATAGAATG	
	GGTGTTAGACAAAACTTGGATTTGTACGATATTTCCTACTACAG	
	AACCTCCAAGGCTGCTAACAGATTCTCTAACTTGTGTTCCGAAG	
	ATTTCTTGGCTTTCGCTAGACAAGATTTCAACATTTGTCAAGCT	
	CAACACCAAAAGGAATTGCAACAATTGCAAAGATGGTACGCTG	
	ATTGTAAGTTGGATACCTTGAAGTACGGTAGAGATGTTGTTAG	
	AGTTGCTAACTTCTTGACCTCCGCTATTATTGGTGATCCTGAAT	
	TGTCCGATGTTAGAATTGTTTTCGCTCAACACATTGTTTTGGTT	
	ACTAGAATTGATGATTTCTTCGATCACAGAGGTTCTAGAGAAG	
	AATCCTACAAGATTTTGGAATTGATTAAGGAATGGAAGGAA	
	GCCTGCTGCTGAATACGGTTCCGAAGAAGTTGAAATTTTGTTCA	
	CCGCTGTTTACAACACCGTTAACGAATTGGCTGAAAGAGCTCA	
	CGCTGAACAAGGTAGATCCGTTAAGGATTTCTTGATTAAGTTGT	
	GGGTTCAAATTTTGTCCATTTTCAAGAGAGAATTGGATACCTGG	
	TCCGATGATACCGCTTTGACCTTGGATGATTACTTGTCCGCTTC	
	CTGGGTTTCCATTGGTTGTAGAATTTGTATTTTGATGTCCATGC	
	AATTCATTGGTATTAAGTTGTCCGATGAAATGTTGTTGTCCGAA	
	GAATGTATTGATTTGTGTAGACACGTTTCCATGGTTGATAGATT	
	GTTGAACGATGTTCAAACCTTCGAAAAGGAAAGAAAAGA	
	CACCGGTAACTCCGTTACCTTGTTATTGGCTGCTAACAAGGATG	
	ATTCCTCCTTCACCGAAGAGGAAGCTATTAGAATTGCTAAGGA	
	AATGGCTGAATGTAACCGTCGTCAATTGATGCAAATTGTTTACA	
	AGACCGGTACCATTTTCCCAAGACAATGTAAGGATATGTTCTTG	
	AAGGTTTGTAGAATTGGTTGTTACTTGTACGCTTCCGGTGATGA	
	ATTCACCTCCCCACAACAAATGATGGAAGATATGAAGTCCTTG	
	GTTTACGAACCATTGACCATTCACCCATTGGTTGCTAACAACGT	

