Supporting Information

Photocatalytic hydro-fluorosulfonylation of alkenes with N-fluorosulfonyl aldimines

Xiang Zhou, ‡^{a,c} Sheng-Cai Wang, ‡^a Qi-Long Chen,^a Zi-Yan Zhang,^a Yan-Shi Xiong,^{c*} Gui Lu^a and Jiang Weng^{a,b*}

^{a.} State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China

E-mail: wengj2@mail.sysu.edu.cn

E-mail: xiongys1214@163.com

^{b.} MinistryofEducation Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China

^c School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China.

Table of contents

1. General information	3
2. Experimental procedures and characterization data	3
2.1 General procedure for the preparation of imidosulfonyl fluoride	3
2.2 Characterization data of compounds 2a-2j	3
2.3 Optimization of reaction conditions and general procedure	6
2.4 Experimental procedure for scale-up reactions	10
2.5 Characterization data of compounds 4a-4al	10
2.6 Experimental procedure for synthetic applications	20
3. Mechanism studies	23
3.1 Radical trapping experiments with TEMPO	23
3.2 Radical trapping experiments with 1,1-diphenylethylene	24
3.3 lminyl radical trapping experiment	25
3.4 Stern-Volmer quenching studies	25
4. Green metrics	27
5. Reference	
6. ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR and ³¹ P NMR spectra for compounds	

1. General information

NMR spectra were recorded with Bruker Avance III HD500 and Bruker Avance III HD400 spectrometer at 500 MHz or 400 MHz. All ¹H, ¹⁹F and ¹³C NMR spectra were recorded using CDCl₃ or DMSO-*d*₆ as solvent. Tetramethylsilane (TMS) signals or residual solvent signals were used [TMS $\delta = 0.00$ (¹H NMR), Chloroform-*d* $\delta = 77.16$ (¹³C NMR), DMSO-*d*₆ $\delta = 2.50$ (¹H NMR), 39.52 (¹³C NMR)] as internal standards. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectrometry (HRMS) was performed via electron ionization (EI) or electrospray ionization (ESI) sources or atmospheric pressure chemical ionization (APCI) source. The *m*/*z* ratios are reported in Daltons; high-resolution values are calculated to four decimal places from the molecular formula. All the reactions were monitored by thin layer chromatography (TLC), carried out on 0.25 mm silica gel plates using UV light as visualizing agent. Column chromatography was carried out on silica gel (230-400 mesh). The alkenes were synthesized according to procedures described in the literature.^[1,2,3,4]

2. Experimental procedures and characterization data

2.1 General procedure for the preparation of imidosulfonyl fluoride

Following a modified literature procedure,^[5] aldehyde **1** (12.5 mmol, 1.0 eq) was added to a 10 mL Schlenk tube equipped with a magnetic stir bar under nitrogen atmosphere. FSO₂NCO (FSI, 12.5 mmol, 1.0 eq) was then slowly added while stirring, and the mixture was stirred at room temperature for an additional 30 minutes. The solid product obtained can be used directly or recrystallized from hexane.

2.2 Characterization data of compounds 2a-2j

(E)-(4-fluorobenzylidene)sulfamoyl fluoride (2a)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2a** as light yellow solid (94% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 9.08 (s, 1H), 8.23 - 7.94 (m, 2H), 7.29 (t, *J* = 8.5 Hz, 2H), ¹³C NMR (**101 MHz, Chloroform-***d*) δ 176.00 (d, *J* = 3.8 Hz), 169.48, 166.88, 135.15 (d, *J* =

10.3 Hz), 127.62, 117.46, 117.24, ¹⁹**F NMR (376 MHz, Chloroform-***d*) δ 43.81, -95.07 - -100.30 (m), **HRMS (ESI):** m/z calculated for [C₇H₄F₂NO₂S] [M-H]⁻: 203.9936, found: 203.9938.

(*E*)-(4-bromobenzylidene)sulfamoyl fluoride (**2b**)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2b** as yellow solid (95% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 9.06 (s, 1H), 7.88 (d, *J* = 8.5 Hz, 2H), 7.74 (d, *J* = 8.5 Hz, 2H).¹³C NMR (**101 MHz, Chloroform-***d*) δ 176.49 (d, *J* = 3.8 Hz), 133.31, 133.20, 132.98, 132.50, 131.08, 129.93. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 43.78, HRMS (ESI): m/z calculated for [C₇H₄ClFNO₂S] [M-H]⁻: 263.9136, found: 263.9138.

methyl (E)-4-(((fluorosulfonyl)imino)methyl)benzoate (2c)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2c** as yellow solid (96% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 9.15 (s, 1H), 8.38 - 8.19 (m, 2H), 8.10 (d, *J* = 8.4 Hz, 2H), 3.98 (s, 3H).¹³C NMR (**101 MHz, Chloroform-***d*) δ 176.62 (d, *J* = 4.0 Hz), 165.58, 137.05, 134.42, 132.02, 130.48, 130.20, 129.55, 52.86. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 43.48, HRMS (**ESI**): m/z calculated for [C₉H₇FNO₄S] [M-H]⁻: 244.0085, found: 244.0088.

(E)-(4-nitrobenzylidene)sulfamoyl fluoride (2d)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2d** as brown solid (96% yield). ¹**H NMR (400 MHz, Chloroform-d)** δ 10.17 (s, 1H), 8.44 - 8.35 (m, 2H), 8.14 - 8.00 (m, 2H).¹³**C NMR (101 MHz, Chloroform-d)** δ 190.35 (d, J=2.5 Hz), 151.15, 140.07, 130.50, 124.31. ¹⁹**F NMR (376 MHz, Chloroform-d)** δ 44.73, **HRMS (ESI):** m/z calculated for [C₇H₄FN₂O₄S] [M-H]⁻: 230.9881, found: 230.9885.

(E)-(4-methylbenzylidene)sulfamoyl fluoride (2e)

Following the General procedure for the preparation of imidosulfonyl fluoride, recrystallization using n-hexane yielded **2e** as light yellow solid (95% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.04 (s, 1H), 7.91 (d, *J* = 8.2 Hz,

2H), 7.39 (d, *J* = 8.1 Hz, 2H), 2.50 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 177.33 (d, *J* = 3.3 Hz), 149.29, 132.56, 130.48, 128.66, 22.29. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 43.92, HRMS (ESI): m/z calculated for [C₈H₇FNO₂S] [M-H]⁻: 200.0187, found: 200.0190.

(E)-(4-(tert-butyl)benzylidene)sulfamoyl fluoride (2f)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2f** as light yellow solid (96% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 9.07 (s, 1H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.61 (d, *J* = 8.5 Hz, 2H), 1.37 (s, 9H).¹³C NMR (**101 MHz, Chloroform-***d*) δ 177.28 (d, *J* = 3.6 Hz), 162.04, 132.47, 128.59, 126.78, 35.79, 30.87. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 43.97, HRMS (ESI): m/z calculated for [C₁₁H₁₃FNO₂S] [M-H]⁻: 242.0657, found: 242.0660.

(E)-(2,4,6-trimethylbenzylidene)sulfamoyl fluoride (2g)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2g** as light yellow solid (96% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 9.51 (s, 1H), 7.02 (s, 2H), 2.62 (s, 6H), 2.38 (s, 3H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 175.73 (d, *J* = 3.4 Hz), 147.80, 145.17, 131.26, 125.10, 22.08, 21.86. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 44.23, HRMS (ESI): m/z calculated for [C₁₀H₁₁FNO₂S] [M-H]⁻: 228.0500, found: 228.0505.

(*E*)-(2,4,6-trimethoxybenzylidene)sulfamoyl fluoride (2h)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2h** as light yellow solid (96% yield). ¹**H NMR (400 MHz, Chloroform-***d*) δ 9.43 (s, 1H), 6.08 (s, 2H), 3.93 (s, 9H). ¹³**C NMR (101 MHz, Chloroform-***d*) δ 170.14, 169.87, 165.70, 103.91, 90.62, 56.39, 55.95.¹⁹**F NMR (376 MHz, Chloroform-***d*) δ 44.92, **HRMS (ESI):** m/z calculated for [C₁₀H₁₁FNO₅S] [M-H]⁻: 276.0347, found: 276.0350.

MeO

(E)-(naphthalen-1-ylmethylene)sulfamoyl fluoride (2i)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2i** as light yellow solid (96% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 9.22 (s, 1H), 8.43 (s, 1H), 8.14 - 7.86 (m, 4H), 7.79 - 7.58 (m, 2H).¹³C NMR (**101 MHz, Chloroform-***d*) δ 177.32 (d, *J* = 3.7 Hz), 138.64, 137.46, 132.52,

130.77, 130.01, 129.85, 128.88, 128.29, 127.80, 123.77. ¹⁹**F NMR (376 MHz, Chloroform-***d*) δ 44.01, **HRMS (ESI):** m/z calculated for [C₁₁H₇FNO₂S] [M-H]⁻: 236.0187, found: 236.0190.

(E)-([1,1'-biphenyl]-2-ylmethylene)sulfamoyl fluoride (2j)

Following the **General procedure for the preparation of imidosulfonyl fluoride**, recrystallization using n-hexane yielded **2j** as light yellow solid (91% yield). ¹H NMR (**400 MHz, DMSO-***d*₆) δ 9.08 (s, 1H), 8.30 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.97 – 7.87 (m, 1H), 7.72 – 7.61 (m, 2H), 7.60 – 7.51 (m, 3H), 7.49 (dd, *J* = 7.6, 1.9 Hz, 2H).¹³C NMR (**101 MHz, DMSO-***d*₆) δ 179.18 (d, *J* = 3.6 Hz), 148.76, 137.64, 137.23, 131.69, 130.70, 129.57, 129.17, 128.99, 128.65. ¹⁹F NMR (**376 MHz, DMSO-***d*₆) δ 45.22, HRMS (ESI): m/z calculated for [C₁₃H₉FNO₂S] [M-H]⁻: 262.0344, found: 262.0349.

