Supplementary Information

Bioconversion of a lignin-derived biphenyl dimer into the strategic building block 5-carboxyvanillic acid in *Pseudomonas putida* KT2440

Helena Gómez-Álvarez^{a c 1*}, Carlos del Cerro-Sánchez^{a c 1}, Pablo Iturbe^a, Virginia Rivero-Buceta^{a c}, Juan Nogales^{b c}, Timothy D. H. Bugg^d and Eduardo Díaz^{a c *}

^a Department of Biotechnology, Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain

^b Department of Systems Biology, National Centre for Biotechnology, Spanish National Research Council, Darwin 3, 28049 Madrid, Spain

^c Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain

^d Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

* Corresponding authors at: Department of Biotechnology, Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain. E-mail addresses: ediaz@cib.csic.es (E. Díaz), hgomalv@cib.csic.es (H. Gómez-Álvarez).

¹ These authors contributed equally to this work.

Supplementary Figures

Figure S1. Schematic representation of plasmids plZDDVA_K, plZDDVA and p254DDVT. Generated with SnapGene 7.2.

Figure S2. LC/MS representative chromatograms. (A) HPLC Chromatograms showing DAD signals at 230 nm. From top to bottom: signals corresponding to authentic DDVA, authentic 5CVA and sample taken from *P. putida* KT2440 (pIZDDVA_K + p254DDVT) resting cells incubated during 5 days in the presence of 1 mM DDVA at pH 7.5. (B) HPLC chromatograms showing evolution of DAD signals at 230 nm over time of samples taken from resting cells experiments (1 mM DDVA, pH 7.5) with *P. putida* KT2440 bearing either empty plasmids pIZ1016 and pSEVA254 (top) or pIZDDVA_K and p254DDVT (bottom). (C) MS spectrum corresponding to peaks at retention times 3.5 (top), 6.8 (middle) and 9.4 (bottom) minutes from the sample shown in panel B (down). Expected *m/z* values in this MS method for DDVA pathway intermediaries and final product are: OH-DDVA, 321; DCHM-HOPDA, 350.23; 5CVA, 213.16.

В

Figure S3 Identification of a consensus TonB box in *P. putida* and functional analysis of a chimeric DdvT* transporter. (A) Amino acid sequence alignment of 11 putative TonB boxes of TonB-dependent transporters from *P. putida* KT2440 and the BtuB receptor from *P. aeruginosa* with the TonB box region of the DdvT transporter from *S. lignivorans* SYK6 (highlighted in purple). Colors indicate similarity (dark pink indicates similar residues in all sequences, light pink indicates similar residues in more than 80% sequences, and white indicates similar residues in less than 80% sequences) considering a Blossum62 score matrix. Logo image was modified from the obtained using WebLogo 3 tool.⁵⁵ (B) 5CVA production profile from 1 mM DDVA using resting cells of *P. putida* KT2440 containing plasmid pIZDDVA_K and plasmid p254DDVTB (encodes the chimeric DdvT* transporter). Samples were taken at 0, 4, 24, 48, 72, and 120 hours. DDVA consumption and 5CVA production are indicated with discontinuous and continuous lines, respectively. All the resting cells experiments were performed in triplicates. Error bars represent standard deviation of the triplicates.

Figure S4. 5CVA production over time with *P. putida* KT2440 (pIZDDVA_K, p254DDVT) cells. Cells were grown in LB medium, M63 medium with 20 mM glucose, or M63 medium with 15 mM octanoate, and then collected (OD_{600} 24) for biotransformation of 1 mM DDVA in resting cells conditions.

Supplementary Tables

Table S1. Oligonucleotides used in this study.

Primer	Sequence (5'-3')
5 ligX	CGGCCGCGCGAATTCGAGCTCGGTACCCTAAGGAGGTGATCTAATGCTGTCCGCAGACCAGAACGACAAGC
3 ligX	TATCCTCTCCCAACCTCCTCTTCGGCACCGCATTAGATCACCTCCTTATCACGCGTCGACATAGCCCTTGT TATCCTG
5 ligY	TTCGTGGCCTGGCAATAAGCGAACGCGTTTTAAGGAGGTGATCTAATGATCATCGACTGCCATGGTCACGT CAGCGCTCCGGTGGA
3 ligY	ATGCCTGCAGGTCGACTCTAGAGGATCCCCTCAAACGTCCAAATTAAACACCTTCCGCGCATTATC
5 ligZ	CAGGATAACAAGGGCTATGTCGACGCGTGATAAGGAGGTGATCTAATGCGGTGCCGAAGAGGAGGTTGGGA GAGGATA
3 ligZ	TCCACCGGAGCGCTGACGTGACCATGGCAGTCGATGATCATTAGATCACCTCCTTAAAACGCGTTCGCTTA TTGCCAGGCCACGAA
ligXc_Fw	ATATATCTAGAAAGGAGGTGATCTAATGGCGCAGCTGAAGGTCG
ligXc_Rv	ATATAAAGCTTTCAATCCTCCGGGGCGATGGT
ligXd_Fw	ATATAAAGCTT <i>AAGGAGGTGATCTA</i> ATGCCGCATTTTGATTGCCTTA
ligXd_Rv	ATATAACTAGTTCATCCCTGCGCGGCGGTCA
ligXa tune Fw Kpnl	CGGGGTACCCTAAGGAGGTGATCTAATGCTGTCCGCAG
ligXa tune Rv Nhel Ndel	AAGCAAGCTAGCCATATGATCACCTCCTTATCACGCGTCGACAT
ligZ tune Fw Ndel	ATATATCATATGGCCGAAATCGTGCTGGGT
ligZ tune Rv Xhol	TCCGCTCGAGCGTTCGCTTATTGCCAGGCCACGAAGC
ligY tune Fw Nhel Xhol	AAGCAAGCTAGCCTCGAGAAGGAGGTGATCTAATGATCATCGACTGCCATGG
ligY tune Rv BamHI	CCGGGATCCCCTCAAACGTCCAAATTAAACAC
MFS Fw Avrll	ATATCCTAGGAAGGAGGTGATCTAATGGAGAGGATGACGATGGCA
MFS Rv EcoRI	TATATGAATTCTCAGTCCGGGATTTTGGCGG
galBC Fw Avrll EcoRl	TATCCTAGGGAATTCAAGGAGGTGATCTAATGACATCCTGCGCCCACCC
galBC Rv Sacl	ATAGAGCTCTCAGGCCTTCCAGGTCGGTGA
Xmal lig frag Fw	ATATATCCCGGGAAGGAGGTGATCTAATGGAGAG
Spel lig frag Rv	ATATATACTAGTTCATCCCTGCGCGGCGGTC
oCDCS7	GGGTGGGCGCAGGATGTCATTAGATCACCTCCTTCCCGGGC
oCDCS8	ATGACATCCTGCGCCCACCCC
ddvT_Fw_SD_Xbal	TATATTCTAGATGACCTAAGGAGGTAAATAATGGCTCGCGGAACGTACTTG
ddvT Rv Nhel	TATATGCTAGCTCAGAAGCCGAACCGCAC
LELPATVITA_Rv	CGCGGTGATGACGGTGGCCGGCAGCTCCAGCGCCGTCATTTCCTGAGC
LELPATVITA_Fw	CTGGAGCTGCCGGCCACCGTCATCACCGCGTCGCGCGTGGCCCGAAGC
ddvT_Rv_HindIII	TGACTGAAGCTTTCAGAAGCCGAACCGCAC