Supplementary Materials

Enhanced corrosion resistance of eco-friendly MXene composite coating

with self-healing performances

Xiaoqing Ma, Tiange Wang, Baolong Gong, Jiale Hou, Shuxian Ji, Huaijie Cao*

Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.

Dr. Huaijie Cao

Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.

Email: hjcao0510@shiep.edu.cn

Fig. S1. SEM images, Cross-sectional SEM images, 3D morphologies, and water contact angle of the samples: (a_1-a_4) Al, (b_1-b_4) $(C_{13}H_{27}COO)_2Ca$, and (c_1-c_4) $(C_{13}H_{27}COO)_2Ca@MX$ ene coating.

Fig. S2. XPS spectra of (C₁₃H₂₇COO)₂Ca-TA@MXene coating: (a) Ca2p, (b) Cl2p.

Fig. S3. XPS spectra of $(C_{13}H_{27}COO)_2$ Ca coating: (a) C1s, (b) O1s, (c) Ca2p, (d) Cl2p.

Fig. S4. XPS spectra of $(C_{13}H_{27}COO)_2Ca@MXene coating: (a) C1s, (b) O1s, (c) Ca2p, (d) Cl2p, (e) Ti2p.$

Fig. S5. TGA curve of $(C_{13}H_{27}COO)_2$ Ca-TA@MXene composite coating under nitrogen atmosphere.

Fig. S6. (a) Bode plots, (b) phase angle plots, and (c) Nyquist plots of the various coatings in 3.5 wt.% NaCl solution.

			CPI	E ₁		CPE	'dl				
Sample	R _s (Ω)	R _c (Ω)	Y ₀ (S.c m ⁻ ² .s ⁿ)	n	L(H)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	$R_1(\Omega)$	C(F)	R _{ct} (Ω)
Al alloy	0.01	9. 68 9	1.545 ×10 ⁻⁶	0.6 94 4	/	1.83× 10 ⁻⁵	0.8 83	2.639 ×10 ⁴	3.381×10^{4}	0.000207 1	2268

Table S1. Electrochemical parameters obtained from the EIS plots of the different samples.

(C ₁₃ H ₂ ₇ COO) ₂ Ca sample	29.9 5	2. 16 6× 10 4	1.708 ×10 ⁻⁵	0.9 22	/	3.412 ×10 ⁻⁵	0.8 17 9	0.011 75	6.415× 10 ⁴	1.822×10 -6	7.808
$(C_{13}H_2)$ 7COO) 2Ca@ MXen e sample	1000	5. 40 1× 10 4	1.587 ×10 ⁻⁵	0.4 71 8	/	2.319 ×10 ⁻⁸	0.6 58 6	/	2.608× 10 ⁵	8.06×10- 10	2.038 ×10 ⁴
$\begin{array}{c} (C_{13}H_2 \\ {}_7COO) \\ {}_2Ca- \\ TA@ \\ MXen \\ e \\ sample \end{array}$	0.01 958	6. 88 7× 10 5	1.334 ×10 ⁻⁸	0.7 10 7	/	6.611 ×10 ⁻¹⁰	1	/	1×10 ⁴	3.191×10 -9	2.105 ×10 ⁴

Fig. S7. Equivalent circuit models of different samples.

Fig. S8. Potentiodynamic polarization curves of the various coatings in 3.5 wt.% NaCl solution.

Fig. S9. Equivalent circuit model of bare Al.

Fig. S10. Equivalent circuit model of $(C_{13}H_{27}COO)_2Ca$.

Fig. S11. Equivalent circuit model of (C₁₃H₂₇COO)₂Ca@MXene.

Fig. S12. Equivalent circuit model of (C₁₃H₂₇COO)₂Ca-TA@MXene.

Table S2. Electrochemical parameters obtained from the EIS plots of Al alloy during the immersion tests.