2.3 Optimization of reaction conditions and general procedure

۰ + 3a	Ar SO ₂ F [Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]I Blue LEDs 12 h, N ₂	PF_6 SO_2F 4a
Entry ^a	NFSAs	Yield(%) ^b
1	2a	23(20) ^c
2	2b	20
3	2c	16
4	2d	15
5	2e	14
6	2f	15
7	2g	18
8	2h	14
9	2i	20
10	2 j	17

Table S1 Investigating the effect of NFSAs

^aGeneral conditions: **3a** (1.0 equiv), **2** (3.0 equiv), [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (1 mol %), CHCl₃ (3 mL), and nitrogen atmosphere, 30 W blue LEDs, 12 h. ^{*b*}Determined by ¹⁹F NMR analysis using PhCF₃ as the internal standard. ^cIsolated yield.

Table S2 Investigating the effect of solvents

+ F	N^{-SO_2F} [Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6 solvent Blue LEDs 12 h, N_2	SO ₂ F
	2a	4a
Entry ^a	solvents	$\operatorname{Yield}(\%)^b$
1	CHCl ₃	$23(20)^{c}$
2	DCM	10
3	MeCN	N.D.
4	DMF	N.D.
5	DMSO	N.D.
6	MeOH	N.D.
7	DCE	10
8	CCl ₄	trace
9	Et ₂ O	N.D.
10	1,3-dioxolane	40
11	Acetone	12
12	THF	20
13	EA	trace

^aGeneral conditions: **3a** (1.0 equiv), **2a** (3.0 equiv), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %), solvent (3 mL), and nitrogen atmosphere, 30 W blue LEDs, 12 h. ^{*b*}Determined by ¹⁹F NMR analysis using PhCF₃ as the internal standard. ^cIsolated yield.

Table S3 Investigating the effect of additives

+ F	N ^{-SO₂F [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ 1,3-dioxolane, additive Blue LEDs 12 h, N₂}	SO ₂ F
За	2a	4a
Entry ^a	additives	$\mathbf{Yield}(\%)^d$
1	MgSO ₄	15
2^b	5 Å MS	18
3	BnSH	19
4	Ph ₃ SiH	39
5	Et ₃ SiH	38
6	(TMS) ₃ SiH	32
7^c	Ph ₃ SiH	27
8^c	Ph(Me) ₂ SiH	28
9^c	(i-Pr) ₃ SiH	35
10^c	(MeO) ₃ SiH	38

11^{c}	CH ₃ Cl ₂ SiH	19
12	Na ₂ CO ₃	60(58) ^e
13	NaHCO ₃	50
14	CH ₃ COONa	50
15	K ₂ CO ₃	40
16	K ₃ PO ₄	13
17	CS ₂ CO ₃	25
18	NaOH	13
19	^t BuOK	N.D.
20	TMG	15
21	DBU	N.D.
22	Pyridine	N.D.
23	Et ₃ N	8
24	DMAP	5

^aGeneral conditions: **3a** (1.0 equiv), **2a** (3.0 equiv), additive (1.0 equiv), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (1 mol %), 1,3-dioxolane (3 mL), and nitrogen atmosphere, 30 W blue LEDs, 12 h. ^{*b*}100 mg 5 Å MS was used. ^{*c*}1.0 equiv. additive was used. ^{*d*}Determined by ¹⁹F NMR analysis using PhCF₃ as the internal standard. ^{*e*}Isolated yield.

Table S4 Investigating the effect of NFSA loading

+ F	N ^{-SO₂F photocatalyst 1,3-dioxolane, Na₂CO₃ Blue LEDs 12 h, N₂}	SO ₂ F
За	2a	4a
Entry ^a	2a loading	Yield $(\%)^b$
1	3.0 e.q.	60(58) ^c
2	2.5 e.q.	52
3	2.0 e.q.	50
4	1.5 e.q.	44
5	1.0 e.q.	34

^aGeneral conditions: **3a** (1.0 equiv), **2a**, Na₂CO₃ (1.0 equiv), [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (1 mol %), 1,3-dioxolane (3 mL), and nitrogen atmosphere, 30 W blue LEDs, 12 h. ^{*b*}Determined by ¹⁹F NMR analysis using PhCF₃ as the internal standard. ^cIsolated yield.

Table S5 Investigating the effect of photocatalyst

	+ <u>1,3-diox</u> F 12	$\begin{array}{c} \text{plane, Na}_2\text{CO}_3 \\ \text{ue LEDs} \\ \text{h, N}_2 \end{array}$	∽SO2E
	3a 2a	4a	I
Entry ^a	Photocatalyst	Photocatalyst loading	Yield(%) ^b
1	$[Ir\{dF(CF_3)ppy\}_2(dtbbpy)]PF_6$	1%	$60(58)^{e}$
2	$[Ir\{dF(CF_3)_2ppy\}_2(bpy)]PF_6$	1%	44
3	$[Ir(ppy)_2(dtbbpy)]PF_6$	1%	10
4	$[Ir{dF(CF_3)ppy}_2(OMe)_2]PF_6$	1%	36
5	$[Ir{dF(CF_3)ppy}_2(Me)_2]PF_6$	1%	50
6	$[Ir{dF(ppy)}_2(dtbbpy)]PF_6$	1%	24
7	4CzIPN	5 mol%	39
8	Mes-Acr ⁺ BF4 ⁻	5 mol%	Trace
9	Thioxanthone	5 mol%	44
10	Eosin B	5 mol%	Trace
11	Eosin Y	5 mol%	Trace
12	$Ru(bpy)_3Cl_2$	1 mol%	44
13	$[Ir{dF(CF_3)ppy}_2(dtbbpy)]PF_6$	0.5%	55
14	[Ir{dF(CF ₃)ppy}2(dtbbpy)]PF ₆	2.5%	48
15	$[Ir{dF(CF_3)ppy}_2(dtbbpy)]PF_6$	5%	40

,_SO₂F

photocatalyst

^aGeneral conditions: **3a** (1.0 equiv), **2a** (3.0 equiv), photocatalyst, 1,3-dioxolane (3 mL), and nitrogen atmosphere, 30 W blue LEDs, 12 h. ^{*b*}Determined by ¹⁹F NMR analysis using PhCF₃ as the internal standard. ^{*c*}Isolated yield.

General procedure for hydro-fluorosulfonylation of alkenes

To a 10 mL Schenk tube equipped with a magnetic stirring bar, Na_2CO_3 (0.1 mmol, 1.0 equiv.), $[Ir\{dF(CF_3)ppy\}_2(dtbbpy)]PF_6$ (1.1 mg, 0.001 mmol, 1 mol%), alkenes (0.10 mmol, 1.0 equiv.), (*E*)-(4-fluorobenzylidene)sulfamoyl fluoride (**2a**) (0.3 mmol, 3.0 equiv.) and 1,3-dioxolane (3 mL) were added, and the tube was backfilled with nitrogen. The Schlenk tube was stirred at room temperature under irradiation of 30 W blue LEDs for 12 h. The solvent was removed under reduced pressure, and then the residue was purified by flash column chromatography (PE/EA= 15:1-5:1) to afford the desired product **4**.

2.4 Experimental procedure for scale-up reactions

The scale-up reaction was prepared by one-pot method. To a flame-dried round-bottom-flask equipped with a magnetic stirring bar, **1a** (3.0 mmol, 3.0 equiv.) and **FSI** (3.0 mmol, 3.0 equiv.) were added into the reaction bottle. The reaction bottle was backfilled with nitrogen and reacted for 30 min at room temperature (pay attention to exhaust during the reaction). After the end of the reaction, added **3b** (1.0 mmol, 1.0 equiv.), $[Ir{dF(CF_3)ppy}_2(dtbbpy)]PF_6(11.2 mg, 0.01 mmol, 1 mol%), Na₂CO₃ (1 mmol, 1.0 equiv.) and 1,3-dioxolane (30 mL). to the reaction bottle and backfill nitrogen again. The reaction mixture was then irradiated with 30 W blue LEDs for 12 h. After the reaction, the solution was purified by flash column chromatography or on silica gel to give the product$ **4b**in 80% yield.

2.5 Characterization data of compounds 4a-4al

4-phenylbutane-1-sulfonyl fluoride (4a)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4a** as colorless oil (58% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.30 (t, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 7.3 Hz, 1H), 7.16 (d, *J* = 7.1 Hz, 2H), 3.42 - 3.30 (m, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.03 - 1.92 (m, 2H), 1.87 - 1.77 (m, 2H).¹³C NMR (**101 MHz, Chloroform-***d*) δ 140.71, 128.60, 128.34, 126.30, 50.76 (d, *J* = 16.3 Hz), 35.06, 29.50, 22.96.¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.57. HRMS (**ESI**): m/z calculated for [C₁₀H₁₂FO₂S] [M-H]⁻: 215.0548, found: 215.0551.

3-(1,3-dioxoisoindolin-2-yl)propane-1-sulfonyl fluoride (4b)

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4b** as yellow solid (74% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 7.87 (s, 2H), 7.77 (d, *J* = 3.0 Hz, 2H), 3.88 (t, *J* = 6.3 Hz, 2H), 3.47 (s, 2H), 2.35 (m, 2H). ¹³C NMR (**101 MHz, CDCl**₃) δ 168.17, 134.42, 131.75, 123.61, 48.72 (d, *J* = 18.2 Hz), 35.78, 23.27. ¹⁹F NMR (**376 MHz, CDCl**₃) δ 53.34 (t, *J* = 4.4 Hz). **HRMS (ESI):** m/z calculated for [C₁₁H₉FNO₄S] [M-H]⁻: 270.0242, found: 270.0246.

