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9 1. Applicability Domain

10
11 Initially, multiple subclassifiers are constructed using ensemble learning techniques, wherein 

12 the training data undergoes random variations in X variables and samples. Classification errors 

13 are calculated for each subclassifier. For new data points, the subclassifiers predict class values, 

14 and the final predicted class is determined based on the majority vote. Performance Ratios (PR) 

15 such as  and  (Eq.2), where  is the number of 
𝑅𝑇! =

𝑁𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑓𝑖𝑒𝑟𝑠

𝑘 𝑅𝑇 ‒ 1 = 1 ‒ 𝑅𝑇1 𝑁𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠

16 subclassifiers which predictions is equal to 1, and k is the number subclassifier models. PR 

17 representing the ratios of predicted class values, are utilized to assess prediction reliability. In 

18 parallel, data density is utilized as an additional PR for AD. By evaluating the number of 

19 neighboring training data points, data density provides insight into the reliability of predictions. 

20 If the density is high, indicating a significant number of neighboring data points, the prediction 

21 result is considered reliable. To establish the AD, a combined approach is proposed. First, a 

22 threshold for data density is set. If the data density of a new data point falls below this threshold, 

23 the prediction result is deemed unreliable. However, for data points with a density exceeding 

24 the threshold, the PR based on ensemble learning is used to evaluate the prediction result's 

25 reliability. By integrating ensemble learning and data density, this methodology offers a 
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26 comprehensive framework for defining the AD of classifiers, ensuring reliable predictions 

27 within the established boundaries.

28

29 The second method described by Roy et al. to check whether an object lies within the 

30 applicability domain of our model, we assess the descriptors of the training set under the 

31 assumption that they ideally follow a normal distribution. Based on the characteristics of the 

32 normal distribution, approximately 99.7% of data points are expected to fall within three 

33 standard deviations (±3 SD) from the mean. This range, therefore, represents where the 

34 majority of the training compounds are located. For any given compound k, if the standardized 

35 value for any descriptor i (denoted as Ski) exceeds 3, the compound is considered an X-outlier 

36 (if it belongs to the training set) or is outside the AD (if it belongs to the test set) with respect 

37 to that descriptor. If some Ski values exceed 3 while others do not, the compound is similar in 

38 certain descriptors and dissimilar in others, necessitating a criterion for assessment. To address 

39 this scenario, method utilize the standard score corresponding to a cumulative probability of 

40 90%, which is Z=1.28 in a standard normal distribution. Then compute a new statistic, Snew, 

41 defined as the mean of the Ski values plus 1.28 times their standard deviation. If Snew < 3, there 

42 is a 90% probability that the Ski values for that object are below 3. In such cases, the compound 

43 is considered not an X-outlier or within the AD.

44

45 2. Evaluation metrics

46

47 Detailed information about evaluation metrics can be found in Supplementary Information. 

48 The accuracy of a model is determined by calculating the ratio of correctly classified instances 

49 to the total number of instances. This metric is particularly useful when the dataset is balanced, 

50 meaning that all classes are represented equally. In such cases, it provides a quick and general 

51 assessment of performance. However, it is important to exercise caution when interpreting 

52 accuracy in cases where the classes are imbalanced.

53
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

(𝑇𝑃 +  𝑇𝑁) 
 (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)

54 The precision of a prediction is evaluated by calculating the ratio of true positives to the total 

55 number of predicted positives. By prioritising precision, we can ensure that the classifier makes 

56 fewer incorrect positive predictions, which is of paramount importance when we require a high 

57 level of confidence in each positive classification.



58
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃
(𝑇𝑃 +  𝐹𝑃)

59 The recall, or sensitivity, of a model represents its capacity to identify all actual positive 

60 instances. A high recall rate indicates that the model is able to effectively identify the majority 

61 of true positive cases, making it an appropriate choice for scenarios where the cost of failing to 

62 detect positive cases is greater than that of incorrectly flagging negatives as positives.

63
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

  

64 Kappa is a statistical measure that assesses the agreement between a model's predictions and 

65 the actual labels, taking into account the probability of such an agreement occurring by chance. 