	R		CPE	21		CPE	'dl				
Samp e	οl _s (Ω)	R _c (Ω)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	R ₁ (Ω)	C (F)	R _{ct} (Ω)
1d	3.02 1×10 4	471 .7	1.092× 10 ⁻⁵	0.8 99 6	/	7.284 ×10 ⁻⁶	0.6 38 8	/	5.446×10^{4}	1.932×10 6	847.6
3d	1.79 2	1.7 07× 10 ⁴	2.357× 10 ⁻⁵	0.8 58 4	/	1.833 ×10 ⁻⁶	0.7 33 2	6122	7.651	3.16×10- 5	3.611 ×10 ⁴
5d	2.76	$4.8 \\ 5 \times 1 \\ 0^4$	1.471× 10 ⁻⁵	0.8 87 4	153.2	5.639 ×10 ⁻⁶	0.6 76 3	12.07	7.075	14.97	1.06× 10 ⁴
7d	7.43 5	1.0 92× 10 ⁴	1.06×1 0 ⁻⁵	0.8 99 4	2.893× 10 ⁹	1.224 ×10 ⁻⁵	0.8 73 6	3.449 ×10 ⁴	2.753	4.207×10 -5	3.076 ×10 ⁴
9d	0.02	2.0	$1.681 \times$	0.8	1.59×1	1.129	0.5	7.22×	10.51	0.000363	2.726

	038	$79 \times$	10-5	95	05	×10-5	63	1012		4	$\times 10^4$
		10^{4}		4			8				
13d	0.21 24	690 7	6.599× 10 ⁻⁵	1	5.35	0.000 7899	0.5 71 7	1.803	3.909× 10 ¹⁶	1.301×10 -5	8068
17d	5.44 3	2.7 54× 10 ⁴	0.0071 99	0.8	/	1.566 ×10 ⁻⁵	0.9 03 9	/	2.304×10^{11}	0.001183	1.805 ×10 ⁴
21d	14.6	2.5 95× 10 ⁴	0.0001 297	0.6 81 5	0.0015 93	2.501 ×10 ⁻⁶	0.8 37 5	3.23× 10 ⁴	7.946	1.606×10 -5	1.027 ×10 ⁴
26d	2.25 8	1.2 71× 10 ⁴	1.793× 10 ⁻⁵	0.8 85 6	/	5.827 ×10 ⁻⁶	0.6 52 4	0.014 18	/	/	7.04
31d	11.2 4	1.7 08× 10 ⁴	1.767× 10 ⁻⁵	0.9 13 5	/	0.000 7973	0.6 47 9	7.497 ×10 ¹⁴	1.799× 10 ⁹	0.02869	383.7

Table S3. Electrochemical parameters obtained from the EIS plots of the $(C_{13}H_{27}COO)_2Ca$ coating during the immersion tests.

	R		CPE	41		CPE	dl				
Samp e	l s(Ω)	R _c (Ω)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	R ₁ (Ω)	C(F)	R _{ct} (Ω)
1d	1	767 5	8.083× 10 ⁻⁵	0.3 85 2	/	3.373 ×10 ⁻⁹	0.8 97 2	/	0.0669 9	0.001646	5801
3d	10	947 9	3.731× 10 ⁻⁷	0.5 98	6.492× 10 ¹⁷	7.963 ×10 ⁻⁶	0.7 39 2	2.936	660.6	0.002835	6663
5d	0.05 316	1.4 28× 10 ⁴	2.092× 10 ⁻⁶	0.5 13	2.902× 10 ⁵	1.651 ×10 ⁻⁵	0.7 73 2	3.283	347.7	0.000858 2	2.385 ×10 ⁴
7d	1000	1.4 34× 10 ⁴	2.071× 10 ⁻⁵	0.8 18 3	/	5.831 ×10 ⁻⁶	0.6 31	/	145.5	0.00131	1.026 ×10 ⁴
9d	0.01	2.4 05× 10 ⁴	1.777× 10 ⁻⁵	0.8 84 4	/	0.000 2016	0.2 47 3	/	91.96	0.1079	1.04× 10 ⁴
13d	34.4 8	4.2 15× 10 ⁴	2.959× 10 ⁻⁵	0.6 83 4	5.35	1.33× 10 ⁻⁶	0.5 91 1	0.265 2	425.5	2.819×10 -6	66.2
17d	10	9.9	4.611×	0.7	/	2.874	0.3	/	385	3.457×10	1.087