5-(1,3-dioxoisoindolin-2-yl)pentane-1-sulfonyl fluoride (4c)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4c** as brown solid (68% yield). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.85 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.72 (t, *J* = 7.0 Hz, 2H), 3.51 - 3.27 (m, 2H), 2.11 - 1.97 (m, 2H), 1.83 - 1.72 (m, 2H), 1.56 (q, *J* = 8.0 Hz, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ 168.41, 134.08, 132.00, 123.31, 50.63 (d, *J* = 16.5 Hz), 37.21, 27.88, 25.11, 22.99. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ 53.43. **HRMS (ESI):** m/z calculated for [C₁₃H₁₄FNO₄SNa⁺] [M+Na⁺]: 322.0520, found: 322.0518.

5-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)pentane-1-sulfonyl fluoride (4d)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4d** as brown solid (61% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 8.20 - 7.77 (m, 4H), 3.81 (t, *J* = 7.1 Hz, 2H), 3.48 - 3.29 (m, 2H), 2.15 - 1.87 (m, 4H), 1.63 (p, *J* = 7.8 Hz, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 159.06, 137.62, 134.89, 134.45, 127.26, 125.23, 120.99, 50.58 (d, *J* = 16.5 Hz), 38.62, 27.60, 24.98, 22.92. ¹⁹F NMR (**377 MHz, Chloroform-***d*) δ 53.51. HRMS (ESI): m/z calculated for [C₁₂H₁₄FNO₅S₂Na⁺] [M+Na⁺]: 358.0190, found: 358.0188.

5-bromopentane-1-sulfonyl fluoride (4e)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4e** as yellow oil (60% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 3.46 - 3.31 (m, 4H), 2.06 - 1.87 (m, 4H), 1.73 - 1.62 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 50.66 (d, *J* = 16.7 Hz), 32.55, 31.76, 26.43, 22.74. ¹⁹F NMR (**377 MHz, Chloroform-***d*) δ 53.66. HRMS (ESI): m/z calculated for [C₅H₉BrFO₂S] [M-H]⁻: 230.9496, found: 230.9500.

decane-1-sulfonyl fluoride (4f)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4f** as yellow oil (57% yield).¹**H NMR (500 MHz, Chloroform-***d***)** δ 3.41 - 3.19 (m, 2H), 2.00 - 1.80 (m, 2H), 1.62 - 1.43 (m, 2H), 1.47 - 1.37 (m, 2H), 1.33 - 1.10 (m, 10H), 1.00 - 0.65 (m, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ 49.90 (d, *J* = 16.8 Hz), 30.81, 28.69, 28.37, 28.16 (d, *J* = 4.8 Hz), 27.79, 26.85, 22.37, 21.63, 13.07.¹⁹**F NMR (377 MHz, Chloroform-***d***)** δ 53.26. **HRMS (ESI):** m/z calculated for [C₁₀H₂₁FO₂SNa⁺] [M+Na⁺]: 247.1138, found: 247.1125.

5-(fluorosulfonyl)pentyl benzoate (4g)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4g** as brown oil (68% yield).¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.06 - 8.00 (m, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 4.35 (t, *J* = 6.3 Hz, 2H), 3.53 - 3.28 (m, 2H), 2.14 - 1.99 (m, 2H), 1.90 - 1.80 (m, 2H), 1.74-1.63 (m, 2H).¹³**C NMR (101 MHz, Chloroform-***d***)** δ 166.56, 133.06, 130.14, 129.54, 128.43, 64.13, 50.72 (d, *J* = 16.6 Hz), 28.11, 24.62, 23.23. ¹⁹**F NMR (377 MHz, Chloroform-***d***)** δ 53.66. **HRMS (ESI):** m/z calculated for [C₁₂H₁₄FO₄S] [M-H]⁻: 273.0602, found: 273.0606.

5-(fluorosulfonyl)pentyl [1,1'-biphenyl]-4-carboxylate (4h)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4h** as brown oil (60% yield). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.14 - 8.02 (m, 2H), 7.72 - 7.65 (m, 2H), 7.65 - 7.59 (m, 2H), 7.52 - 7.44 (m, 2H), 7.43 - 7.34 (m, 1H), 4.37 (t, *J* = 6.3 Hz, 2H), 3.45 - 3.31 (m, 2H), 2.11 - 2.01 (m, 2H), 1.94 - 1.80 (m, 2H), 1.75 - 1.58 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ 166.45, 145.82, 139.96, 130.09, 128.97, 128.86, 128.22, 127.29, 127.12, 64.15, 50.74 (d, *J* = 16.5 Hz), 28.16, 24.65, 23.26. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ 53.68. **HRMS (ESI):** m/z calculated for [C₁₈H₁₉FO₄SNa⁺] [M+Na⁺]: 373.0880, found: 373.0882.

5-(fluorosulfonyl)pentyl 4-fluorobenzoate (4i)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4i** as brown oil (65% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 8.19 - 8.00 (m, 2H), 7.23 - 7.04 (m, 2H), 4.34 (t, *J* = 6.4 Hz, 2H), 3.47 - 3.32 (m, 2H), 2.10 - 1.99 (m, 2H), 1.89 - 1.80 (m, 2H), 1.71 - 1.64 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 165.83 (d, *J* = 254.1 Hz), 165.59, 132.10 (d, *J* = 9.3 Hz), 126.35 (d, *J* = 2.8 Hz), 115.60 (d, *J* = 22.0 Hz), 64.27, 50.62, 28.10, 24.60, 23.23. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.72, -105.51. HRMS (ESI): m/z calculated for [C₁₂H₁₄O₄F₂SNa⁺] [M+Na⁺]: 315.0473, found: 315.0472.

5-(fluorosulfonyl)pentyl 4-chlorobenzoate (4j)

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4j** as light yellow oil (79% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 4.27 (t, *J* = 6.4 Hz, 2H), 3.52 - 3.27 (m, 2H), 2.11 - 1.88 (m, 2H), 1.85 - 1.74 (m, 2H), 1.68 - 1.56 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 165.67, 139.51, 130.95, 128.78, 128.59, 64.37, 50.69 (d, *J* = 16.6 Hz), 28.06, 24.56, 23.21.¹⁹F

NMR (376 MHz, Chloroform-*d***)** δ 53.80. **HRMS (ESI):** m/z calculated for [C₁₂H₁₄O₄ClFSNa⁺] [M+Na⁺]: 331.0178, found: 331.0180.

5-(fluorosulfonyl)pentyl 4-bromobenzoate (4k)

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4k** as yellow soild (73% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.92 - 7.68 (m, 2H), 7.62 - 7.45 (m, 2H), 4.27 (t, *J* = 6.4 Hz, 2H), 3.56 - 3.03 (m, 2H), 2.15 - 1.92 (m, 2H), 1.92 - 1.71 (m, 2H), 1.70 - 1.53 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 165.81, 131.79, 131.08, 129.03, 128.18, 64.40, 50.70 (d, *J* = 16.6 Hz), 28.06, 24.57, 23.21. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.78. HRMS (ESI): m/z calculated for [C₁₂H₁₄O₄BrFSNa⁺] [M+Na⁺]: 374.9672, found: 374.9675.

5-(fluorosulfonyl)pentyl 4-iodobenzoate (41)

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4l** as yellow soild (92% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.77 - 7.69 (m, 2H), 7.68 - 7.61 (m, 2H), 4.25 (t, *J* = 6.3 Hz, 2H), 3.65 - 3.00 (m, 2H), 2.01 - 1.89 (m, 2H), 1.81 - 1.70 (m, 2H), 1.63 - 1.53 (m, 2H).¹³C NMR (**101 MHz, Chloroform-***d*) δ 166.02, 137.79, 130.99, 129.62, 100.85, 64.41, 50.68 (d, *J* = 16.5 Hz), 28.04, 24.55, 23.21. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.77. HRMS (ESI): m/z calculated for [C₁₂H₁₄O₄IFSNa⁺] [M+Na⁺]: 422.9534, found: 422.9538.

5-(fluorosulfonyl)pentyl 4-(trifluoromethyl)benzoate (4m) [6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4m** as yellow oil (62% yield). ¹H NMR (**400 MHz, Chloroform-***d***)** δ 8.32 - 8.09 (m, 2H), 7.93 - 7.57 (m, 2H), 4.39 (t, *J* = 6.4 Hz, 2H), 3.89 - 3.28 (m, 2H), 2.45 - 1.95 (m, 2H), 1.93 - 1.81 (m, 2H), 1.77 - 1.62 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d***)** δ 165.3, 134.6 (q, *J* = 32.7 Hz), 133.3, 130.0, 125.5 (q, *J* = 3.7 Hz), 123.6 (q, *J* = 272.9 Hz), 64.7, 50.7 (d, *J* = 16.5 Hz), 28.0, 24.6, 23.2. ¹⁹F NMR (**376 MHz, Chloroform-***d***)** δ 53.84, -63.14. HRMS (ESI): m/z calculated for [C₁₃H₁₄F₄O₄SNa⁺] [M+Na⁺]: 365.0441, found: 365.0442.

5-(fluorosulfonyl)pentyl 4-cyanobenzoate (4n)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4n** as yellow oil (45% yield). ¹**H NMR (400 MHz, Chloroform-***d*) δ 8.31 - 8.07 (m, 2H), 7.93 - 7.69 (m, 2H), 4.39 (t, *J* = 6.4 Hz,

2H), 3.60 - 3.31 (m, 2H), 2.18 - 1.98 (m, 2H), 1.95 - 1.80 (m, 2H), 1.77 - 1.57 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.91, 133.91, 132.30, 130.08, 117.95, 116.53, 64.96, 50.66 (d, *J* = 16.5 Hz), 28.01, 24.52, 23.20. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 53.90. HRMS (ESI): m/z calculated for [C₁₃H₁₄FO₄NSNa⁺] [M+Na⁺]: 322.0520, found: 322.0519.

