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Materials

FeCl;-6H,0 (AR) was obtained from Tianjin Damao Chemical Reagent Factory.
NiCl,-6H,0 (99%), terephthalic acid (BDC, 99%), 1-butyl-3-methylimidazolium
chloride (BmimCl, 98%), 1-butyl-1-methylpyrrolidinium chloride (BmpyrroCl, 98%),
1-butylpyridinium chloride (BmpyriCl, 99%), 1-butyl-3-methylimidazolium bromide
(BmimBr], 99%), and N,N-dimethylformamide (DMF, 99.8%) were purchased from
Adamas Reagent Co., Ltd.,, Shanghai. Pt/C (Pt 60 wt%) was purchased from Suzhou
Senelone Technology Co., Ltd. Veratrylglycerol-B-guaiacyl ether (VG, 97%),
veratraldehyde (VAId, 98%), veratric acid (VAc, 98%), and guaiacol (99%), 1-butyl-
3-methylimidazolium trifluoromethanesulfonate (BmimOTF, 98%) were also obtained

from Beijing Innochem Technology Co., Ltd.
Preparation of FeNi@C

In a clean beaker, 35 ml of DMF, 0.4 mM BDC, 0.2 mM NiClz-6H-0, and 0.2 mM
FeCls-6H20 were mixed and stirred for 30 minutes until dissolved. Subsequently, 2.5
ml of anhydrous ethanol and 2.5 ml of ultrapure water were pre-mixed and added to the
solution, which was then stirred thoroughly. The mixture was transferred into a reaction
vessel with a polytetrafluoroethylene lining and pre-treated nickel foam was added. The
reaction was conducted at 125°C for 12 hours. After cooling to room temperature, the
FeNi-BDC precursor grown in situ on the nickel foam was alternately washed three
times with ethanol and deionized water and vacuum-dried at 70°C overnight. The FeNi-
BDC was carbonized at 600°C for 2 hours under an argon atmosphere at a heating rate
of 3°C/min to obtain NiFe@C. Ni@C was prepared using the same procedure by
replacing FeCls-6H20 with an equimolar amount of NiCl:-6H20. Similarly, Fe@C was
prepared by substituting NiCl.-6H20 with an equimolar amount of FeCls-6H-O.

Characterization

X-ray diffraction (XRD) patterns were recorded on a Rigaku SmartLab SE
instrument using Cu Ka radiation (A = 1.5418 A), with a scanning range of 10° to 90°
and a step size of 5°. Microstructural analysis was performed using a Talos F200x
transmission electron microscope (TEM) from FEI at an accelerating voltage of 200
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kV. Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray
spectroscopy (EDS) on a GeminiSEM 300 was used to analyze the microstructure and
elemental composition of the electrocatalysts. X-ray photoelectron spectroscopy (XPS)
was conducted on a Thermo Scientific K-Alpha instrument using Al Ka radiation
(1486.6 eV) to elucidate the surface chemical states, with the C1s binding energy set at
284.8 eV for calibration. Fourier-transform infrared (FT-IR) spectra were acquired
using a Bruker INVENIO S spectrometer. Raman spectra were obtained using a
HORIBA XploRA PLUS Raman spectrometer, covering a wavenumber range of 100-
2000 cm™. The GCMS-QP2010 Ultra instrument was employed for qualitative analysis
of the product, with a 1 pl sample injection and a split ratio of 20:1. The temperature
program involved ramping from room temperature to 40°C, holding at 40°C for 1
minute, and then increasing to 300°C at a rate of 10 °C/min, followed by a final hold at
300°C for 5 minutes. High-resolution liquid chromatography-mass spectrometry (HR-
LC-MS) of the products was performed using a Trip Tof 5600+ from AB Sciex. The
quantification of VAld and VAc in the products was determined by high-performance
liquid chromatography (HPLC) on an Alliance €2695 system. Electron spin resonance
(ESR) experiments were conducted on an EMXplus-9.5/12 spectrometer to capture free
radicals, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap to detect spin-

active species *OH and *O:" in the catalyst or aqueous solution.

Electrochemical characterization

The electrochemical performance of the prepared catalysts was evaluated using a
PARSTAT 3000A-DX electrochemical workstation in a standard three-electrode
configuration. A Pt plate served as the counter electrode, Hg/HgO as the reference
electrode, and FeNi@C served as the working electrode. The Hg/HgO reference
electrode was calibrated to the reversible hydrogen electrode (RHE, 0.860 V) potential
in a hydrogen-saturated 0.5 M KOH + 0.05 mM VG electrolyte, with all potentials
reported vs. RHE unless otherwise stated. Linear sweep voltammetry (LSV) was
performed at a scan rate of 5 mV/s over a potential range of 1.2 to 1.7 V vs. RHE.