		$82 \times$	10-5	17		×10 ⁻⁵	79			-5	$\times 10^4$
		10^{4}		4			4				
21d	0.01	2.7 57× 10 ⁴	6.495× 10 ⁻⁵	0.6 68	/	0.000 3904	0.3 66 3	/	329.2	2.963×10 -5	7308
26d	0.01	2.8 24× 10 ⁴	3.185× 10 ⁻⁵	0.7 07 5	0.856	3.668 ×10 ⁻⁵	0.3 80 8	0.013 42	207.4	4.878×10 -6	15.56
31d	14.0 2	3.7 78× 10 ⁴	2.268× 10 ⁻⁵	0.8 23 8	/	7.23× 10 ⁻⁵	0.3 46 7	/	206.8	9.177×10 -5	3.128 ×10 ⁴

Table S4. Electrochemical parameters obtained from the EIS plots of the $(C_{13}H_{27}COO)_2Ca@MX$ ene coating during the immersion tests.

	R		CPE	21		CPE	dl				
Samj e	pl s(Ω)	R _c (Ω)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	$R_1(\Omega)$	C(F)	R _{ct} (Ω)
1d	1259	2.4 42× 10 ⁴	4.326× 10 ⁻⁸	0.7 09	/	9.379 ×10 ⁻⁷	0.6 18 2	/	8.924× 10 ⁴	0.000102 6	1.057 ×10 ⁴
3d	61.5 6	1.7 75× 10 ⁵	1.872× 10 ⁻⁹	0.9 54 8	1.178	4.14× 10 ⁻⁶	0.4 58 4	4.602 ×10 ¹⁶	2680	1.082×10 -6	1.555 ×10 ⁴
5d	0.02 299	1.5 21× 10 ⁴	3.156× 10 ⁻⁹	0.8	/	2.11× 10 ⁻⁵	0.8	/	1.226× 10 ⁵	1.377×10 -5	1560
7d	122. 3	7.8 98× 10 ⁴	2.091× 10 ⁻⁵	0.4 03 6	0.0950 2	9.621 ×10 ⁻⁸	0.9 13 2	1.092	285.3	1.693×10 -9	687.2
9d	198. 2	3.5 86× 10 ⁴	2.955× 10 ⁻⁵	0.4 32 1	1.313× 10 ⁵	1.652 ×10 ⁻⁸	0.8 43	2.97	822.3	0.000156	4.714 ×10 ⁴
13d	0.01	7.4 38× 10 ⁴	6.093× 10 ⁻⁸	0.7 40 2	/	4.789 ×10 ⁻⁵	0.3 93 6	3.147 ×10 ⁷	897.9	0.000444 7	8307
17d	0.07 636	7.1 08× 10 ⁴	3.72×1 0 ⁻⁵	0.6 27 2	17.64	3.189 ×10 ⁻⁵	0.3 50 1	0.866	0.866	6.499×10 -9	164.3
21d	0.02 543	1.9 68× 10 ⁴	3.224× 10 ⁻⁵	0.7 00 3	7.776× 10 ⁴	4.612 ×10 ⁻⁶	0.4 61	123	368.2	0.000121 6	3.605 ×10 ⁴
26d	35.4	1.7	2.867×	0.6	4.438×	3.121	0.7	0.350	189.6	0.000114	2.891

	6	$04 \times$	10-5	66	104	×10-7	07	8		6	$\times 10^4$
		10^{4}		8			4				
31d	0.01	3.8 23× 10 ⁴	2.064× 10 ⁻⁵	0.7 48 3	/	0.000 2209	0.5 52	/	202.7	0.000276 1	2.983 ×10 ⁴

Table S5. Electrochemical parameters obtained from the EIS plots of the $(C_{13}H_{27}COO)_2Ca-TA@MX$ ene coating during the immersion tests.