66 This metric is advantageous for comparing the performance of classifiers across datasets with 

67 disparate distributions or class imbalances. The incorporation of random chance into the Kappa 

68 metric provides a more robust measure than accuracy in scenarios with unbalanced classes. 

69 This allows for the identification of whether the model is genuinely effective or merely 

70 exploiting the dataset's composition.

71
𝐾𝑎𝑝𝑝𝑎 =  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ‒ 𝑃𝑒 
1 ‒  𝑃𝑒

, 𝑤ℎ𝑒𝑟𝑒 𝑃𝑒 =  
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
+  

(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
 

72 The F1 Score is a metric that balances precision and recall, providing a single score that reflects 

73 both the correctness of positive predictions and the ability to capture all positives. Formally, 

74 the F1 Score is the harmonic mean of precision and recall. The F1 score is particularly 

75 advantageous in scenarios where the class distribution is uneven or when the costs associated 

76 with false positives and false negatives are significant. The F1 score offers a more 

77 comprehensive evaluation of a classifier's performance than precision or recall alone, rendering 

78 it an appropriate choice when an overall metric that considers both is desired.

79
𝐹1 =  2 ∙  

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)

  

80 The MCC (Matthews Correlation Coefficient) is a statistical measure that takes into account 

81 both true and false positives and negatives, making it particularly informative in datasets with 

82 imbalanced classes. The coefficient ranges from -1 to +1, with +1 indicating a perfect 

83 prediction, 0 indicating no better than random guessing, and -1 indicating total disagreement. 

84 In scientific contexts where all errors are equally costly and the dataset may not have a balanced 



85 class distribution, the MCC is of great value as it provides a reliable measure even when classes 

86 are unevenly distributed.

87
𝑀𝐶𝐶 =  

(𝑇𝑃 ∙  𝑇𝑁 ‒  𝐹𝑃 ∙  𝐹𝑁) 
(𝑇𝑃 +  𝐹𝑃)(𝑇𝑃 +  𝐹𝑁)(𝑇𝑁 +  𝐹𝑃)(𝑇𝑁 +  𝐹𝑁)

88 Balanced Accuracy is a method of accounting for class imbalances in a dataset by averaging 

89 the recall values of each class, thereby providing a more equitable view of the model's 

90 effectiveness across classes. It is of paramount importance when working with imbalanced 

91 datasets, as it prevents a situation whereby high accuracy in one class would result in poor 

92 performance in another being overlooked. The use of balanced accuracy is beneficial when 

93 assessing the performance of models on datasets comprising imbalanced classes. This approach 

94 ensures that the detection rate for each class is represented equally in the performance metric, 

95 providing a more accurate evaluation of the model's effectiveness across different class 

96 distributions.

97
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

1
2

 ∙ ( 
𝑇𝑃 

(𝑇𝑃 +  𝐹𝑁)
 +  

𝑇𝑁
(𝑇𝑁 +  𝐹𝑃)

 )
98 where TP stands for True Positive, TN True Negative, FP False Positive, FN False Negative.

99

100 3. Descriptor calculations

101 As stated in the “Descriptor calculations” section in main text, the modelling did not 

102 incorporate some of the periodic table descriptors. This is attributable to the impracticability of 

103 calculating the values of certain descriptors, given the presence of metals in the dataset 

104 (initially, these descriptors were prepared for utilisation with metal oxides in mind). The 

105 subsequent section provides a detailed rationale for the exclusion of specific descriptors during 

106 the modelling stage.

107 1. Total metal electronegativity in a specific metal oxide – all metals and metals oxides in 

108 dataset contains only one metal atom in formula, so this descriptor have the same value as 

109 electroneativity of metal in metal oxide.

110 2. Total metal electronegativity in a specific metal oxide relative to the number of oxygen 

111 atoms – it requiers dividing by number of oxygen atoms. For metals there is 0 oxygen 

112 atoms, so to avoid dividing by 0 this descriptor was not introduce to the manuscript.