Electrochemical impedance spectroscopy (EIS) measurements were carried out under



constant voltage conditions across a frequency range of 0.1 to 10° Hz.
Chronoamperometry at a constant potential was used to evaluate the catalyst’s VG
conversion efficiency and VAId selectivity.

For anion exchange membrane (AEM) electrolyzer testing, 60 wt% Pt/C and
FeNi@C were used as the cathode and anode electrocatalysts, respectively. The Pt/C
catalyst was dispersed in a mixed solvent of water and isopropanol (3:2 v/v), and Nafion
117 solution was added to achieve an ionomer-to-catalyst weight ratio of 0.9:1. The
mixture was ultrasonicated in an ice bath for 1 h and then sonicated sprayed onto a
Tarray 060 carbon paper at a rate of 0.3 ml/min to form a cathode electrode with a 4
cm? effective area and a platinum loading of 0.2 mg (Pt)/cm?. Self-supported FeNi@C
was directly used as the anode electrode. The electrodes were assembled on both sides
of a PiperlON A40-HCO3 anion exchange membrane. All AEM electrolyzer
performance tests were conducted using a Gamry Reference 3000 instrument equipped
with a 30k booster. Polarization curves were obtained by LSV from 1.2 to 1.8 V at a
scan rate of 10 mV/s. Chronoamperometry was performed at 1.4 V with 0.5 M KOH +
0.5 mM VG electrolyte on the anode side and 0.5 M KOH electrolyte on the cathode
side. To investigate the synergistic catalysis with ionic liquids (ILs), an additional 0.26
g of BmpyrroCl was incorporated into the anode-side electrolyte, and the other
experimental conditions remained unchanged.

BmpyrroCl was recycled to validate its stability after 5 consecutive
chronoamperometric tests. Each test was conducted at 1.4 V for 3 h. The recycling
procedure for BmpyrroCl involved the extraction of reaction products from the
electrolyte using ethyl acetate, followed by centrifugation to separate the aqueous phase
containing unreacted impurities. This process was repeated three times. Subsequently,
water was removed via rotary evaporation to recover the ILs and KOH electrolyte. For
the next cycle, water is added to formulate a fresh electrolyte, and a small amount of
KOH is introduced to adjust the pH of the electrolyte to 13 and the solution is brought

to a final volume of 25 ml.

Computational details



Density functional theory as implemented in the Vienna Ab-initio Simulation
Package (VASP) was employed to optimize the geometric structures 2. The exchange-
correlation interactions were described by the generalized gradient approximation
(GGA) 3 in the form of the Perdew-Burke-Ernzerhof functional (PBE) 4. A cut-off
energy of 400 eV for plain-wave basis sets was adopted and the convergence threshold
was 10-5 eV and 5x10-3 eV/A for energy and force, respectively. The weak interaction
was described by DFT+D3 method using empirical correction in Grimme’s scheme °.
The vacuum space was set to be more than 15 A, which was sufficient to avoid
interactions between periodical images.

Quantum chemical studies were performed using DFT implemented in the
GAUSSIAN 16 package °. Geometry optimization and frequency analysis were
performed with the B3LYP hybrid functional 7 at def2svp basis sets. Independent
gradient models based on the Hirshfeld partition (IGMH) 8 ° were performed by
Multiwfn 3.8 1 and VMD v 1.9.3 ' molecular visualization software. The bonding

energies of the IL and VG were calculated as follows: E, = E(AB) - E(A) - E(B).



Fig. S1 SEM images of Ni BDC.



Fig. S2 SEM images of FeNi BDC.
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Fig. S3 SEM images of a and b FeNi@C, ¢ and d Ni@BDC.



100 nm

Fig. S4 a TEM image of Ni@C. b High-resolution TEM image of Ni@C.
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Fig. SS EDS analysis of different regions on FeNi@C confirms the uniform doping of Fe.
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Fig. S6 Comparison of Raman Spectra between FeNi,-BDC and Fe,Ni,@C, a Ni-BDC and
Ni@C, b FeNi-BDC and FeNi@C, ¢ Fe-BDC and Fe@C.
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Fig. S7 Overlay of FT-IR spectra of a Ni-BDC and Ni@C, b Fe-BDC and Fe@C.
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Fig. S8 The LC-MS spectra of the product obtained after electrochemical oxidation of
VG, a the MS spectrum in negative mode, b the MS spectrum in positive mode and ¢
the amplified MS spectra obtained in both positive and negative modes.
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Fig. S10 To determine the optimal reaction conditions, the optimization of both a
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Fig. S11 Quantitative analysis of the temporal variation of reactant and product
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Fig. S14 a Conversions and yield of different Ni- based electrocatalysts determined by
HPLC after 3 h of electrolysis at 1.4 V. b Selectivity of VAId versus reaction time
obtained using chronoamperometry at 1.4 V.
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Fig. S15 a Chronoamperometry curve for the oxidation of VG in the presence of tert-
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Fig. S16 The TEM image of the reconstructed Ni@C verifies the presence of NIOOH.
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Fig. S17 The TEM image and EDS mapping of the reconstructed FeNi@C verifies the
presence of FeNiOOH.
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Fig. S18 Raman spectra of FeNi@C and Fe@C before and after 1.4 V electrolysis for
3 h, a Ni@C, b FeNi@C and ¢ Fe@C.
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Fig. S19 The atomic structures of the (001) surfaces of a Ni@C and b FeNi@C are
depicted in the figures. In the illustrations, gray, red, pink, and yellow spheres represent
Ni, O, H, and Fe atoms, respectively.