	R		CPE	41		СРЕ	dl				
Samp e	οl s(Ω)	R _c (Ω)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	R ₁ (Ω)	C(F)	R _{ct} (Ω)
1d	0.01	7.4 76× 10 ⁴	2.043× 10 ⁻⁶	0.6 20 8	/	5.083 ×10 ⁻⁸	0.6 82 4	3.905 ×10 ⁴	2.283× 10 ⁴	0.000643 8	7.09× 10 ⁴
3d	100	1.4 02× 10 ⁵	3.497× 10 ⁻⁵	0.7 18 4	/	1.801 ×10 ⁻⁶	0.5 33 5	/	370.7	2.963×10 -5	2.6×1 0 ⁵
5d	0.01	4.1 87× 10 ⁵	2.114× 10 ⁻⁵	0.6 47 5	/	1.67× 10 ⁻⁷	0.7 65 9	/	1961	8.475×10 -5	1.209 ×10 ⁵
7d	10	2.0 93× 10 ⁵	2.94×1 0 ⁻⁵	0.7 65 2	/	4.335 ×10 ⁻⁶	0.4 82 2	254.9	/	4.523×10	2.035 ×10 ⁴
9d	0.01	9.1 99× 10 ⁴	9.98×1 0 ⁻⁹	0.8 83	1.76×1 0 ¹⁵	4.151 ×10 ⁻⁵	0.5 68 6	/	497.3	1.967×10 8	8.02× 10 ⁵
13d	100	6.6 05× 10 ⁴	4.333× 10 ⁻⁵	0.4 84 9	/	7.773 2×10 ⁻⁸	0.7 57 4	/	380.1	3.322×10 -5	7.256 ×10 ⁴
17d	0.01 36	5.1 93× 10 ⁴	1.492× 10 ⁻⁵	0.4 25 8	163.8	3.278 ×10 ⁻⁵	0.6 36	3.13× 10 ⁵	252.2	0.00602	2.03× 10 ⁴
21d	0.01	5.9 73× 10 ⁴	0.0001 18	0.3 28 5	3.318	2.403 ×10 ⁻⁵	0.6 74 6	7.818 ×10 ⁵	33.1	0.000111 6	1.992 ×10 ⁵
26d	0.01	2.6 98× 10 ⁵	3.454× 10 ⁻⁵	0.5 94 8	1.314	0.001 49	0.3 44 6	117.4	218	4.423×10 -5	1.2×1 0 ⁵
31d	0.01	1.1 94× 10 ⁵	0.0024 94	0.8	1.235	2.201 ×10 ⁻⁵	0.7 13 9	1.205 ×10 ⁶	5.81×1 0 ⁴	0.000139 4	1.231 ×10 ⁵

Fig. S13. Potentiodynamic polarization curves of (a) Al, (b) $(C_{13}H_{27}COO)_2Ca$, (c) $(C_{13}H_{27}COO)_2Ca@MXene$, and (d) $(C_{13}H_{27}COO)_2Ca-TA@MXene$ coating versus immersion time.

Table S6. Comparison of various coatings in a simulated marine environment.

Sample	Corrosi on solution	Self- healing efficienc y (%)	Preparation time (h)	Thickne ss (µm)	Reference
Polyvinyl alcohol	3.5wt%	00.2	247	110-19	[Dof \$1]
(PVA)/MXene@Fe ₃ O ₄	NaCl	90.2	247	110±0	[Kel. 51]
Polyurethane- 1-(3-((N-n-					
butyl)aminecarboxamido)propy	3.5wt%	07 17	60	55	[Dof \$2]
l)-3-hexadecyl imidazolidin	NaCl	9/.1/	00	55	[Kel. 52]
bromide (PU-M16)					
Polyaniline-benzotriazole	3.5wt%	06	51	50+5	[Dof \$2]
(BTA)	NaCl	90	51	50±5	[K el. 55]
Polyvinyl butyral @ gallic acid	3.5wt%	<u> </u>	21	120+5	(Dof \$4)
/epoxy (PVB@GA/EP)	NaCl	00.05	51	120±3	[Kel. 54]
Polyvinyl alcohol/ chitosan@	3.5wt%	00.21	20	120+5	[Dof \$5]
linseed oil/8-hydroxyquinone	NaCl	90.31	28	120±3	[Kel. 55]