113 3.    – as Nmetal in dataset is equal to 1, sum is eqaul to .∑𝛼𝑚𝑒𝑡𝑎𝑙 =  𝛼𝑚𝑒𝑡𝑎𝑙 ∙ 𝑁𝑚𝑒𝑡𝑎𝑙 𝛼𝑚𝑒𝑡𝑎𝑙



114 4.  – due to the low variance in  (only three values) it was not included ∑𝛼𝑜𝑥𝑦 = 𝑁𝑜𝑥𝑦 ∙ 0.33 𝑁𝑜𝑥𝑦

115 into dataset.

116 5. Square of the summation of alpha, gives a measure of the molecular bulk – after 

117 autoscailing value for this descriptor is the same as for alpha.

118 6. Squared sum epsilon relative to the number of atoms – after autoscailing value for this 

119 descriptor is the same as for epsilon.

120 7. Valence of metal – is not clear how this is described in orginal manuscript. Metals used in 

121 modeling can have different valence state, so due to this reason this descriptor was 

122 neglected.

123 Rest of computed descriptors (8) was added to the dataset, and one more time feature selection 

124 were performed. All of added descriptors were not choose to the final model, as their variance 

125 and so also impact on modeling were low.

126

127 4. Splitting algorithm

128

129 Table S1. Distriubution on object in between different class depends on spliting data algorithm.

1:X KS Random 
selection 1

Random 
selection 2

Random 
selection 3

Train Test Train Test Train Test Train Test Train Test
Very slow 
dissolution

5 3 7 1 3 5 5 3 6 2

Partail 
dissolution

23 11 30 4 20 14 25 9 21 13

Quick 
dissolution

48 24 39 33 53 19 46 26 49 23

130

131 Table S2. Evaluation metrics based on splitting method use.
1:X KS Random split (k=3)
Train Test Train Test Train Test

Accuracy 0.96 0.97 0.97 0.97 0.96 0.94
Recall 0.97 0.97 0.97 0.97 0.96 0.94
Precision 0.96 0.97 0.98 0.95 0.97 0.97
F1 0.96 0.97 0.97 0.96 0.97 0.95
MCC 0.92 0.95 0.96 0.89 0.93 0.89
Kappa 0.92 0.95 0.95 0.89 0.93 0.89
CV 0.91 0.95 0.95



BalAcc 0.95 0.95 0.98 0.67 0.97 0.94
132

133

134 Results

135
136 Figure 1. Feature importance for three dissolution classes by Logistic Regression model. A) 

137 very slow dissolution, B) partial dissolution, C) quick dissolution.

138

139
140 Figure 2. Feature importance for three dissolution classes by the Ridge classification model. 

141 A) very slow dissolution, B) partial dissolution, C) quick dissolution.

142

143 The models presented demonstrate the highest evaluation metrics subsequent to the SVC 

144 model. As illustrated in Figures 1 and 2, the overall trends in model behaviour are consistent 

145 for both Logistic Regression and Ridge, in a manner analogous to that observed for SVC. 

146 However, a discrepancy emerges with regard to the concentration of total ENMs in the 

147 medium.

148

149 QMRF 2.1
 Element Explanation

1. QSAR identifier  

1.1. QSAR identifier (title) Dissolution Rate of Engineered Nanomaterials for environmental related 
waters (Python 3.12, sklearn).

1.2 Other related models No other related models.
1.3. Software coding the 

model
Python 3.12, sklearn, xgboost, shap, lighgbm, pandas.

2. General information  



2.0 Abstract

Dissolution plays a significant role in determining both aspects. However, 
understanding and predicting the dissolution rate is a complex process 
influenced by various factors, including the nanoparticles' properties and the 
surrounding environment's characteristics. This study aimed to develop a 
novel structure-property relationship (nano-SPR) classification model to 
predict the dissolution rate of metal and metal oxide ENMs by considering 
both the nanoparticle properties and the characteristics of the environment. 
The model assigns dissolution rate to one of three classes, dependently on 
the way of defining dissolution rate threshold. The developed models 
exhibited good overall quality, with balanced accuracies ranging above 0.9 
depending on the used model type. Through the analysis, we identified 
several important factors that significantly influence the solubility of studied 
ENMs. These factors include bond dissociation enthalpy, solvation enthalpy, 
primary size, valence electrons to core electrons ratio in metal, pH of the 
medium, presence of light, temperature, and initial concentration of the 
ENMs. The results provide valuable insights for assessing the environmental 
transport and fate, predicting (eco)toxicity, and grouping ENMs.