5-(fluorosulfonyl)pentyl 4-formylbenzoate (40)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4o** as yellow oil (64% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 10.11 (s, 1H), 8.19 (d, *J* = 8.2 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 2H), 4.40 (t, *J* = 6.4 Hz, 2H), 3.54 - 3.31 (m, 2H), 2.15 - 1.98 (m, 2H), 1.92-1.83 (m, 2H), 1.73 - 1.65 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 191.57, 165.51, 139.26, 135.06, 130.16, 129.55, 64.74, 50.69 (d, *J* = 16.5 Hz), 28.04, 24.56, 23.21. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.85. HRMS (ESI): m/z calculated for [C₁₃H₁₅FO₅SNa⁺] [M+Na⁺]: 325.0516, found: 325.0511.

5-(fluorosulfonyl)pentyl 2-phenoxyacetate (4p)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4p** as yellow oil (67% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.35 - 7.27 (m, 2H), 7.08 - 6.98 (m, 1H), 6.97 - 6.87 (m, 2H), 4.64 (d, *J* = 1.7 Hz, 2H), 4.22 (t, *J* = 6.3 Hz, 2H), 3.34 - 3.21 (m, 2H), 1.97 - 1.85 (m, 2H), 1.79 - 1.66 (m, 2H), 1.56 - 1.39 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 169.06, 157.81, 129.62, 121.81, 114.59, 65.31, 64.40, 50.59 (d, *J* = 16.6 Hz), 27.81, 24.29, 23.02. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.70. HRMS (ESI): m/z calculated for [C₁₃H₁₇FO₅SNa⁺] [M+Na⁺]: 327.0673, found: 327.0667.

5-(fluorosulfonyl)pentyl 3-phenylpropiolate (4q)

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4q** as brown oil (31% yield). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.58 - 7.48 (m, 2H), 7.43 - 7.35 (m, 1H), 7.34 - 7.27 (m, 2H), 4.18 (t, *J* = 6.3 Hz, 2H), 3.59 - 2.99 (m, 2H), 1.97 - 1.88 (m, 2H), 1.79 - 1.66 (m, 2H), 1.61 - 1.47 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ 154.00, 133.01, 130.77, 128.63, 119.49, 86.63, 80.44, 65.17, 50.68 (d, *J* = 16.6 Hz), 27.81, 24.45, 23.15. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ 53.62. **HRMS (ESI):** m/z calculated for [C₁₄H₁₅O₄FSNa⁺] [M+Na⁺]: 321.0567, found: 321.0577.

5-(fluorosulfonyl)pentyl 2-chloro-3-methylbenzoate (4r)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4r** as brown oil (64% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.56 - 7.51 (m, 1H), 7.39 - 7.35 (m, 1H), 7.29 - 7.17 (m, 1H), 4.36 (t, *J* = 6.3 Hz, 2H), 3.52 - 3.35 (m, 2H), 2.43 (s, 3H), 2.09 - 1.97 (m, 2H), 1.88 - 1.80 (m, 2H), 1.71 - 1.63 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 166.62, 137.96, 133.68, 132.77, 131.34, 128.26, 126.21, 64.69, 50.71 (d, *J* = 16.5 Hz), 27.97, 24.61, 23.18, 20.66. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.61. HRMS (ESI): m/z calculated for [C₁₃H₁₆FClO₄SNa⁺] [M+Na⁺]: 345.0334, found: 345.0334.

5-(fluorosulfonyl)pentyl 2,4,6-trimethoxybenzoate (4s)

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4s** as brown oil (48% yield). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.51 (d, *J* = 8.9 Hz, 1H), 6.63 (d, *J* = 8.9 Hz, 1H), 4.24 (t, *J* = 6.3 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.80 (s, 3H), 3.36 - 3.28 (m, 2H), 2.09 - 1.89 (m, 2H), 1.84 - 1.68 (m, 2H), 1.68 - 1.50 (m, 2H).¹³**C NMR (126 MHz, Chloroform-***d***)** δ 164.56, 156.25, 153.66, 141.98, 125.83, 116.83, 105.93, 62.89, 60.74, 59.99, 55.08, 49.71 (d, *J* = 16.5 Hz), 27.08, 23.61, 22.19. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ 53.70. **HRMS (ESI):** m/z calculated for [C₁₅H₂₁FO₇SNa⁺] [M+Na⁺]: 387.0884, found: 387.0884.

5-(fluorosulfonyl)pentyl 2-naphthoate (4t) [6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4t** as yellow soild (62% yield). ¹**H NMR (400 MHz, Chloroform-***d*) ¹**H NMR (400 MHz, Chloroform-***d*) δ 8.59 (d, *J* = 1.7 Hz, 1H), 8.05 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.96 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.89 (dd, *J* = 8.6, 1.9 Hz, 2H), 7.65 - 7.50 (m, 2H), 4.42 (t, *J* = 6.4 Hz, 2H), 3.65 - 3.20 (m, 2H), 2.14 - 2.00 (m, 2H), 1.97 - 1.84 (m, 2H), 1.77 - 1.66 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d*) δ 166.73, 135.59, 132.51, 131.06, 129.37, 128.35, 128.25, 127.79, 127.36, 126.74, 125.14, 64.29, 50.75 (d, *J* = 16.6 Hz), 28.18, 24.69, 23.28. ¹⁹**F NMR (376 MHz, Chloroform-***d*) δ 53.72. **HRMS (ESI):** m/z calculated for [C₁₆H₁₈FO₄S⁺] [M+H⁺]: 325.0904, found: 325.0908

5-(fluorosulfonyl)pentyl picolinate (4u)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4u** as colorless oil (62% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 8.77 (d, *J* = 4.3 Hz, 1H), 8.13 (d, *J* = 7.8 Hz, 1H), 8.05 - 7.79 (m, 1H), 7.50 (dd, *J* = 6.7, 4.9 Hz, 1H), 4.45 (t, *J* = 6.5 Hz, 2H), 3.54 - 3.30 (m, 2H), 2.09 - 2.01 (m, 2H), 1.97 -

1.86 (m, 2H), 1.70 - 1.65 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.24, 149.94, 147.95, 137.09, 127.03, 125.20, 65.08, 50.67 (d, J = 16.5 Hz), 27.99, 24.56, 23.19. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 53.54. HRMS (ESI): m/z calculated for [C₁₁H₁₄FNO₄SNa⁺] [M+Na⁺]: 298.0520, found: 298.0506.

5-(fluorosulfonyl)pentyl pyrazine-2-carboxylate (4v)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4v** as brown oil (63% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 9.31 (s, 1H), 8.92 - 8.66 (m, 2H), 4.48 (t, *J* = 6.5 Hz, 2H), 3.49 - 3.36 (m, 2H), 2.11 - 2.00 (m, 2H), 1.99 - 1.87 (m, 2H), 1.74 - 1.64 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 163.95, 147.78, 146.27, 144.47, 143.33, 65.47, 50.63 (d, *J* = 16.8 Hz), 27.91, 24.50, 23.15. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.67. HRMS (ESI): m/z calculated for [C₁₀H₁₄FN₂O₄S⁺] [M+H⁺]: 277.0653, found: 277.0655.

5-(fluorosulfonyl)pentyl thiophene-2-carboxylate (4w)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4w** as brown oil (68% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.80 (dd, *J* = 3.7, 1.3 Hz, 1H), 7.57 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.11 (dd, *J* = 5.0, 3.7 Hz, 1H), 4.33 (t, *J* = 6.3 Hz, 2H), 3.45 - 3.31 (m, 2H), 2.16 - 1.98 (m, 2H), 1.93 - 1.78 (m, 2H), 1.73 - 1.58 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 162.18, 133.59, 133.53, 132.50, 127.83, 64.29, 50.72 (d, *J* = 16.5 Hz), 28.07, 24.58, 23.20. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.67. HRMS (ESI): m/z calculated for [C₁₀H₁₃FO₄S₂Na⁺] [M+Na⁺]: 303.0131, found: 303.0141.

5-(fluorosulfonyl)pentyl furan-2-carboxylate (4x)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4x** as brown oil (64% yield). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.59 (d, *J* = 1.7 Hz, 1H), 7.19 (d, *J* = 3.5 Hz, 1H), 6.52 (dd, *J* = 3.6, 1.8 Hz, 1H), 4.34 (t, *J* = 6.3 Hz, 2H), 3.43 - 3.32 (m, 2H), 2.12 - 1.97 (m, 2H), 1.93 - 1.80 (m, 2H), 1.76 - 1.58 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ 158.67, 146.42, 144.55, 118.08, 111.91, 64.10, 50.69 (d, *J* = 16.5 Hz), 28.01, 24.55, 23.17. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ 53.62. **HRMS (ESI):** m/z calculated for [C₁₀H₁₃FO₅SNa⁺] [M+Na⁺]: 287.0360, found: 287.0351.

5-(fluorosulfonyl)pentyl 4-methylbenzenesulfonate (4y)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4y** as brown oil (62% yield). ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 4.05 (t, *J* = 6.1 Hz, 2H), 3.43 - 3.24 (m, 2H), 2.46 (s, 3H), 1.97 - 1.86 (m, 2H), 1.77 - 1.68 (m, 2H), 1.55 (q, *J* = 8.3 Hz, 2H). ¹³**C**

NMR (101 MHz, Chloroform-*d***)** δ 145.03, 132.90, 129.96, 127.87, 69.47, 50.55 (d, J = 16.7 Hz), 28.18, 23.93, 22.88, 21.65. ¹⁹F NMR (**376 MHz, Chloroform-***d***)** δ 53.69. **HRMS (ESI):** m/z calculated for [C₁₂H₁₇FO₅S₂Na⁺] [M+Na⁺]: 347.0394, found: 347.0385.