(PVA/CS@LO/8-HQ)					
2-mecapobenzothiazole-loaded					
halloysite nanotube@	3.5wt%	02	26	50	Dof SA
Polycaprolactone/epoxy	NaCl	92	30	52	[Kel . 50]
(HNTs-MBT@PCL/EP)					
Polydopamine@	2 5xx+0/2				
benzotriazole/epoxy	3.3 wt/o	80.05	105	50±5	[Ref. S7]
(PDA@BTA/EP)	NaCI				
Benzotriazole @ linseed	3.5wt%	08	172	400	[Dof \$9]
oil /epoxy (BTA@LO/EP)	NaCl	90	172	400	[Kel . 50]
8-hydroxyquinone@	3.5wt%	82 56	25	75-	[Dof \$0]
polyaniline (8-HQ@PANI)	NaCl	83.30	23	7 <i>5</i> ±5	[Kel. 59]
Epoxy/2- benzotriazole /	2 5xx+0/				
halloysite clay	3.3 wt/o	90	168	80±10	[Ref. S10]
nanotubes (EP/2-BTA/HNTs)	NaCI				
This work	3.5wt%	00.52	1 77	21.50	This
THIS WORK	NaCl	77.33	1.//	21.39	work

Fig. S14. EDS mappings of various samples versus different immersion time (0d, 7d, 17 d, and 31 d): (a_1-a_4) Al, (b_1-b_4) $(C_{13}H_{27}COO)_2Ca$, (c_1-c_4) $(C_{13}H_{27}COO)_2Ca@MXene$, and (d_1-d_4) $(C_{13}H_{27}COO)_2Ca-TA@MXene$ coating.

Fig. S15. XPS spectra of $(C_{13}H_{27}COO)_2Ca$ coating after immersion in 3.5wt% NaCl solution: (a) Survey spectrum, (b) C1s, (c) O1s, (d) Ca2p, (e) Cl2p.

Fig. S16. XPS spectra of $(C_{13}H_{27}COO)_2Ca@MX$ ene coating after immersion in 3.5wt% NaCl solution: (a) Survey spectrum, (b) C1s, (c) O1s, (d) Ca2p, (e) Cl2p, (f) Ca2p.

Fig. S17. XPS spectra of (C₁₃H₂₇COO)₂Ca-TA@MXene Ca2p after immersion in 3.5wt.% NaCl solution.

Fig. S18. (a) Nyquist plots, (b) Bode impedance plots, (c) Bode phase plots of the artificially scratched Al after immersion in 3.5wt% NaCl solution, the (d) $|Z|_{0.01\text{Hz}}$, (e) R_c, and (f) R_{ct} of artificially scratched Al, (C₁₃H₂₇COO)₂Ca, (C₁₃H₂₇COO)₂Ca@MXene, and (C₁₃H₂₇COO)₂Ca-TA@MXene samples versus different immersion time.

Fig. S19. Equivalent circuit model of the scratched Al alloy versus the immersion time..

Fig. S20. Equivalent circuit model of the scratched $(C_{13}H_{27}COO)_2Ca$ coating versus the immersion time.

Fig. S21. Equivalent circuit model of the scratched $(C_{13}H_{27}COO)_2Ca@MX$ ene coating versus the immersion time.

Fig. S22. Equivalent circuit model of the scratched $(C_{13}H_{27}COO)_2Ca-TA@MXene coating versus the immersion time.$

	R		CPE ₁ /C	CPE _P		CPE	dl				
Samj e	pl s(Ω)	R _c (Ω)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	$R_1(\Omega)$	C ₁ (F)	R _{ct} (Ω)
12h	3.44 1	216 5	0.0003 869	0.5 82 6	1286	0.002 271	0.9 57 6	2.466 ×10 ¹⁴	6.419× 10 ¹⁸	1.072×10 -5	8527
48h	8.28 5	918 .6	5.182× 10 ⁻⁵	0.8 00 5	/	1.071 ×10 ⁻⁵	1	/	1.935×10^{4}	1.684×10 10	4204
120 h	0.16 19	509 .4	5.972× 10 ⁻⁹	0.9 35 3	/	9.404 ×10 ⁻⁵	0.7 53 6	/	7.872	1.79×10 ⁻ 5	7964
192 h	7.52 6	145 2	0.0001 956	0.7 29 8	2325	2.658 ×10 ⁻⁵	0.9 22 2	30.04	5.663×10^{4}	0.008431	5052

Table S7. Electrochemical parameters obtained from the EIS plots of the scratched Al alloy versus the immersion time.