	TAGAGGTAAGTTGGGTAGAGGTAGAAGATCCAAGTTGTAGC	
	TCGAG	
CfTPS1	GTCGACGCCACCATGGGTTCCTTGTCCACCATGAACTTGAACCA	Plectranthus
U U	CTCCCCAATGTCCTACTCCGGTATTTTGCCATCCTCTTCCGCTAA	barbatus
	GGCTAAGTTGTTATTGCCTGGTTGTTTCTCCATTTCCGCTTGGAT	(NCBI
	GAACAACGGTAAGAACTTGAACTGTCAATTGACCCACAAGAAG	Accession
	ATTTCCAAGGTTGCTGAAATTAGAGTTGCTACCGTTAACGCTCC	Number:
	ACCTGTTCACGATCAAGATGATTCCACCGAAAACCAATGTCAC	KF444506.1)
	GATGCTGTTAACAACATTGAAGATCCAATTGAATACATTAGAA	
	CCTTGTTGAGAACCACCGGTGATGGTAGAATTTCCGTTTCCCCA	
	TACGATACCGCTTGGGTTGCTTTGATTAAGGATTTGCAAGGTAG	
	AGATGCTCCTGAATTCCCATCCTCCTTGGAATGGATTATTCAAA	
	ACCAATTGGCTGATGGTTCCTGGGGTGATGCTAAGTTCTTCTGT	
	GTTTACGATAGATTGGTTAACACCATTGCTTGTGTTGTTGCTTT	
	GAGATCCTGGGATGTTCACGCTGAAAAGGTTGAAAGAGGTGTT	
	AGATACATTAACGAAAACGTTGAAAAGTTGAGAGATGGTAACG	
	AAGAACACATGACCTGTGGTTTCGAAGTTGTTTTCCCTGCTTTG	
	TTGCAAAGAGCTAAGTCCTTGGGTATTCAAGATTTGCCATACG	
	ATGCTCCTGTTATTCAAGAAATTTACCACTCTAGAGAACAAAA	
	GTCCAAGAGAATTCCATTGGAAATGATGCACAAGGTTCCAACT	
	TCCTTGTTGTTCTCCTTGGAAGGTTTGGAAAACTTGGAATGGGA	
	TAAGTTGTTGAAGTTGCAATCCGCCGATGGTTCCTTCTTAACCT	
	CCCCATCCTCCACCGCTTTCGCTTTCATGCAAACTAGAGATCCA	
	AAGTGTTACCAATTCATTAAGAACACCATTCAAACCTTCAACG	
	GTGGTGCTCCACACACCTACCCTGTTGATGTTTTCGGTAGATTG	
	TGGGCTATTGATAGATTACAAAGATTGGGTATTTCTAGATTCTT	
	CGAATCCGAAATTGCTGATTGTATTGCTCACATTCACAGATTCT	
	GGACCGAAAAGGGTGTTTTCTCCGGTAGAGAATCCGAATTCTG	
	TGATATTGATGATACCTCCATGGGTGTTAGATTGATGAGAATGC	
	ACGGTTACGATGTTGATCCAAACGTTTTGAAGAACTTCAAGAA	
	GGATGATAAGTTCTCCTGTTACGGTGGTCAAATGATTGAATCCC	
	CATCCCCAATTTACAACTTGTACAGAGCTTCCCAATTGAGATTC	
	CCTGGTGAACAAATTTTGGAAGATGCTAACAAGTTCGCTTACG	
	ATTTCTTGCAAGAAAAGTTGGCTCACAATCAAATTTTGGATAA	
	GTGGGTTATTTCCAAGCACTTGCCTGATGAAATTAAGTTGGGTT	
	TGGAAATGCCATGGTACGCTACCTTGCCAAGAGTTGAAGCTAG	
	ATACTACATTCAATACTACGCTGGTTCCGGTGATGTTTGGATTG	
	GTAAGACCTTGTACAGAATGCCTGAAATTTCCAACGATACCTA	
	CCACGAATTGGCTAAGACCGATTTCAAGAGATGTCAAGCTCAA	
	CACCAATTCGAATGGATTTACATGCAAGAATGGTACGAATCCT	
	GTAACATGGAAGAATTCGGTATTTCTAGAAAAGAGTTGTTAGT	
	TGCTTATTTCTTGGCTACCGCTTCCATTTTCGAATTGGAAAGAG	
	CTAACGAAAGAATTGCTTGGGCTAAGTCCCAAATTATTTCCACC	
	ATTATTGCTTCCTTCTTCAACAACCAAAACACCTCCCCTGAAGA	
	TAAGTTGGCTTTCTTGACCGATTTCAAGAACGGCAACTCCACCA	
	ACATGGCTTTGGTTACCTTGACCCAATTCTTGGAAGGCTTCGAT	

