Electronic Supplementary Information

Room-temperature rapid synthesis of hierarchically porous ZIF-

93 for effective adsorption of volatile organic compounds

Haiqi Zhang^a, Kaikai Zhao^a, Weibiao Guo^a, Kuan Liang^a, Jingjing Li^a, Xu Li^d,

Qianjun Deng^a, Xuejun Xu^a, Huixia Chao^c, Hongxia Xi^{b,*}, Chongxiong Duan^{a,*}

^a School of Materials Science and Hydrogen Engineering, Foshan University, Foshan, 528231, China.

^b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.

^c Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China.

^d Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Calculation

Space-Time Yields (STYs)

The space-time yields (STYs, in units of $kg \cdot m^{-3} \cdot d^{-1}$) data were obtained to predict the value of hierarchical porous ZIF-93 for practical applications. The STY was calculated using the following equation:

$$STY = \left(\frac{m_1}{V_{solution}\tau}\right) \times 1.44 \times 10^6$$

Where m_1 is representative of the dried mass (g) for the as-synthesized hierarchically porous ZIF-93 powder obtained from rapid synthesis at RT, $V_{solution}$ is the total volume (cm³) for the total solution, and τ is the stirring time (min).

Table S1. Elemental content of C, O, N, and Zn of hierarchical porous ZIF-93_At (t=1, 10, 60).

Samples	C (wt. %)	O (wt. %)	N (wt. %)	Zn (wt. %)
ZIF-93_A1	39.48	23.48	22.18	14.86
ZIF-93_A10	35.80	19.48	28.76	15.96
ZIF-93_A60	36.99	16.51	28.44	18.06

G 1	C C	- 0	C C	17	IZ IZ	17	D	OTV
Samples	$\mathcal{S}_{\mathrm{BET}}$	\mathcal{S}_{micro}	Δ_{ext}	V_t	V _{micro}	V _{meso}	Pore	SIYS
	$[m^2 g^{-1}]$	$[m^2 g^{-1}]$	$[m^2 g^{-1}]$	$[cm^3 g^{-1}]$	$[cm^3 g^{-1}]$	$[cm^{3} g^{-1}]$	size	$[\text{kg m}^{-3} \text{ d}^{-1}]$
							[nm]	
ZIF-	1071	954	117	0.51	0.36	0.15	6.7	3570
93_Activated								
$ZIF-93_ZnNO_3$	519	429	90	0.38	0.16	0.22	8.7	4468
ZIF-93_ZnSO ₄	684	601	83	0.36	0.23	0.13	8.4	4883
ZIF-93_KOH	849	740	109	0.45	0.28	0.17	6.9	4143
ZIF-	794	720	74	0.44	0.27	0.17	13.4	2874
93NH ₃ ·H ₂ O								
Zn ²⁺ /almeIm=1/	66	16	50	0.42	0.007	0.413	26.5	3000
0.5								
Zn ²⁺ /almeIm=1/	1049	958	91	0.50	0.37	0.13	4.7	5586
4								
$Zn^{2+}/H_2O=1/55$	1224	1192	32	0.54	0.46	0.08	5.7	1244
60								
$Zn^{2+}/H_2O=1/13$	946	919	27	0.43	0.35	0.08	5.8	9670
90								
pH=6	1006	889	117	0.51	0.33	0.18	8.0	-

Table S2. Porosity properties of the as-synthesized ZIF-93 samples.

pH=7	978	874	104	0.43	0.33	0.10	4.4	-
pH=8	771	693	78	0.39	0.26	0.13	7.9	-
pH=9	453	324	129	0.58	0.12	0.46	13.7	-
pH=10	651	499	152	0.72	0.19	0.53	13.7	-

Fig. S1 The mass ratio and molar ratio of C/O/N/Zn in the (a) ZIF-93_A1, (b) ZIF-93_A10, and (c) ZIF-93_A60.

Fig. S2 TGA curves of ZIF-93_At and C-ZIF-93 samples.