Table S8. Electrochemical parameters obtained from the EIS plots of the scratched $(C_{13}H_{27}COO)_2Ca$ coating versus the immersion time.

	R		CPE ₁			CPE	dl				
Sampl s(e Ω)		R _c (Ω)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	R ₁ (Ω)	C ₁ (F)	R _{ct} (Ω)
12h	141. 8	3.8 22× 10 ⁴	3.978× 10 ⁻⁵	0.3 23 2	/	1.425 ×10 ⁻⁶	0.8 38 6	1.066 ×10 ⁴	8100	2.496×10 6	1.412 ×10 ⁴
48h	0.01	1.6 29× 10 ⁴	1.078× 10 ⁻⁵	0.5 26 5	/	1.108 ×10 ⁻⁶	0.7 04 4	/	501.6	0.003098	6516
120 h	0.01	931 8	1.01×1 0 ⁻⁵	0.4 99 8	226	5.985 ×10 ⁻⁹	0.8 33 1	1377	9.401× 10 ⁴	2.957×10 -9	5589
192 h	74.2 9	2.0 01× 10 ⁴	2.226× 10 ⁻⁵	0.8	/	1.23× 10 ⁻⁷	0.8	/	640.2	0.00143	1.004 ×10 ⁴

Table S9. Electrochemical parameters obtained from the EIS plots of the scratched $(C_{13}H_{27}COO)_2Ca@MX$ ene coating versus the immersion time.

Sampl	R	R _c (CPE ₁	L(H)	CPE _{dl}	L(H)	$R_1(\Omega)$	C(F)	$R_{ct}(\Omega$

e	s(Ω)	Ω)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n		Y ₀ (S.cm ⁻ ² .s ⁿ)	n)
12h	10	6.6 43× 10 ⁴	1.261× 10 ⁻⁵	0.4 20 4	/	8.309 ×10 ⁻⁷	0.4 67 9	/	/	/	3.855 ×10 ⁴
48h	0.69 35	1.9 97× 10 ⁴	0.0001 161	0.4 82	/	2.041 ×10 ⁻⁶	0.6 13 2	2.054 ×10 ⁴	/	/	4050
120 h	46.2 8	3.1 42× 10 ⁴	5.532× 10 ⁻⁵	0.8	/	9.759 ×10 ⁻⁷	0.8	/	137.9	4.845×10 -5	1.145 ×10 ⁴
192 h	51.0 9	$2.0 \\ 77 \times 10^4$	2.814× 10 ⁻⁵	0.7 15 7	7.159× 10 ¹⁹	4.791 ×10 ⁻⁷	0.8 67	0.295 2	147.9	0.000220 4	1.793 ×10 ⁴

Table S10. Electrochemical parameters obtained from the EIS plots of the scratched $(C_{13}H_{27}COO)_2Ca$ -TA@MXene coating versus the immersion time.

	R		CPE ₁			CPE _{dl}					
Samj e	pl s(Ω)	R _c (Ω)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	Y ₀ (S.cm ⁻ ² .s ⁿ)	n	L(H)	R ₁ (Ω)	C(F)	R _{ct} (Ω)
12h	100	$7.3 \\ 04 \times 10^4$	9.196× 10 ⁻⁷	0.5 02 4	/	3.663 ×10 ⁻⁵	0.4 57 5	/	/	/	5.112 ×10 ⁴
48h	3.93 5×10 4	1.2 26× 10 ⁴	9.576× 10 ⁻⁷	0.6 36 1	/	6.034 ×10 ⁻⁵	0.5 11 8	2.054 ×10 ⁴	1090	0.004631	6248
120 h	8.16 4	2.8 58× 10 ⁴	2.671× 10 ⁻⁶	0.5 90 3	/	4.109 ×10 ⁻⁵	0.6 98 1	3.825 ×10 ¹³	297.5	0.002202	1.259 ×10 ⁴
192 h	10	1.2 62× 10 ⁵	1.223× 10 ⁻⁶	0.4 96 6	4.982× 10 ⁵	2.224 ×10 ⁻⁹	0.8 65 5	274.6	2.53×1 0 ⁴	2.258×10 -5	1.953 ×10 ⁵