	TGTTCGAACCTGTTGCTTTGGGTAGAGGTAGAAGATCCAAGT	
4 61162	TGTAGGCTAGC	
ACHS2	GAATTCATGTCCCCAGCTCAAGCTCCACAAGTTTCTGCTCCAAC	Aquilaria
	TCAAAAGGCTGCTGATGAAGAAGCTAACAGAAGATCCGCTGGT	crassna (NCBI
	TACCACCCATCCITTIGGGGTGAATTTTTCTTGACTCACTCCICT	Accession
	GGTTACACCAAGTCCGACACTAAGATTCAACAAAAGCACGAAG	Number:
	AATTGAAGCAACAAGTTAGAGGTATGATCTTGGACGCTGCTGC	AMQ67166.1)
	TGATACTTCTCAAAAGTTGGAATTGATCGACGCTGCTTTGAGAT	
	TGGGTGTTGGTTACCACTTCGAAGCTGAAATTCAATCCCAATTA	
	CAAAAGATCCACGGTCAAGGTTCCTTCCACTCTGACTTATATAC	
	TGCTTGTATCTGGTTCAGAGTCTTGAGAGGTCAAGGTTTCACCG	
	TTTCCGCTGATGTTTTCAACATTATGAAGAACAAGGACGGTGGT	
	TTCGAAGCTAGAGATGCTAGAACTTTGTTGTGTGTTTGTACGAAAC	
	TACCCACTTGAGAATCCAAGGTGAACAAGTTTTGGAAGAAGCT	
	CTTGAATTTTCCAGAAAGCAATTAGGTGACTTGTTGGCTGAATT	
	GTCTTCCCCATTGGCTGAATACGTTAACAACTCTTTGGAATTGC	
	CATACCACAAGGGTATGCAAAGATTGGAAGCTAGACAATACAT	
	CCCAATTTACGAATCTTACGCTAACAAGAACGACACCTTGTTGC	
	AATTTGCTAAGTTGGATTTCAACTTGTTGCAAGCTCTTCACCAA	
	TCCGAAATTAGAGAAATTACCAGATGGTGGAAGGACTTGGACT	
	TTAAGGCTAGATTGCCATACGCTAGAGATAGATTGGTTGAATG	
	TTACTTCTGGATCTTGGGTGTTCAATACGAACCACAATACTCCA	
	TTTCTCGTGTTTTCTTGACTAAGGTTATCTCCTTGGCTTCCGTTT	
	TCGATGACACCTACGACATTTACGGTACTTTCGATGAATTGAAG	
	TTGTTGACTGACGCTGTTGAAAGATGGGAACCAGAAGCTACCG	
	ATTCTTTGCCAGGTTACATGCAAATTTTGTACGGTGCTTTGTTG	
	AAGGTTTTCGAAGAATACAAGGACGAATTGATCAACGCTGGTG	
	GTAGAGATTACTGTTTGTACTACGCTAAGGAAGCTATGAAGGG	
	TTTGGTTAGATCCTACCACACCGAAGCTGTTTCTTTCCACACTG	
	GTTACGTTCAAAACTTCGAAGAATATTTGGACAACTCCGCTGTT	
	TCTTCTGGTTACCCAATGTTGACTGTTGAAGCTCTTATTGGTAT	
	GGGTGCTCCATACGCTACTAGAGAATCTTTGGACTGGGCTTTGA	
	AGGTTCCAAAGATTATTAAGGCTTCCTCTGACATTTGTAGATTG	
	GTTGACGACTTGAGAACCTACAAGGTTGAAGAAGAAGAAGAGGT	
	GATGCTCCATCCGGTGTTCACTGTTACATGAGAGACTACAACGT	
	TTCTGAAGAAGAAGCCTGTACCAAGATTGAAGAAATGATTGAT	

	TTGGCCTGGAAGGCTATTAACGAAGAAATTCAAAAGCCAAACC ACTTGCCATTGCCAATTTTGTTGCCAGCTTTGAACTTTGCTAGA ATGATGGAAGTTTTGTACCAAAACATCGACGGTTACACCAACT CTGGTGGTAGAACTAAGGAAAGAATTTCCTCTTTGTTGGTCCAC CCATTCACCATT TTGGGTAGAGGTAGAAGATCCAAGTTG TAG GAGCTC	
PTS1	TCCAAGTTG	Typical peroxisomal targeting signal type 1, amino acid sequence: SKL
ePTS1	TTGGGTAGAGGTAGAAGATCCAAGTTG	Enhanced PTS1, amino acid sequence: LGRGRRSKL 3
CtICL	ACTGAAGACCAATTCAAGGATAACAAAGCTAAGGTT	The C-terminal region of <i>C.</i> <i>tropicalis</i> isocitrate lyase, amino acid sequence: TEDQFKDNK AKV (NCBI Accession Number: RCK55682.1)
CtERG1 0	GTCGTTATTGAAAAGATTGACGCCGACGCCAAGTTG	The C-terminal region of <i>C</i> . <i>tropicalis</i> acetoacetyl- CoA thiolase A, amino acid sequence: VVIEKIDAD AKL(NCBI Accession Number: D13470.1)
BnICL	TCCAAGGCTTTGGGTAAGGGTGTCACTGAAGAACAATTCAAGG AAACTTGGACTAGACCAGGTGCTGCCGGTATGGGTGCCGGTAC TTCCTTGGTCGTTGCTAAGTCCAGAATG	The C-terminal region of <i>Brassica napus</i> isocitrate lyase (NCBI