Fig. S3 XRD patterns of the as-synthesized ZIF-93 after soaking in water at different times.

Fig. S4 (a) CO₂ adsorption-desorption isotherms and (b) PSDs of ZIF-93 A1 samples.

Fig. S5 (a) Powder XRD patterns of ZIF-93_Activated and ZIF-93_Non-activated samples, and simulated XRD pattern of ZIF-93. (b) FT-IR spectra of the as-synthesized ZIF-93_Activated and ZIF-93 Non-activated samples.

Fig. S6 SEM and TEM images of ZIF-93_Activated samples.

Fig. S7 TGA curves of ZIF-93_Activated and ZIF-93_Non-activated samples.

Fig. S8 (a) N_2 adsorption-desorption isotherms and (b) PSDs of ZIF-93_Activated and ZIF-93_Non-activated samples.

Fig. S9 (a) Powder XRD patterns of ZIF-93_Zn(OAc)₂, ZIF-93_Zn(NO₃)₂, ZIF-93_ZnSO₄ samples, and simulated XRD pattern of ZIF-93. (b) FT-IR spectra of the as-synthesized ZIF-93_Zn(OAc)₂, ZIF-93_Zn(NO₃)₂, and ZIF-93_ZnSO₄ samples.

Fig. S10 SEM and TEM images of ZIF-93 samples: (a) ZIF-93_ZnSO₄, (b) ZIF-93_Zn(NO₃)₂.

Fig. S11 TGA curves of ZIF-93_Zn(OAc)₂, ZIF-93_Zn(NO₃)₂, and ZIF-93_ZnSO₄ samples.

Fig. S12 (a) N_2 adsorption-desorption isotherms and (b) PSDs of ZIF-93_Zn(OAc)₂, ZIF-93_Zn(NO₃)₂, and ZIF-93_ZnSO₄ samples.

Fig. S13 (a) Powder XRD patterns of ZIF-93_NaOH, ZIF-93_KOH, ZIF-93_NH₃·H₂O samples and simulated XRD pattern of ZIF-93. (b) FT-IR spectra of the as-synthesized ZIF-93_NaOH, ZIF-93 KOH, and ZIF-93 NH₃·H₂O samples.

Fig. S14 SEM and TEM images of ZIF-93 samples: (a) ZIF-93_NH₃·H₂O, (b) ZIF-93_KOH.

Fig. S15 TGA curves of ZIF-93_NaOH, ZIF-93_KOH, and ZIF-93_NH₃·H₂O samples.

Fig. S16 (a) N_2 adsorption-desorption isotherms and (b) PSDs of ZIF-93_NaOH, ZIF-93_KOH, and ZIF-93_NH₃·H₂O samples.

Fig. S17 Powder XRD patterns of ZIF-93 samples with different molar ratios and simulated XRD pattern of ZIF-93.

Fig. S18 (a) N_2 adsorption-desorption isotherms and (b) PSDs of ZIF-93 samples with different molar ratios.

Fig. S19 Pictures of different pH in the synthesis of ZIF-93: (a) Initial pH, (b) pH=5, (c) pH=6, (d) pH=7, (e) pH=8, (f) pH=9, and (g) pH=10.

Fig. S20 Powder XRD patterns of ZIF-93 samples with different pH and simulated XRD pattern of ZIF-93.

Fig. S21 SEM images of ZIF-93 samples with different pH: (a) pH=6, (b) pH=7, (c) pH=8, (d) pH=9, and (e) pH=10.

Fig. S22 (a) N₂ adsorption-desorption isotherms and (b) PSDs of ZIF-93 samples with different pH.

Fig. S23 XRD patterns of the as-synthesized ZIF-93 after soaking in VOCs at different times.

Fig. S24 (a) Adsorption density distribution and (b) adsorption distribution of *n*-hexane on ZIF-93 at a relative pressure of 0.3 (P/P₀).

Fig. S25 (a) Adsorption sites and (b) electrostatic potential of *n*-hexane on ZIF-93.