Fig. S23. Polarization curves of the scratched Al, $(C_{13}H_{27}COO)_2Ca$, $(C_{13}H_{27}COO)_2Ca$ @MXene, $(C_{13}H_{27}COO)_2Ca$ -TA@MXene samples after immersion tests for 8 days.

Fig. S24. Optical images, SEM images, EDS mappings, and atomic percentages of the scratched samples before and after immersion test for 192 h in 3.5 wt.% NaCl solution: (a_1-a_4) before and (b_1-b_4) after immersion tests for Al alloy, and (c_1-c_4) before and (d_1-d_4) after immersion test for $(C_{13}H_{27}COO)_2Ca$ coating.

Reference

- [S1] X. Sun, S. Gu, L. Wang, H. Wang, S. Xiong, X. Yin, S. Yang, Multifunctional liquidlike magnetic nanofluids mediated coating with anticorrosion and self-healing performance, Journal of Colloid and Interface Science, 654 (2024) 25-35.
- [S2] S. Liu, Z. Li, Q. Yu, Y. Qi, Z. Peng, J. Liang, Dual self-healing composite coating on magnesium alloys for corrosion protection, Chemical Engineering Journal, 424 (2021) 130551.
- [S3] Y. Huang, T. Liu, L. Ma, J. Wang, D. Zhang, X. Li, Saline-responsive triple-action selfhealing coating for intelligent corrosion control, Materials & Design, 214 (2022) 110381.
- [S4] L. Cao, W. Wang, J. Cheng, T. Wang, Y. Zhang, L. Wang, W. Li, S. Chen, Synergetic Inhibition and Corrosion-Diagnosing Nanofiber Networks for Self-Healing Protective Coatings, ACS Applied Materials & Interfaces, 15 (2023) 48645-48659.
- [S5] R. Wang, L. Cao, W. Wang, Z. Mao, D. Han, Y. Pei, Y. Chen, W. Fan, W. Li, S. Chen, Construction of Smart Coatings Containing Core–Shell Nanofibers with Self-Healing and Active Corrosion Protection, ACS Applied Materials & Interfaces, 16 (2024) 42748-42761.

- [S6] X. Fu, W. Du, H. Dou, Y. Fan, J. Xu, L. Tian, J. Zhao, L. Ren, Nanofiber composite coating with self-healing and active anticorrosive performances, ACS Applied Materials & Interfaces, 13 (2021) 57880-57892.
- [S7] L. Cheng, C. Liu, H. Wu, H. Zhao, F. Mao, L. Wang, A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings, Journal of Materials Science & Technology, 80 (2021) 36-49.
- [S8] Z. Bi, F. Gao, M. Liu, R. Zhang, R. Liu, G. Cui, J. Xu, Multifunctional self-healing coatings with orderly distributed microcapsules aligned by magnetic field, Chemical Engineering Journal, 450 (2022) 138250.
- [S9] Q. Zhang, W. Li, X. Liu, J. Ma, Y. Gu, R. Liu, J. Luo, Polyaniline Microspheres with Corrosion Inhibition, Corrosion Sensing, and Photothermal Self-Healing Properties toward Intelligent Coating, ACS Applied Materials & Interfaces, 16 (2023) 1461-1473.
- [S10] B. Li, D. Njuko, M. Meng, A. Tang, Y. Li, Designing smart microcapsules with natural polyelectrolytes to improve self-healing performance for water-based polyurethane coatings, ACS Applied Materials & Interfaces, 14 (2022) 53370-53379.

a