		Accession Number: NP_00130277 5.1)
<i>Ct</i> IDP2	ATGGGCGAAATTCAGAAAATAACAGTCAAGAACCCAATCGTCG AAATGGACGGTGACGAAATGACCCGTATCATCTGGCAATTCAT CAAAGACAAGTTGATCTTGCCTTACTTGAATGTCGACTTGAAAT ACTACGACTTGGGCATTGAGTACAGAGACAAGACCGACGACAA GGTCACCACCGATGCTGCTGAAGCCATCTTGCAATATGGTGC GGTGTCAAGTGTGCCACCATCACCCCAGATGAAGCCAGAGTTA AAGAATTCAACTTGAAGAAGATGTGGCTCTCTCCAAACGGTAC ATTGAGAAACGTCATTGGCGGTACTGTCTTTAGAGAACCAATT GTCATTGACAACATCCCAAGAATTGTGCCTAGCTGGGAAAAAC CAATCATCATTGGTAGACACGCTTTCGGCGACCAATACAAGGC CACCGATGTGGTTATCCCAGCTGCCGTGACTTGAAATTGGTGT TCAAGCCAAAAGACGGCGGCGAAGTACAAGAATTCCCAGTCTA CCAGTTCGACGGTCCAGGTGTCGCCTTGAGAATTCCCAGTCTA CCAGTTCGACGGTCCAGGTGTCGCCTTGAAAATTCCCAGTCTA CCAGTTCGACGGTCCAGGTGTCGCCTTGAAAATTCCCAGTCTA CCAGTTCGAACAGTCCAGGTGTCGCCTTGAAAATTCCCAGTCTA CCAGTTCGACGGTACAAGACTTGTTTCTTCCACCAAAAACACCC GACGCTTCAATTACTGATTTGACTGAAAGCCTCTTCCAATTAGC CATTGAAGAAATACGACGGGGGAAATTCAAAGACATATTCGAAGG CTTGTACGCCAGCAAATACAAGACCAAGATGGACGAATTGGGC ATCTGGTACGAGCACAGATGAATGACCAAGATGGACGAATTGGGC ATCTGGTACGAGCACAGATTGATTGACTATCGCCAGAAAACTA CGATGGTGATGTCCAATCCGACATTGTTCCCCAGACGGCAAG GCTTTTGAGTCCAAACCCCTCTGTTTTAGTTACCCCAGACGGCAAG GCTTTTGAGTCCAAACCCCTCTGTTTTAGTTACCCCAGACGGCAAG GCTTTTGAGTCCAAACCCCAGGCAAATGCCCCCCACGAACTCCCACTA TAGACAACACCAACAAGGCCAAAGAGACCTCCACCAACTCCATT GCCTCCATCTACGCCTGGACCAGGGTACTGTCACTAGACATTA TAGACAACACCAACAAGGCAAAGAGACCTCCACCAACACCATT GGAAAAGGCTGTCATCGGCCTGGACCAGGGTAAGACCACATCATG GGAAAAGCCTGCCCAGGAACTGTCCCAAGGACAACATCATG GCACCATCTACGCCTGGACCAGGGTAAGACCCCAACACCCATT GCAAAGCCTGCCAAGCCCCACGGTACTGTCCAAAGAGGTA AGTTGGATGACACTCCGGAAGTTGTCCAAAGAGACCACACCTCCATT GCAAAGGCTGTCATCGAGACTCCAAGGGTAAGACCACACACCAGG CTTAAAGACTTGCGCCTGGACCAGGGTAGACCACACACCACATCATG ACTAAAGACTTGCGACTCCGGAAGTTGCCCAAGGACAACATCATG ACTAAAGACTTGCCAACCACACAGGCTAAGGCTAAGACCGCCCACGGCAAGGTTGACCAACACCACACACA	C. tropicalis (NCBI Accession Number: 013294.3)
DOMAA	ATTGAACAAAAACTTGGGCTACTAG	
POX4-A	ATGACTTTTACAAAGAAAAACGTTAGTGTATCACAAGGTCCTG ACCCTAGATCATCCATCCAAAAGGAAAGG	The N-terminal region (amino acids 1-118) of <i>C. tropicalis</i> acyl-CoA oxidase (NCBI Accession Number: M12160.1)
POX4-B	AGAATGTTGGCTAGAATGTCCACCATTGCCTTGAGATACGCCA TTGGTAGAAGACAATTCAAGGGTGACAATGTCGATCCAAAAGA TCCAAACGCTTTGGAAACCCAATTGATAGATTACCCATTGCACC AAAAGAGATTGTTCCCATACTTGGCTGCTGCCTACGTCATCTCC	The middle region (amino acids 309-427) of <i>C. tropicalis</i>