5-(fluorosulfonyl)pentyl 4-bromobenzenesulfonate (4z)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4z** as brown soild (65% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 8.04 - 7.57 (m, 4H), 4.09 (t, *J* = 6.1 Hz, 2H), 3.53 - 3.04 (m, 2H), 2.04 - 1.88 (m, 2H), 1.84 - 1.71 (m, 2H), 1.65 - 1.48 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) ¹³C NMR (101 MHz, Chloroform-*d*) δ 134.93, 132.72, 129.33, 129.21, 70.01, 50.54 (d, *J* = 16.7 Hz), 28.25, 23.95, 22.94. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.90. HRMS (ESI): m/z calculated for [C₁₁H₁₃BrFO₅S₂] [M-H]⁻: 386.9377, found: 386.9383.

tert-butyl 4-((5-(fluorosulfonyl)pentanoyl)oxy)piperidine-1-carboxylate (4aa)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4aa** as brown oil (68% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 4.99 - 4.88 (m, 1H), 3.73 (d, *J* = 12.7 Hz, 2H), 3.47 - 3.35 (m, 2H), 3.25 - 3.15 (m, 2H), 2.40 (t, *J* = 7.1 Hz, 2H), 2.09 - 1.96 (m, 2H), 1.94 - 1.83 (m, *J* = 7.5 Hz, 4H), 1.64 - 1.55 (m, 2H), 1.46 (s, 9H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 171.78, 154.72, 79.78, 70.28, 50.52 (d, *J* = 16.7 Hz), 33.47, 30.60, 29.70, 28.41, 23.10, 22.91. ¹⁹F NMR (**377 MHz, Chloroform-***d*) δ 53.75. HRMS (ESI): m/z calculated for [C₁₅H₂₆FNO₆SNa⁺] [M+Na⁺]: 390.1357, found: 390.1356.

diethyl (5-(fluorosulfonyl)pentyl) phosphate (4ab)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ab** as brown oil (62% yield). ¹H NMR (**400 MHz, Chloroform-d**) δ 4.24 - 3.94 (m, 6H), 3.44 - 3.32 (m, 2H), 2.07 - 1.93 (m, 2H), 1.85 - 1.70 (m, 2H), 1.69 - 1.56 (m, 2H), 1.40 - 1.31 (m, 6H). ¹³C NMR (**101 MHz, Chloroform-d**) δ 66.63 (d, *J* = 5.9 Hz), 63.84 (d, *J* = 5.9 Hz), 50.71 (d, *J* = 16.5 Hz), 29.51 (d, *J* = 6.9 Hz), 24.07, 23.06, 16.16 (d, *J* = 6.6 Hz). ¹⁹F NMR (**376 MHz, Chloroform-d**) δ 53.67. ³¹P NMR (**162 MHz, Chloroform-d**) δ -0.92. HRMS (ESI): m/z calculated for [C₉H₂₁FO₆PS⁺] [M+H⁺]: 307.0775, found: 307.0774.

SO₂F

cyclooctanesulfonyl fluoride (4ac)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ac** as brown oil (68% yield). ¹H NMR (**400 MHz, Chloroform-d**) δ 3.61 - 3.38 (m, 1H), 2.39 - 2.22 (m, 2H), 2.05 - 1.77 (m, 4H),

1.72 - 1.52 (m, 8H). ¹³C NMR (101 MHz, Chloroform-d) δ 62.23 (d, J = 10.3 Hz), 29.71, 26.61, 25.98, 24.66. ¹⁹F NMR (376 MHz, Chloroform-d) δ 41.08. HRMS (ESI): m/z calculated for [C₈H₁₄FO₂S] [M-H]⁻: 193.0704, found: 193.0707.

cycloheptanesulfonyl fluoride (4ad)^[7]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ad** as colorless oil (57% yield). ¹H NMR (**400 MHz, Chloroform-d**) δ 3.44 – 3.28 (m, 1H), 2.33 – 2.22 (m, 2H), 1.96 – 1.74 (m, 4H), 1.60 – 1.41 (m, 6H). ¹³C NMR (**101 MHz, Chloroform-d**) δ 61.80 (d, *J* = 10.2 Hz), 27.12, 27.04, 24.31. ¹⁹F NMR (**376 MHz, Chloroform-d**) δ 41.47. HRMS (ESI): m/z calculated for [C₇H₁₂FO₂S] [M-H]⁻: 179.0548, found: 179.0549.

3-(fluorosulfonyl)-2-methylpropyl benzoate (4ae)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ae** as yellow oil (63% yield).¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.03 (d, *J* = 7.7 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 4.43 – 4.22 (m, 2H), 3.73 – 3.57 (m, 1H), 3.47 – 3.25 (m, 1H), 2.85 – 2.63 (m, 1H), 1.32 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ 166.1, 133.5, 129.6, 129.5, 128.6, 66.9, 54.2 (d, *J* = 15.8 Hz), 29.9, 16.4. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ 59.02. **HRMS (ESI):** m/z calculated for [C₁₁H₁₃O₄FSNa⁺] [M+Na⁺]: 283.0411, found: 283.0413.

cyclohexylmethanesulfonyl fluoride (4af)

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4af** as colorless oil (47% yield). ¹H NMR (**400 MHz, Chloroform-d**) δ 3.47 – 3.42 (m, 2H), 1.80 – 1.66 (m, 4H), 1.54 – 1.43 (m, 1H), 1.33 – 1.12 (m, 4H), 1.02 – 0.87 (m, 2H).¹³C NMR (**101 MHz, Chloroform-d**) δ 68.82, 40.51, 29.57, 26.60, 25.85. ¹⁹F NMR (**376 MHz, Chloroform-d**) δ 53.45. HRMS (ESI): m/z calculated for [C₇H₁₂FO₂S] [M-H]⁻: 179.0548, found: 179.0543.

(tetrahydro-2H-pyran-4-yl)methanesulfonyl fluoride (4ag)

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ag** as colorless oil (59% yield). ¹H NMR (**400 MHz, Chloroform-d**) δ 3.98 (m, 2H), 3.43 (m, 2H), 2.29 (d, J = 7.1 Hz, 2H), 2.03 (m, 1H), 1.69 (m, 2H), 1.38 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-d**) δ 67.64, 41.08,32.53,31.78. ¹⁹F NMR (**376 MHz, Chloroform-d**) δ 53.56. HRMS (ESI): m/z calculated for [C₆H₁₀FO₃S] [M-H]⁻: 181.0340, found: 181.0343.

(8*S*,9*R*,13*R*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl 5-(fluorosulfonyl)pentanoate (**4ah**)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ad** as yellow soild (52% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.30 - 7.27 (m, 1H), 6.87 - 6.83 (m, 1H), 6.80 (d, *J* = 2.5 Hz, 1H), 3.58 - 3.22 (m, 2H), 2.91 (dd, *J* = 8.6, 3.9 Hz, 2H), 2.64 (t, *J* = 7.1 Hz, 2H), 2.58 - 2.51 (m, 1H), 2.45 - 2.36 (m, 1H), 2.33 - 2.25 (m, 1H), 2.22 - 2.02 (m, 4H), 2.01 - 1.85 (m, 4H), 1.74 - 1.38 (m, 7H), 0.91 (s, 3H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 171.31, 148.35, 138.15, 137.63, 126.49, 121.44, 118.60, 50.63, 50.47, 50.44, 47.95, 44.16, 38.00, 35.86, 33.33, 31.56, 29.41, 26.32, 25.76, 23.07, 22.93, 21.60, 13.84. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.82. HRMS (ESI): m/z calculated for [C₂₃H₂₉FO₅SNa⁺] [M+Na⁺]: 459.1612, found: 459.1611.

(1S,2S)-2-isopropyl-5-methylcyclohexyl 5-(fluorosulfonyl)pentanoate (4ai)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ae** as brown oil (61% yield). ¹H NMR (**400 MHz, Chloroform-***d*) ¹H NMR (400 MHz, Chloroform-*d*) δ 4.76 - 4.58 (m, 1H), 3.45 - 3.32 (m, 2H), 2.37 (t, *J* = 7.1 Hz, 2H), 2.09 - 1.90 (m, 3H), 1.90 - 1.77 (m, 3H), 1.74 - 1.62 (m, 3H), 1.56 - 1.45 (m, 1H), 1.43 - 1.31 (m, 1H), 1.15 - 0.95 (m, 2H), 0.93 - 0.78 (m, 6H), 0.76 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 172.05, 74.61, 50.56 (d, *J* = 16.8 Hz), 47.00, 40.94, 34.20, 33.60, 31.39, 26.38, 23.41, 23.24, 22.93, 22.00, 20.74, 16.28. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ 53.56. HRMS (ESI): m/z calculated for [C₁₅H₂₇FO₄SNa⁺] [M+Na⁺]: 345.1506, found: 345.1499.

5-(fluorosulfonyl)pentyl 2-(4-isobutylphenyl)propanoate (4aj)^[6]

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4af** as brown oil (50% yield). ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.19 (dd, J = 8.1, 2.2 Hz, 2H), 7.14 - 7.06 (m, 2H), 4.17 - 3.95 (m, 2H), 3.68 (q, J = 7.0 Hz, 1H), 3.30 - 3.18 (m, 2H), 2.45 (dd, J = 7.2, 2.1 Hz, 2H), 1.93 - 1.76 (m, 3H), 1.72 - 1.55 (m, 2H), 1.52 - 1.46 (m, 3H), 1.45 - 1.35 (m, 2H), 0.90 (dd, J = 6.7, 2.1 Hz, 6H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 174.71, 140.66, 137.77, 129.35, 127.15, 63.69, 50.61 (d, J = 16.5 Hz), 45.16, 44.98, 30.21, 27.78, 24.28, 22.98, 22.37, 18.29. ¹⁹F NMR (**377 MHz, Chloroform-***d*) δ 53.50. HRMS (ESI): m/z calculated for [C₁₈H₂₇FO₄SNa⁺] [M+Na⁺]: 381.1506, found: 381.1506.