2.1. Date of QMRF 7 December 2024
2.2. QMRF author(s) and 

contact details
Michał Kałapus, mail: michal.kalapus@ug.edu.pl, tel: +48 58 523 52 48
Tomasz Puzyn, mail: tomasz.puzyn@ug.edu.pl, tel: +48 58 523 52 48

2.3. Date of QMRF 
update(s)

N/A

2.4. QMRF update(s) N/A
2.5. Model developer(s) 

and contact details
Michał Kałapus, mail: michal.kalapus@ug.edu.pl, tel: +48 58 523 52 48
Tomasz Puzyn, mail: tomasz.puzyn@ug.edu.pl, tel: +48 58 523 52 48

2.6. Date of model 
development and/or 
publication

2025

2.7. Reference(s) to main 
scientific papers 
and/or software 
package

1. Cortes, C.; Vapnik, V. Support-Vector Networks. Machine Learning 
1995 20:3 1995, 20 (3), 273–297. 
https://doi.org/10.1007/BF00994018.

2. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, 
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, 
G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. 
Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. 
V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, 
F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. 
Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. 
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. 
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. 
Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. 
N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, 
K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, 
M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. 
Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and 
D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

3. Python Software Foundation. Python Language Reference, version 
3.12. Available at: https://www.python.org/

4. Cross, R. K.; Spurgeon, D.; Svendsen, C.; Lahive, E.; Little, S.; von der 
Kammer, F.; Loosli, F.; Matzke, M.; Fernandes, T. F.; Stone, V.; 
Peijnenburg, W. J. G. M.; Bleeker, E. A. J. An Integrated Approach to 
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Testing and Assessment (IATA) to Support Grouping and Read-
across of Nanomaterials in Aquatic Systems. Nano Today 2024, 54, 
102065. https://doi.org/10.1016/J.NANTOD.2023.102065.

2.8. Availability of 
information about the 
model

The model is non-proprietary: full description of the model algorithm is 
available, training and test sets are available as supplementary material of 
original research article.

2.9. Availability of another 
QMRF for exactly the 
same model

N/A

3 Defining the endpoint 
- OECD Principle 1: “A 
DEFINED ENDPOINT"

PRINCIPLE 1: “A DEFINED ENDPOINT". ENDPOINT refers to any 
physicochemical, biological, or environmental property/activity/effect that 
can be measured and therefore modelled. The intent of PRINCIPLE 1 (a 
(Q)SAR should be associated with a defined endpoint) is to ensure clarity in 
the endpoint being predicted by a given model, since a given endpoint could 
be determined by different experimental protocols and under different 
experimental conditions. It is therefore important to identify the 
experimental system and test conditions that is being modelled by the 
Q)SAR.

3.1. Species N/A
3.2. Endpoint Endpoint: dissolution rate (with assumption of first order or pseudo-first 

order kinetics of dissolution) of Engineered Nanomaterials and Nanoforms 
in water, unit: 1*s-1. Endpoint was categorical value of dissolution rate. 
Three class was established, and they are shown in Table below:

      Dissolution rate [1·s-1]     Half time [hours] 
Quick       k ≥ 2.75·10-5                     T1/2 ≤7.2
Partial       2.75·10-5 > k > 3.8·10-7    507 > T1/2 > 7.2
Very Slow     k ≤ 3.8·10-7                     T1/2 ≥ 507 
Predicted endpoint was dissolution rate class.