24



a Nizp

NS

7

B
FeNi@C
Aftar CA

FaNIEZC
fresh

880 . 810 860 850 730 725 720 715 Ti0 708
Binding energy Binding energy
d Fezp €.
FefiC
.MIE:I? cA Fe 2p1iz Fe 2p3i2 FogC
| After CA
\"-\_
Fo@c
Fresh
Fsac
fresh
534 531 528

730 725 720 715 710 705
Binding energy

Binding energy

535 530
Binding energy

Fig. S20 High-resolution XPS spectra of FeNi@C and Fe@C before and after 1.4 V
electrolysis for 3 h, including a Ni 2p, b Fe 2p, and ¢ O 1s for FeNi@C, as well as d Fe

2p and e O 1s for Fe@C.

25



o
-
1=
o
o

— 1h 50 - 1h
X Bzh B2n
< 801 mmsn — | W3
c <o 40+
o <
- 60' E
2 @ 30-
¢ >
>
c 401 T 0.
5 S
o S
¢ 204 10
>
0- 04
1V 11V 12V 13V 14V 15V 1V 11V 12V 13V 14V 15V
E (V vs. REH) E (V vs. REH)
C 30
1h
4 Bz
251 =mtt

L4
[=]
i

VAc Yield(%)
S @

Loy
L

1V 11V 12V 13V 1.4V 15V
E (V vs. REH)

Fig. S21 Optimization of reaction conditions for electrolysis voltage and electrolysis
time in AEM electrolysis cells, a VG conversion, b VAId yield and ¢ VAc yield.

26



o)
-
28]
=]

o
o
=1

1h 1h
i z2h zh
3100'-3h 50 -3h
Lo —
.E 80 3 404
o
5 60 - S 30-
B >
8 40 T 20-
!
(L) ) > 10
S 20 10
0 o\ ot -‘? 0 \ X <
@ o @ . O 2 <
o 96“ 36‘\6\ 6‘6\6\ o 96‘\‘“ 9‘6“0 0‘6‘6\0
C 10
1h
i 2h
g{HMz3n

VAc Yield(%)
[=;]

41

2]

. e® & @ &€
o g,i‘{‘d\ 0‘0\6‘ e.'i‘(‘(‘\o

Fig. S22 The impact of the anion of ILs on the reactant conversion and product yield,
including a VG conversion, b VAId yield, and ¢ VAc yield.

27



a 100 — b 70 —
zn 60 - izh
§ go{MM3h | El
5 et
o 2
E 40 5> 30
Q =)
Q < 20
O 20 >
> 10 -
0 \ N \ 0 A C A\
) G ) <
) R \ o o
o o g o o e
C 10
1h
2n
g{Hlz3h
x
— 6-
=
2
> 44
7)
<
> 2
0 \ o \
G o G
o W N

Fig. S23 The impact of the cation of ILs on the reactant conversion and product yield,
including a VG conversion, b VAId yield, and ¢ VAc yield.

28



BmpyrroCl-after § chronocamperometric tests

BmpyrraCl

Intensity(a.u.)

3500 3000 2500 2000 1500 1000
Wavenumber (cm™)

Fig. S24 FT-IR analysis of BmpyrroCl before and after 5 consecutive
chronoamperometric tests confirms its stability during a AEM single-cell test.
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Fig. S25 The LC-MS spectra of the product obtained after electrochemical oxidation of
lignin, a the MS spectrum in negative mode, b the MS spectrum in positive mode and
¢ the amplified MS spectra obtained in both positive and negative modes.
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Fig. S26 The GC-MS spectra of the product obtained after electrochemical oxidation
of lignin.
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Fig. S27 The peak signals corresponding to the retention times of reactants and products
in HPLC.
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Table S1Yield of aromatic compounds from lignin electrolysis.

Depolymerized aromatic compound  Yield (wt.%)

VAld 7.3

Vanillin 5.2

Benzaldehyde 3.2
Phenylacetaldehyde 6

Syringic aldehyde 1.8
Guaiacol 5

VAc 2.2

MAc 2.9

4-hydroxy-benzoicaci 24
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