4-(fluorosulfonyl)butyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (**4ak**)^[6] Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ag** as brown oil (64% yield). ¹H NMR (**400 MHz, Chloroform-d**) δ 8.12 (d, *J* = 2.4 Hz, 1H), 7.89 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.60 - 7.52 (m, 1H), 7.51 - 7.45 (m, 1H), 7.41 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.36 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 5.19 (s, 2H), 4.13 (t, *J* = 6.3 Hz, 2H), 3.64 (s, 2H), 3.47 - 3.33 (m, 2H), 2.16 - 1.87 (m, 2H), 1.76 - 1.64 (m, 2H), 1.60 - 1.48 (m, 2H). ¹³C NMR (**101 MHz, Chloroform-d**) δ 189.82, 170.32, 159.49, 139.35, 135.29, 134.55, 131.84, 131.34, 128.45, 128.29, 126.84, 126.73, 124.18, 120.10, 72.63, 63.11, 49.63 (d, *J* = 16.5 Hz), 39.27, 28.68, 26.88, 23.43, 22.11. ¹⁹F NMR (**377 MHz, Chloroform-d**) δ 53.64. HRMS (APCI): m/z calculated for [C₂₁H₂₂FO₆S⁺] [M+H⁺]: 421.1116, found: 421.1115.

 $2 \cdot (((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)ethane-1-sulfonyl fluoride (4al) ^[6]$

Following the **General procedure for hydro-fluorosulfonylation of alkenes** to afford the desired product **4ah** as white soild (54% yield). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 5.42 - 5.32 (m, 1H), 4.02 - 3.87 (m, 2H), 3.74 - 3.51 (m, 2H), 3.35 - 3.14 (m, 1H), 2.39 - 2.31 (m, 1H), 2.29 - 2.17 (m, 1H), 2.12 - 1.94 (m, 2H), 1.93 - 1.75 (m, 3H), 1.65 - 1.42 (m, 7H), 1.41 - 1.30 (m, 4H), 1.22 - 1.08 (m, 7H), 1.07 - 0.96 (m, 6H), 0.91 (d, *J* = 6.5 Hz, 3H), 0.86 (dd, *J* = 6.6, 1.9 Hz, 6H), 0.68 (s, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ 140.21, 122.19, 80.14, 60.91, 56.75, 56.16, 51.65 (d, *J* = 15.4 Hz), 50.15, 42.33, 39.76, 39.53, 38.73, 37.04, 36.82, 36.20, 35.80, 31.90 (d, *J* = 6.5 Hz), 29.72, 28.24, 28.07 (d, *J* = 7.1 Hz), 24.30, 23.84, 22.84, 22.58, 21.08, 19.36, 18.73, 11.87. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ 58.96. **HRMS (APCI):** m/z calculated for [C₂₉H₅₀FO₃S⁺] [M+H⁺]: 497.3459, found: 497.3456.

2.6 Experimental procedure for synthetic applications

To a 10 mL round-bottomed flask equipped with a magnetic stir bar, **4b** (27.1 mg, 0.10 mmol, 1.0 eq.), phenol **5** (10.4 mg, 0.11 mmol, 1.1 eq) and Cs₂CO₃ (65.2 mg, 0.20 mmol, 2.0 eq.) in MeCN (1 mL) were added. Stir the reaction mixture for 12 hours at 25 °C under nitrogen. After completion of the reaction, purify the residue by silica gel column chromatography (PE/EA = 5:1) and product **6** was obtained in 76% yield (26.2 mg). ¹H NMR (**400 MHz, CDCl₃**) δ 7.91 - 7.81 (m, 2H), 7.79 - 7.70 (m, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.32 - 7.21 (m, 3H), 3.87 (t, *J* = 6.7 Hz, 2H), 3.57 - 3.06 (m,

2H), 2.41 - 2.34 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.18, 148.95, 134.30, 131.84, 130.01, 127.31, 123.51, 122.00, 48.13, 36.11, 23.33. HRMS (ESI): m/z calculated for [C₁₇H₁₄NO₅S] [M-H]⁻: 344.0598, found: 344.0560.

To a 10 mL round-bottomed flask equipped with a magnetic stir bar, **4b** (27.1 mg, 0.10 mmol, 1.0 eq.), morpholine **7** (17.4 mg, 0.2 mmol, 2.0 eq.), triethylamine (28 μ L, 0.2 mmol, 2.0 eq.), and MeCN (0.5 mL) were added. Stir the reaction mixture for 16 hours at 80°C under nitrogen. After completion of the reaction, purify the residue by silica gel column chromatography (PE/EA = 3:1) and the product **8** was obtained in 82% yield (27.7 mg). ¹**H NMR (400 MHz, CDCl**₃) δ 7.89 - 7.81 (m, 2H), 7.78 - 7.70 (m, 2H), 3.83 (t, *J* = 6.7 Hz, 2H), 3.78 - 3.69 (m, 4H), 3.31 - 3.21 (m, 4H), 3.12 - 2.92 (m, 2H), 2.25 - 2.17 (m, 2H). ¹³**C NMR (101 MHz, CDCl**₃) δ 168.27, 134.26, 131.89, 123.47, 66.59, 46.71, 45.83, 36.50, 22.82. **HRMS (ESI):** m/z calculated for [C₁₅H₁₇N₂O₅S] [M-H]⁻: 337.0864, found: 337.0868.

To a 10 mL round-bottomed flask equipped with a magnetic stir bar, **4b** (27.1 mg, 0.10 mmol, 1.0 eq.), NH₃•H₂O **9** (143 μ L, 2.0 mmol, 20.0 eq.), pyridine (31.7 mg, 0.4 mmol, 2.0 eq.), and MeCN (2 mL) were added. Stir the reaction mixture for 16 hours at 60°C under nitrogen. After completion of the reaction, purify the residue by silica gel column chromatography and the product **10** was obtained in 72% yield (19.3 mg). ¹H NMR (**400 MHz, DMSO***.d***6**) δ 8.22 - 7.62 (m, 4H), 6.76 (s, 2H), 3.69 (t, *J* = 6.4 Hz, 2H), 3.10 - 2.94 (m, 2H), 2.13 - 1.90 (m, 2H). ¹³C NMR (**101 MHz, DMSO***.d***6**) δ 168.46, 134.86, 132.14, 123.51, 52.59, 36.63, 23.60. HRMS (ESI): m/z calculated for [C₁₁H₁₁N₂O₄S] [M-H]⁻: 267.0445, found: 267.0449.

Under nitrogen atmosphere, add **4b** (27.1 mg, 0.10 mmol, 1.0 eq.), DMAP (36.7 mg, 0.3 mmol, 1.5 eq.), TMSN₃ **11** (20 μ L, 0.15 mmol, 1.5 eq.), and 2 mL MeCN to a 5 mL reaction tube equipped with a magnetic stir bar. After 15 minutes of reaction, add TMSN₃ (20 μ L, 0.15 mmol, 1.5 eq.) to the mixture. Repeat this addition of TMSN₃ in the same amount after another 15 minutes. Continue the reaction for another 15 minutes and then add an equal amount of TMSN₃ again. Let the reaction proceed at room temperature for an additional 16 hours. Upon completion, remove the solvent under reduced pressure. Purify the product by column chromatography to obtain the **12** in 80% yield (23.5 mg). ¹**H NMR (400 MHz, CDCl**₃) δ 7.85 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.74 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.86 (t, *J* = 6.6 Hz, 2H), 3.40 (dd, *J* = 9.0, 6.7 Hz, 2H), 2.47 - 2.03 (m, 2H). ¹³**C NMR (101 MHz, CDCl**₃) δ 168.20, 134.37, 131.79, 123.56, 53.58, 35.88, 23.20. **HRMS (ESI):** m/z calculated for [C₁₁H₉N₄O₄S] [M-H]⁻: 293.0350, found: 293.0351.

To a round-bottomed flask equipped with a magnetic stir bar, **4ah** (0.1 mmol), pomalidomide derivative **13** and DBU (0.2 mmol) and MeCN (1 mL) were added. Stir the reaction mixture for 16 hours at 80°C under nitrogen. After completion of the reaction, purify the residue by silica gel column chromatography (PE/EA = 1:1) and the product **14** was obtained in 46% yield (34.8 mg). ¹**H NMR (400 MHz, DMSO-***d*₆) δ 11.08 (s, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.40 (s, 1H), 7.29 (t, *J* = 8.9 Hz, 2H), 6.89 - 6.74 (m, 2H), 5.08 (dd, *J* = 12.9, 5.4 Hz, 1H), 3.56 (t, *J* = 4.8 Hz, 4H), 3.16 (d, *J* = 7.5 Hz, 2H), 2.88 (t, *J* = 8.6 Hz, 1H), 2.82 (d, *J* = 5.2 Hz, 2H), 2.62 (t, *J* = 6.5 Hz, 2H), 2.56 (q, *J* = 4.6 Hz, 1H), 2.47 - 2.30 (m, 2H), 2.28 - 2.14 (m, 1H), 2.05 (dd, *J* = 19.3, 9.3 Hz, 2H), 1.91 (s, 2H), 1.69 - 1.17 (m, 16H), 0.83 (s, 3H). ¹³C **NMR (101 MHz, DMSO-***d*₆) δ 220.0, 173.3, 172.2, 170.5, 167.9, 167.4, 155.3, 148.7, 138.2, 137.6, 134.3, 126.8, 125.4, 121.9, 119.5, 119.3, 118.9, 109.0, 60.2, 50.0, 49.3, 47.9, 47.5, 45.2, 44.0, 37.9, 35.8, 33.3, 31.8, 31.5, 29.3, 26.3, 25.8, 23.6, 22.5, 21.6, 21.2, 13.9. **HRMS (ESI):** m/z calculated for [C₄₀H₄₅N₄O₉S] [M-H]⁻: 757.2913, found: 757.2919.