3.3 Comment on endpoint Endpoint was defined accordingly to OECD Series on Testing and Assessment. 
Guidance Document for the Testing of Dissolution and Dispersion Stability of 
Nanomaterials, and the Use of the Data for Further Environmental Testing 
and Assessment. Dissolution rate was only gatherd from studies which follow 
Static Batch Test reccomended by OECD. Dissolution rate was measured in 
natural waters or waters which simulated natural waters.

3.4. Endpoint units 1*s-1, where s stand for seconds
3.5. Dependent variable

All dependent variables were autoscaled according to equation: , 
𝑋𝑍 =

𝑋 ‒ 𝑋̂
𝑆

where Xz is transformed value, X orginal value for descriptor,  mean value 𝑋̂
for descriptor and S standard deviation.

3.6. Experimental protocol OECD Series on Testing and Assessment. Guidance Document for the 
Testing of Dissolution and Dispersion Stability of Nanomaterials, and the Use 
of the Data for Further Environmental Testing and Assessment.

3.7. Endpoint data quality 
and variability

Endpoint data quality and variability: provide available information about 
the experimental test data quality selection and evaluation and include a 
description of the data quality used to develop the model. This includes 
provision of information about in terms of the known variability of the test 
data, i.e. repeatability (variability over time) and reproducibility (variability 
between laboratories) and sources of error (confounding factors which may 
influence testing results) etc.. 
Please also as far as possible provide information about test chemical purity. 
Ideally, (Q)SARs should be based on experimental tests performed with test 
chemical of high purity to assure good correlation between structures and 



effect. 
Test chemical purity should preferably be provided for the individual 
substances used in the training and validation sets.
The data curation procedure and its effect on data quality should also be 
described here.

4 Defining the algorithm 
- OECD Principle 2 : 
“AN UNAMBIGUOUS 
ALGORITHM”

PRINCIPLE 2: “AN UNAMBIGUOUS ALGORITHM”. The (Q)SAR estimate of an 
endpoint is the result of applying an ALGORITHM to a set of structural 
parameters which describe the chemical structure. The intent of PRINCIPLE 
2 (a (Q)SAR should be associated with an unambiguous algorithm) is to 
ensure transparency in the model algorithm that generates predictions of 
an endpoint from information on chemical structure and/or 
physicochemical properties. In this context, algorithm refers to any 
mathematical equation, decision rule or output approach.

4.1. Type of model A Support Vector Classifier is described as a data-driven, statistical machine 
learning model. It uses training data to find an optimal decision boundary—
relying on mathematical optimization and statistical principles rather than 
predefined rules or domain-specific alerts—to classify new examples.

4.2. Explicit algorithm Algorithm is presented in manuscript and also it is available in original 
manuscript: Cortes, C.; Vapnik, V. Support-Vector Networks. Machine 
Learning 1995 20:3 1995, 20 (3), 273–297. 
https://doi.org/10.1007/BF00994018.

4.3. Descriptors in the 
model

8 descriptors were utilized in developing model. Solvation enthalpy 
[kcal/mol], bond dissociation enthalpy [kcal/mol], primary size of ENM [nm], 
ratio of valence to core electron in metal [-], pH, total concentration of ENM 
in water [mg/L], temperature [C], presence of light (binary) [-] 

4.4. Descriptor selection The descriptors employed in the models were selected using a meta-
transformer (SFM), based on the relative importance of the features (1). 
Alternative approaches, such as a genetic algorithm and sequential feature 
selection, yielded inferior results in comparison to those based on feature 
importance. In order to select the most appropriate descriptors, SFM makes 
use of an external machine learning algorithm. All methodologies employed 
to predict the class of dissolution were utilised within the SFM framework. 
Based on those findings we select four descriptors from both groups, which 
gives total number of 8 descriptors. The intrinsic descriptors occurring most 
frequently are: solvation enthalpy (SE), bond dissociation enthalpy (DE), 
enthalpy of water adsorption on surface (WA), valence to core electron 
ratio in metal (RE). For extrinsic descriptors se select pH, total concentration 
(TC), temperature (T) and presence of light (DL). What important, primary 
size of ENMs which is a only distinctive factor between nanoforms was 
choose to the final number of descriptors replacing WA.