	GCTGGTGCCCTCAAGGTTGAAGACACCATCCATAACACCTTGG	acyl-CoA
	CTGAATTGGACGCTGCCGTTGAAAAGAACGACACCAAGGCTAT	oxidase (NCBI
	CTTTAAGTCTATTGACGACATGAAGTCATTGTTTGTTGACTCTG	Accession
	GTTCCTTGAAGTCCACTGCCACTTGGTTGGGTGCTGAAGCCATT	Number:
	GACCAATGT	M12160.1)
ScMLS	ATGTTATCCTTAAGACAATCTATTAGATTCTTTAAGCCAGCTAC	The N-terminal
	TAGAACCTTATGTTCTTCCAGATACTTGTTGCAA	region (amino
		acids 1-26) of
		S. cerevisiae
		cytochrome c
		oxidase (NCBI
		Accession
		Number:
		NP_011328.1
)
<i>Ct</i> MLS	ATGCTTTCCCGTACCACTTTAAGAGTTGCCAGACAACAAACCA	The N-terminal
	GATTATTGTCTACTTCCAGAATCTTGTTCAACAGCAAGACCGAC	region (amino
	CAA	acids 1-30) of
		C. tropicalis
		cytochrome c
		oxidase (NCBI
		Accession
		Number:
		RCK67380.1
)
CtIDP1	ATGATCAGAGCTAGTGCTATCCAACGTACCGCAATGTTGCTGA	The N-terminal
	GACAATTGCGCGGGTTTTCGACCAGTGCTACCTTGGCC	region (amino
		acids 1-27) of
		C. tropicalis
		isocitrate
		dehydrogenase
		(NCBI
		Accession
		Number:
		AB004556.1)

Note: The chemical base bold represents ePTS1.

References

 Zhang, L.H., et al., Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous *GFP* genes in *Candida tropicalis*. Applied Microbiology and Biotechnology, 2016. 100(22): 9567-9580.

- 2. Zhang, L.H., et al., Engineering the oleaginous yeast *Candida tropicalis* for alphahumulene overproduction. Biotechnology for Biofuels and Bioproducts, 2022. **15**(1): 59.
- DeLoache, W.C., Z.N. Russ, and J.E. Dueber, Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nature Communications, 2016.
 7: 11152.
- Mittendorf, V., et al., Synthesis of medium-chain-length polyhydroxyalkanoates in arabidopsis thaliana using intermediates of peroxisomal fatty acid beta-oxidation. Proceedings of the National Academy of Sciences of the United States of America, 1998.
 95(23): 13397-402.
- 5. Kawachi, H., et al., Gene analysis of an NADP-linked isocitrate dehydrogenase localized in peroxisomes of the *n*-alkane-assimilating yeast *Candida tropicalis*. European Journal of Biochemistry, 1997. **250**(1): 205-211.
- Small, G.M., L.J. Szabo, and P. Lazarow, Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. The EMBO Journal, 1988. 7(4): 1167-1173.
- Hu, T., et al., Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metabolic Engineering, 2020. 60: 87-96.
- Ribeiro, B.D., D.W. Barreto, and M.A.Z. Coelho, Technological aspects of β-carotene production. Food and Bioprocess Technology, 2011. 4: 693-701.
- Singh, R.V. and K. Sambyal, An overview of β-carotene production: Current status and future prospects. Food Bioscience, 2022. 47: 101717.

- Wang, L., et al., Biotechnology advances in β-carotene production by microorganisms.
 Trends in Food Science & Technology, 2021. 111: 322-332.
- Sheldon, R.A., The *E* factor at 30: a passion for pollution prevention. Green Chemistry, 2023. 25(5): 1704-1728.