To a 10 mL round-bottomed flask equipped with a magnetic stir bar, **4aj** (0.1 mmol), estrone **15** (0.15 mmol) and Cs₂CO₃ (0.15 mmol) in MeCN (2 mL) were added. Stir the reaction mixture for 4 hours at 25°C under nitrogen. After completion of the reaction, purify the residue by silica gel column chromatography (PE/EA = 2:1) and product **16** was obtained in 85% yield (51.8 mg). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.30 (d, *J* = 8.4 Hz, 1H), 7.19 (d, *J* = 7.7 Hz, 2H), 7.08 (d, *J* = 7.7 Hz, 2H), 7.01 (d, *J* = 11.0 Hz, 2H), 4.06 (dd, *J* = 12.9, 6.2 Hz, 2H), 3.68 (q, *J* = 7.2 Hz, 1H), 3.15 (t, *J* = 7.9 Hz, 2H), 2.93 (dd, *J* = 9.2, 4.2 Hz, 2H), 2.51 (dd, *J* = 18.8, 8.7 Hz, 1H), 2.44 (d, *J* = 7.3 Hz, 2H), 1.97 - 1.79 (m, 4H), 1.69 - 1.36 (m, 14H), 1.27 (s, 1H), 1.25 (d, *J* = 7.4 Hz, 3H), 0.91 (s, 3H), 0.89 (s, 3H), 0.88 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 219.5, 173.7, 145.9, 139.5, 137.9, 137.8, 136.8, 128.3, 126.1, 125.9, 121.0, 118.0, 62.9, 49.4, 49.1, 46.9, 44.1, 44.0, 43.1, 36.9, 34.8, 30.5, 29.1, 28.4, 27.0, 25.2, 24.7, 23.5, 22.1, 21.4, 20.6, 17.3, 12.8. HRMS (ESI): m/z calculated for [C₃₆H₄₉O₆S⁺][M+H⁺]: 609.3244, found: 609.3247.

3. Mechanism studies

3.1 Radical trapping experiments with TEMPO

3b (0.1 mmol), **2a** (0.3 mmol), $[Ir[dF(CF_3)ppy]_2(dtbbpy)]PF_6 (1 mmol%), Na_2CO_3 (0.1 mmol), TEMPO (0.3 mmol) and 1,3-dioxane (3 mL) were added to a 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with nitrogen. The reaction mixture was then irradiated with 30 W blue LEDs for 12 h. TLC and LC-MS analysis demonstrated that$ **17**is found.**MS (ESI):** $m/z calculated for <math>[C_9H_{19}FNO_3S^+]$ [M+H⁺]: 240.11, found: 240.95.

3.2 Radical trapping experiments with 1,1-diphenylethylene

3b (0.1 mmol), **2a** (0.3 mmol), $[Ir[dF(CF_3)ppy]_2(dtbbpy)]PF_6$ (1 mmol%), Na₂CO₃ (0.1 mmol), 1,1-diphenylethylene (0.3 mmol) and 1,3-dioxane (3 mL) were added to a 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with nitrogen. The reaction mixture was then irradiated with 30 W blue LEDs for 12 h. TLC and LC-MS analysis demonstrated that **18** is found. **MS (ESI):** m/z calculated for $[C_{14}H_{12}FO_2S^+]$ [M+H⁺]: 263.05, found: 263.16.

3.3 Iminyl radical trapping experiment

3e (0.1 mmol), **2j** (0.3 mmol), [Ir[dF(CF₃)ppy]₂(dtbbpy)]PF₆ (1 mmol%), Na₂CO₃ (0.1 mmol) and 1,3-dioxane (3 mL) were added to a 10 mL Schlenk tube equipped with a magnetic stirring bar. The flask was backfilled with nitrogen. The reaction mixture was then irradiated with 30 W blue LEDs for 12 h. After the reaction, the solution was purified by flash column chromatography or on silica gel to give the product **4e** in 43% yield and **19**^[8] in 45% yield. Compound **19**: ¹**H NMR (400 MHz, Chloroform-d)** δ 9.30 (s, 1H), 8.65 – 8.56 (m, 2H), 8.20 (dd, J = 8.1, 1.4 Hz, 1H), 8.06 (dd, J = 8.0, 1.4 Hz, 1H), 7.91 – 7.84 (m, 1H), 7.80 – 7.66 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.60, 144.49, 132.59, 131.04, 130.17, 128.80, 128.72, 127.52, 127.12, 126.42, 124.13, 122.24, 121.90. HRMS (ESI): m/z calculated for [C₁₃H₁₀N⁺][M+H⁺]: 180.0808, found: 180.0813.

3.4 Stern-Volmer quenching studies

Stern-Volmer luminescence quenching studies were performed using a Jasco FP-8300 spectrofluorometer using Starna® fluorescence quartz cuvettes (type: 29-F, chamber volume = 1.400 mL, H × W × D = 48 mm × 12.5 mm × 12.5 mm, path length = 10 mm). The following parameters were set: data interval = 0.5 nm, scan-speed = 500 nm/min, excitation wavelength λ_{ex} = 405 nm, measured luminescence wavelength λ = 471 nm. All samples used in the luminescence quenching-based screening studies were prepared in an argon-filled glovebox with degassed and dry MeCN. Stock solutions of potential quenchers and the photocatalyst (Ir[dF(CF₃)ppy]₂(dtbbpy))PF₆ (5×·10⁻⁵ M) were initially prepared. Stern-Volmer luminescence quenching studies were performed using a stock solution of the photocatalyst and variable concentrations of the potential quenchers at rt under an argon atmosphere. The samples were prepared by dilution in the 1.4 mL quartz cuvettes inside the argon-filled glovebox. The solutions were irradiated at 405 nm and the luminescence was measured at 471 nm. The ratio of I₀/I was plotted as a function of the quencher concentration [Quencher] (I₀ = emission intensity of the photocatalyst in isolation at the specified wavelength 471 nm; I = observed emission intensity of the photocatalyst with added quencher).

Figure S1. Emission spectra of $(Ir[dF(CF_3)ppy]_2(dtbbpy))PF_6(5 \times 10^{-5} \text{ M})$ at different concentrations of 2a

Figure S2. Stern-Volmer plot of $(Ir[dF(CF_3)ppy]_2(dtbbpy))PF_6(5 \times 10^{-5} \text{ M})$ at different concentrations of 2a and 3a

4. Green metrics^[9]

entry	Work of different groups	E-Factor	AE	RME	PMI
1	This work	4.35	58.4%	21.2%	5.35
2	Wang ^[9]	6.24	35.2%	14.0%	7.24
3	Liao ^[10]	6.94	35.2%	12.6%	7.94
4	Glorius ^[11]	4.48	39.3%	18.5%	5.47
5	Weng ^[6]	4.82	50.5%	17.4%	5.82

To give a clear calculation, compound 4g has been chosen as a representative example.

Our method

Total amounts of reactants = 99.6 mgAmount of final product = 18.6 mgAmount of waste: 99.6 mg - 18.6 mg = 81.0 mg*E***-Factor** = Amount of waste/Amount of final product = 4.35

Molecular weight of product = 274.1 Sum of molecular weight of reagent = 469.1 AE = Molecular weight of product/Sum of molecular weight of reagent = 58.4%

Mass of product = 18.6 mg Total mass of reagent = 87.9 mg **RME** = Mass of product/Total mass of reagent = 21.2%

Total mass in process = 99.6 mg Mass of product = 18.6 mg **PMI** = Total mass in process/Mass of product = 5.35

Wang's work $^{[10]}$

Total amounts of reactants = 134.7 mg Amount of final product = 18.6 mg Amount of waste: 134.7 mg - 18.6 mg = 116.1 mg E-Factor = Amount of waste/Amount of final product = 6.24

Molecular weight of product = 274.1 Sum of molecular weight of reagent = 778.2 AE = Molecular weight of product/Sum of molecular weight of reagent = 35.2%

Mass of product = 18.6 mg Total mass of reagent = 132.8 mg **RME** = Mass of product/Total mass of reagent = 14.0 %

Total mass in process = 134.7 mg Mass of product = 18.6 mg **PMI** = Total mass in process/Mass of product = 7.24

Liao's work^[11]

Total amounts of reactants = 195.9 mg Amount of final product = 24.7 mg Amount of waste: 195.9 mg - 24.7 mg = 171.2 mg E-Factor = Amount of waste/Amount of final product = 6.94

Molecular weight of product = 274.1 Sum of molecular weight of reagent = 778.2 AE = Molecular weight of product/Sum of molecular weight of reagent = 35.2%

Mass of product = 24.7 mg Total mass of reagent = 195.8 mg **RME** = Mass of product/Total mass of reagent = 12.6 %

Total mass in process = 195.9 mg Mass of product = 24.7 mg **PMI** = Total mass in process/Mass of product = 7.94

Glorius's work^[12]

Total amounts of reactants = 109.5 mg Amount of final product = 20.0 mg Amount of waste: 109.5 mg - 20.0 mg = 89.5 mg E-Factor = Amount of waste/Amount of final product = 4.48

Molecular weight of product = 274.1 Sum of molecular weight of reagent = 689.6 AE = Molecular weight of product/Sum of molecular weight of reagent = 39.3%

Mass of product = 20.0 mg Total mass of reagent = 108.4 mg **RME** = Mass of product/Total mass of reagent = 18.5 %

Total mass in process = 109.5 mg Mass of product = 20.0 mg **PMI** = Total mass in process/Mass of product = 5.47

Weng's work^[6]

Total amounts of reactants = 107.1 mg Amount of final product = 18.4 mg Amount of waste: 107.1 mg – 18.4 mg = 88.7 mg *E*-Factor = Amount of waste/Amount of final product = 4.82

Molecular weight of product = 274.1 Sum of molecular weight of reagent = 542.3 AE = Molecular weight of product/Sum of molecular weight of reagent = 50.5%

Mass of product = 18.4 mg Total mass of reagent = 106.0 mg **RME** = Mass of product/Total mass of reagent = 17.4 %

Total mass in process = 107.1 mg Mass of product = 18.4 mg **PMI** = Total mass in process/Mass of product = 5.82

5. Reference

[1] N. F. Nikitas, E. Voutyritsa, P. L. Gkizis, C. G. Kokotos, Eur. J. Org. Chem., 2021, 2021, 96-101.