4.5. Algorithm and 
descriptor generation

RE was computed by approach proposed by Kar et al. (2) and next 
developed by De et al. (3) is based at the initial stage on values directly 
extracted from the periodic table (1st generation) and derived rest of the 
descriptors (2nd generation) from previously collected data. The authors of 
the original paper present 23 descriptors, but some of them apply only to 
metal oxides, while the data set used for this research also includes metals, 
so part of them were omitted and in the end, only 9 were used. A list of 
descriptors with details can be found in Supplementary Information 1. This 
method offers the advantage of easy determination of descriptors by using 
only the periodic table.

https://doi.org/10.1007/BF00994018


The second class of descriptors includes thermodynamic functions related 
to the dissolution process of metals and metal oxides, the enthalpy of 
dissociation of the metal-metal and metal-oxygen bond, the enthalpy of 
solvation of ENM and enthalpy of adsorption water on the surface. To 
calculate thermodynamic descriptors, we first built molecular models of 
nanoparticles without coating, then performed geometry optimization using 
the B3LYP method and the cc-pVTZ basis set for particles composed with 
elements with atomic numbers less than 36, and the aug-cc-pVTZ-PP - 
augmented mixed function method along with a pseudopotential, for 
compounds with atomic number greater than 36.

Rest of descriptors are in fact characterization of the medium parameters 
such as pH, T, TC and DL.

4.6. Software name and 
version for descriptor 
generation

Gaussian 16

4.7. Chemicals/Descriptors 
ratio

76/8 (utilized model)
76/20 (all descriptors)

5 Defining the 
applicability domain - 
OECD Principle 3: “A 
DEFINED DOMAIN OF 
APPLICABILITY”

PRINCIPLE 3: “A DEFINED DOMAIN OF APPLICABILITY”. APPLICABILITY 
DOMAIN refers to the response and chemical structure space in which the 
model makes predictions with a given reliability. Ideally the applicability 
domain should express the structural, physicochemical and response space 
of the model. The CHEMICAL STRUCTURE (x variable) space can be 
expressed by information on physicochemical properties and/or structural 
fragments. The RESPONSE (y variable) can be any physicochemical, 
biological or environmental effect that is being predicted. According to 
PRINCIPLE 3 a (Q)SAR should be associated with a defined domain of 
applicability. Section 5 can be repeated (e.g., 5.a, 5.b, 5.c, etc) as many 
times as necessary if more than one method has been used to assess the 
applicability domain.

5.1. Description of the 
applicability domain of 
the model

AD is based on probabilistic boundaries. AD is described in structural 
feature, descriptors and parameters of medium space. Model is applicable 
for nano metals and metals oxides. Model is applicable to normal natural 
waters or simulated natural waters.

5.2. Method used to 
assess the applicability 
domain

Method described by Roy et al. (4) to check whether an object lies within 
the applicability domain of our model, we assess the descriptors of the 
training set under the assumption that they ideally follow a normal 
distribution. Based on the characteristics of the normal distribution, 
approximately 99.7% of data points are expected to fall within three 
standard deviations (±3 SD) from the mean. This range, therefore, 
represents where the majority of the training compounds are located. For 
any given compound k, if the standardized value for any descriptor i 
(denoted as Ski) exceeds 3, the compound is considered an X-outlier (if it 
belongs to the training set) or is outside the AD (if it belongs to the test set) 
with respect to that descriptor. If some Ski values exceed 3 while others do 
not, the compound is similar in certain descriptors and dissimilar in others, 
necessitating a criterion for assessment. To address this scenario, method 
utilize the standard score corresponding to a cumulative probability of 90%, 
which is Z=1.28 in a standard normal distribution. Then compute a new 



statistic, Snew, defined as the mean of the Ski values plus 1.28 times their 
standard deviation. If Snew < 3, there is a 90% probability that the Ski values 
for that object are below 3. In such cases, the compound is considered not 
an X-outlier or within the AD.

5.3. Software name and 
version for 
applicability domain 
assessment

AD has been established based on method describe by Roy et al. The 
program for determining the domain was prepared by hand in the Python 
programming language (Python 3.12).

5.4. Limits of applicability AD is limited to normal environmental condition. For example, water with 
pH 2 or 12 is not recognized as normal environmental condition. Also there 
is limitation in types of nanomaterials, as only metals and metal oxide 
nanomaterials are consider in AD.

6 Defining goodness-of-
fit and robustness 
(internal validation) – 
OECD Principle 4: 
“APPROPRIATE 
MEASURES OF 
GOODNESS-OF-FIT, 
ROBUSTENESS AND 
PREDICTIVITY”

PRINCIPLE 4: “APPROPRIATE MEASURES OF GOODNESS-OF-FIT, 
ROBUSTENESS AND PREDICTIVITY”. PRINCIPLE 4 expresses the need to 
perform validation to establish the performance of the model. GOODNESS-
OF-FIT and ROBUSTNESS refer to the internal model performance.

6.1. Availability of the 
training set

It is available and attached. Training data are available at: doi do danych

6.2. Available information 
for the training set

Data only consist different nanomaterials and nanoforms in different 
environmental waters.

6.3. Data for each 
descriptor variable for 
the training set

It is available and attached.

6.4. Data for the 
dependent variable 
for the training set

It is available and attached.

6.5. Other information 
about the training set

N/A

6.6. Pre-processing of data 
before modelling

Data were autoscaled before analysis.

6.7. Statistics for 
goodness-of-fit

Train Acc         Precisio Recall F1 Kappa MCC BalAcc
DT 0.99 0.99 0.99 0.99 0.97 0.97 0.99
RF 0.97 0.98 0.97 0.97 0.95 0.95 0.97
GB 0.97 0.97 0.97 0.97 0.95 0.95 0.92
ET 0.99 0.99 0.99 0.99 0.97 0.97 0.99
LR 0.96 0.96 0.96 0.96 0.92 0.92 0.90
SVC 0.96 0.97 0.96 0.96 0.92 0.92 0.96
Ridge 0.97 0.97 0.97 0.97 0.95 0.95 0.92
Ada 0.75 0.94 0.75 0.74 0.55 0.62 0.72
LDA 0.97 0.98 0.97 0.97 0.95 0.95 0.87
Cat 0.96 0.96 0.96 0.96 0.92 0.92 0.85
LGB 0.99 0.99 0.99 0.99 0.97 0.97 0.93
XGB 0.99 0.99 0.99 0.99 0.97 0.97 0.93

6.8. Robustness - Statistics 
obtained by leave-
one-out cross-
validation

N/A



6.9. Robustness - Statistics 
obtained by leave-
many-out cross-
validation

Train          CV
DT 0.96
RF 0.94
GB 0.91
ET 0.96
LR 0.92
SVC 0.95
Ridge 0.91
Ada 0.93
LDA 0.92
Cat 0.94
LGB 0.92
XGB 0.95

6.10. Robustness - Statistics 
obtained by Y-
scrambling

100 iterations
Mean accuracy for SVC = 0.34
Mean balanced accuracy for SVC = 

6.11. Robustness - Statistics 
obtained by bootstrap

N/A

6.12. Robustness - Statistics 
obtained by other 
methods

Accuracy from Dummy Classifier is equal to 0.4

7 Defining predictivity 
(external validation) – 
OECD Principle 4: 
“APPROPRIATE 
MEASURES OF 
GOODNESS-OF-FIT, 
ROBUSTENESS AND 
PREDICTIVITY”

PRINCIPLE 4: “APPROPRIATE MEASURES OF GOODNESS-OF-FIT, 
ROBUSTENESS AND PREDICTIVITY”. PRINCIPLE 4 expresses the need to 
perform validation to establish the performance of the model. PREDICTIVITY 
refers to the external model validation. Section 7 can be repeated (e.g., 7.a, 
7.b, 7.c, etc) as many times as necessary if more validation studies need to 
be reported in the QMRF.

7.1. Availability of the 
external validation set

It is available and attached.