[2] F. Wang, P. Xu, F. Cong, P. Tang, *Chem. Sci.*, **2018**, *9*, 8836-8841.

[3] J. R. Tabor, D. C. Obenschain, F. E. Michael, *Chem. Sci.*, **2020**, *11*, 1677-1682.

[4] A. A. Thomas, J. Am. Chem. Soc., **2018**, 140, 13976-13984.

[5] K. Clauβ, H.-J. Friedrich and H. Jensen, *Justus Liebigs Ann. Chem.* **1974**, 561–592.

[6] T. Xiong, Q.-L. Chen, Z.- D. Chen, J.-T. Yi, S.-C. Wang, G. Lu, A.S.C. Chan, J. Weng, *Chem Catal.*, **2023**, *3*, 100821.

[7] T. Xu, T. Cao, M. Yang, R. Xu, X. Nie, S. Liao, Org. Lett. 2020, 2, 3692–3696.

[8] C. Tang, Y. Yuan, N. Jiao, Org. Lett, 2015, 17, 2206-2209.

[9] (a) K. V. Aken, L. Strekowski, L. Patiny, Beilstein J. Org. Chem., 2006, 2, 3; (b) R. A. Sheldon, Green Chem.,

2007, *9*, 1273-1283; (c) R. A. Sheldon, *Chem. Commun.*, **2008**, *44*, 3352-3356; (d) C. Jimenez-Gonzalez, C. S. Ponder, Q. B. Broxterman, J. B. Manley, *Org. Process Res. Dev.*, **2011**, *15*, 912-917.

[10] W. Zhang, H. Li, X. Li, Z. Zou, M. Huang, J. Liu, X. Wang, S. Ni, Y. Pan, Y. Wang, *Nat. Commun.*, 2022, **13**, 3515.

[11] P. Wang, H. Zhang, M. Zhao, S. Ji, L. Lin, N. Yang, X. Nie, J. Song, S. Liao, *Angew. Chem., Int. Ed.*, 2022, **61**, e202207684.

[12] J. E. Erchinger, R. Hoogesteger, R. Laskar, S. Dutta, C. Hümpel, D. Rana, C. G. Daniliuc, F. Glorius, *J. Am. Chem. Soc.*, 2023, **145**, 2364–2374.

6. ¹H NMR, ¹³C NMR, ¹⁹F NMR and ³¹P NMR spectra for compounds

(E)-(4-fluorobenzylidene)sulfamoyl fluoride (2a) ¹H NMR

(E)-(4-bromobenzylidene)sulfamoyl fluoride (2b) ¹H NMR

¹⁹F NMR

methyl (*E*)-4-(((*fluorosulfonyl*)*imino*)*methyl*)*benzoate* (2c) ¹H NMR

¹³C NMR

(E)-(4-nitrobenzylidene)sulfamoyl fluoride (2d) ¹H NMR

-44.73

(E)-(4-methylbenzylidene)sulfamoyl fluoride (2e) ¹H NMR

(E)-(4-(tert-butyl)benzylidene)sulfamoyl fluoride (**2f**) ¹**H NMR**

(E)-(2,4,6-trimethylbenzylidene)sulfamoyl fluoride (**2g**) ¹**H NMR**

(E)-(2,4,6-trimethoxybenzylidene)sulfamoyl fluoride (2h) ¹H NMR

45

(E)-[1,1'-biphenyl]-2-yl((fluorosulfonyl)imino)methanide (2j) ¹H NMR

110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 f1 (ppm) 4-phenylbutane-1-sulfonyl fluoride (**4a**) ¹**H NMR**

3-(1,3-dioxoisoindolin-2-yl)propane-1-sulfonyl fluoride (**4b**) ¹**H NMR**

5-(1,3-dioxoisoindolin-2-yl)pentane-1-sulfonyl fluoride (**4c**) ¹**H NMR**

5-(1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)pentane-1-sulfonyl fluoride (**4d**) ¹H NMR

¹⁹F NMR

-53.51

84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 f1 (ppm)

5-bromopentane-1-sulfonyl fluoride (**4e**) ¹**H NMR**

¹³C NMR

\$50.75
\$50.58
\$20.58
\$31.76
\$23.75
\$23.76
\$22.74

¹⁹F NMR

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm)

5-(fluorosulfonyl)pentyl benzoate (4g) ¹H NMR

¹³C NMR

5-(fluorosulfonyl)pentyl [1,1'-biphenyl]-4-carboxylate (**4h**) ¹**H NMR**

5-(fluorosulfonyl)pentyl 4-fluorobenzoate (2i) ¹H NMR

¹³C NMR

5-(fluorosulfonyl)pentyl 4-chlorobenzoate (4j)

5-(fluorosulfonyl)pentyl 4-bromobenzoate (4k) ¹H NMR

¹³C NMR

5-(fluorosulfonyl)pentyl 4-iodobenzoate (4l) ¹H NMR

5-(fluorosulfonyl)pentyl 4-(trifluoromethyl)benzoate (**4m**) ¹**H NMR**

¹³C NMR

5-(fluorosulfonyl)pentyl 4-cyanobenzoate (4n)

¹H NMR

5-(fluorosulfonyl)pentyl 4-formylbenzoate (40) ¹H NMR

5-(fluorosulfonyl)pentyl 2-phenoxyacetate (**4p**) ¹**H NMR**

5-(fluorosulfonyl)pentyl 3-phenylpropiolate (**4q**) ¹**H NMR**

¹³C NMR

5-(fluorosulfonyl)pentyl 2-chloro-3-methylbenzoate (**4r**) ¹**H NMR**

¹⁹F NMR

5-(fluorosulfonyl)pentyl 2,4,6-trimethoxybenzoate (4s) ¹H NMR

¹³C NMR

5-(fluorosulfonyl)pentyl 2-naphthoate (4t)

¹³C NMR

5-(fluorosulfonyl)pentyl picolinate (**4u**) ¹H NMR

5-(fluorosulfonyl)pentyl pyrazine-2-carboxylate (**4v**) ¹H NMR

-53.67

¹⁹F NMR

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm)

5-(fluorosulfonyl)pentyl thiophene-2-carboxylate (4w) $^{1}\mathrm{H}$ NMR

¹³C NMR

5-(fluorosulfonyl)pentyl furan-2-carboxylate (4x) $^{1}\mathrm{H}$ NMR

5-(fluorosulfonyl)pentyl 4-methylbenzenesulfonate (**4y**) ¹**H NMR**

¹³C NMR

-69,47

 $<^{50.62}_{50.49}$

-28.18 -23.93 -22.88 -22.88

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

5-(fluorosulfonyl)pentyl 4-bromobenzenesulfonate (**4z**) ¹**H NMR**

tert-butyl 4-((5-(*fluorosulfonyl*)*pentanoyl*)*oxy*)*piperidine-1-carboxylate* (4aa) ¹H NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

diethyl (5-(fluorosulfonyl)pentyl) phosphate (**4ab**) ¹**H NMR**

¹³C NMR

cyclooctanesulfonyl fluoride (4ac)

¹H NMR

¹⁹F NMR

-41.08

cycloheptanesulfonyl fluoride (4ad) ¹H NMR

¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR -166.09r133.45 129.62 -129.45 128.58 -66.90 $<^{54.23}_{54.08}$ -29.87-16.39CH3 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm)

cyclohexylmethanesulfonyl fluoride (4af) ¹H NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

(tetrahydro-2H-pyran-4-yl)methanesulfonyl fluoride (4ag) ¹H NMR

(8*S*,9*R*,13*R*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3yl 5-(fluorosulfonyl)pentanoate (**4ah**)

¹H NMR

 $\begin{array}{c} 7,7,3\\ 6,8,8\\ 6,$

(1S,2S)-2-isopropyl-5-methylcyclohexyl 5-(fluorosulfonyl)pentanoate (4ai) ¹H NMR

¹³C NMR

5-(fluorosulfonyl)pentyl 2-(4-isobutylphenyl)propanoate (4aj) ¹H NMR

4-(fluorosulfonyl)butyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (**4ak**) ¹**H NMR**

2-(((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)ethane-1sulfonyl fluoride (4al)

¹H NMR

 $\begin{array}{c} 3.98\\ 3.35\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 1.55\\ 3.55\\ 1.55\\ 3.55\\ 1.55\\ 3.55\\ 1.55\\$

2-(3-(phenylsulfonyl)propyl)isoindoline-1,3-dione (6)

2-(3-(morpholinosulfonyl)propyl)isoindoline-1,3-dione (8) ¹H NMR

3-(1,3-dioxoisoindolin-2-yl)propane-1-sulfonamide (10) ¹H NMR

3-(1,3-dioxoisoindolin-2-yl)propane-1-sulfonyl azide (12) ¹H NMR

(8S,9R,13R,14R)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-3-yl 5-((4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-5-yl)piperazin-1yl)sulfonyl)pentanoate (14)

5-((((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)sulfonyl)pentyl 2-(4-isobutylphenyl)propanoate (16) ¹H NMR

f1 (ppm)