7.2. Available information 
for the external 
validation set

Data only consist different nanomaterials and nanoforms in different 
environmental waters.

7.3. Data for each 
descriptor variable for 
the external validation 
set

It is available and attached.

7.4. Data for the 
dependent variable 
for the external 
validation set

It is available and attached.

7.5. Other information 
about the external 
validation set

External validation set with 38 nanomaterials and nanoforms in different 
environmental conditions.

7.6. Experimental design 
of test set

By choosing every third (1:X method) NM or NF from whole dataset.

7.7. Predictivity - Statistics 
obtained by external 
validation

Train          CV
DT 0.94
RF 0.90
GB 0.95
ET 0.94



LR 0.93
SVC 0.95
Ridge 0.91
Ada 0.90
LDA 0.95
Cat 0.93
LGB 0.95
XGB 0.94

7.8. Predictivity - 
Assessment of the 
external validation set Validation Accuracy Precision Recall F1 Kappa MCC

Bal. 
Acc

DT 0.95 0.95 0.95 0.95 0.89 0.90 0.86
RF 0.92 0.93 0.92 0.91 0.84 0.84 0.75
GB 0.92 0.93 0.92 0.91 0.84 0.84 0.75
ET 0.92 0.93 0.92 0.91 0.84 0.84 0.75
LR 0.95 0.95 0.95 0.95 0.90 0.90 0.88
SVC 0.97 0.97 0.97 0.97 0.95 0.95 0.97
Ridge 0.97 0.98 0.97 0.97 0.95 0.95 0.89
Ada 0.87 0.89 0.87 0.87 0.74 0.75 0.77
LDA 0.92 0.93 0.92 0.91 0.84 0.84 0.75
Cat 0.92 0.93 0.92 0.91 0.84 0.84 0.75
LGB 0.92 0.86 0.92 0.89 0.84 0.85 0.67

Descriptors values range is similar in training and validation set. The 
descriptor and response range for the validation test set is compared with 
that for the training set.

7.9. Comments on the 
external validation of 
the model

N/A

8 Providing a 
mechanistic 
interpretation - OECD 
Principle 5: “A 
MECHANISTIC 
INTERPRETATION, IF 
POSSIBLE”

PRINCIPLE 5: “A MECHANISTIC INTERPRETATION, IF POSSIBLE”. According to 
PRINCIPLE 5, a (Q)SAR should be associated with a mechanistic 
interpretation, if possible.

8.1. Mechanistic basis of 
the model

The fundamental premise was to identify descriptors for the model that 
would consider both the structural characteristics of the ENM and the 
properties of the medium that influence the dissolution of nano metals and 
metal oxides. In order to achieve this, descriptors were prepared based on 
the enthalpy of processes that are potentially relevant to the kinetics of 
dissolution. These processes include the enthalpy of solvation and the 
enthalpy of dissociation of bonds between atoms in the metal and metal 
oxide crystals. A descriptor indicating the ratio of electrons in the core of 
the metal atom to valence electrons was employed to distinguish between 
ENMs, while the original size of the nanomaterial was used to distinguish 
between nanoforms. Subsequently, medium parameters, including initial 
concentration, pH, temperature and the presence of light, were considered. 
Experimental studies have demonstrated that all of these properties exert 
an influence on the dissolution kinetics of ENMs.

8.2. A priori or a posteriori 
mechanistic 
interpretation

Posteriori, description is available in attached manuscript.



8.3. Other information 
about the mechanistic 
interpretation

N/A

9 Miscellaneous 
information

 

9.1. Comments The proposed model can be used in a framework for nano metals and metal 
oxides in a “OECD Series on Testing and Assessment. Guidance Document 
for the Testing of Dissolution and Dispersion Stability of Nanomaterials, and 
the Use of the Data for Further Environmental Testing and Assessment”. 
Model can be also used in IATA proposed by Cross et al. (5)
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9.3 Supporting 
information

All data use in developed models are available and attached to this work.
Training and test set are submitted in .xlsx format. Predictions are included 
in the Supplementary Information.
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