Supporting Information for

Cadmium Isotopes Analysis of Environmental Samples with High Organic Matter by Dry Ashing Method under Wet Plasma Conditions

Xian Wu^{1, 2}, Zeyu Wang^{1, 3}, Guangyi Sun^{1, *}, Yu Lin^{1, 2}, Xuewu Fu^{1, *}, Yang Tang¹, Xinbin Feng^{1, 2}

¹ State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

² University of Chinese Academy of Sciences, Beijing 100049, China

³ College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, China

* Corresponding authors: Guangyi Sun (<u>sunguangyi@mail.gyig.ac.cn</u>) and Xuewu Fu (<u>fuxuewu@mail.gyig.ac.cn</u>)

This supporting information includes 3 equations, 5 figures and 2 tables.

Chemical reaction equations(S1-S3). Possible reactions of Cd compounds during dry ashing

- Figure S1. Schematic diagram of dry ashing heating procedure
- Figure S2. Relationship between Δ Cd and Zr content. (Δ Cd is the difference value between the Cd content measured by ICP-MS and GF-AAS, respectively.)
- Figure S3. Comparison photo of non-dry-ashed sample and dry ashed sample(Left: nondry-ashed sample, right: dry ashed sample ;take GSD-11 as an example)
- Figure S4. Box plot of purification recovery distribution for dry-ashed standard samples
- Figure S5. Comparison of Cd isotopic compositions of dry-ashed samples with different purification recovery ranges, reference values: GSS-5 from Peng *et al.* (2021)¹;
 GSD-12 from Lu *et al.* (2021)²; NIST SRM 2711a and GSS-4 from Tan *et al.* (2020)³; BCR-482 from Borovička *et al.* (2020)⁴

Table S1. The reference material information

Table S2. Trace elements in QMA filter membranes and sediments

Chemical reaction equations(S1-3). Possible reactions of Cd compounds during dry ashing

 $2Cd(NO_3)_2 4NO_2^{\uparrow} + O_2^{\uparrow} + 2CdO \underline{\bigtriangleup} (S1)$

 $CdCl_2 + H_2O2HCl_2\uparrow + CdO \underline{\bigtriangleup}$ (S2)

 $2CdS + 3O_2 2SO_2 \uparrow + 2CdO \underline{\bigtriangleup}$ (S3)

Figure S1. Schematic diagram of dry ashing heating procedure

Figure S2. Relationship between Δ Cd and Zr Content. (Δ Cd is the difference value between the Cd content measured by ICP-MS and GF-AAS, respectively.).

Primary stage

Non-dry-ashed Dry-ashed

Resolution stage

Figure S3. Comparison photo of non-dry-ashed sample and dry ashed sample(Left: non-dry-ashed sample, right: dry ashed sample ;take GSD-11 as an example)

Figure S4. Box plot of purification recovery distribution for dry-ashed standard samples

Figure S5. Comparison of Cd isotopic compositions of dry-ashed samples with different purification recovery ranges, reference values: GSS-5 from Peng *et al.* (2021)¹; GSD-12 from Lu *et al.* (2021)²; NIST SRM 2711a and GSS-4 from Tan *et al.* (2020)³; BCR-482 from Borovička *et al.* (2020)⁴

Sample name	Concentration (µg g ⁻¹)	Sample description				
NIST SRM	54.1 ± 0.5	Montono II Soil				
2711a	54.1 ± 0.5	Montana 11 Soli				
GSS-	0.25 ± 0.09	Limestone weathered soil in Yishan, Guangxi				
4(GBW07404)	0.55 ± 0.08	Province, China				
GSS-	0.45 + 0.00	Yellow-red soil in Qibaoshan skarn copper				
5(GBW07405)	0.43 ± 0.09	polymetallic ore district, Hunan Province, China				
GSD-	22 ± 0.2	River sediment from Shizhuyuan polymetallic				
11(GBW07311)	2.5 ± 0.2	mining area, Hunan Province, China				
GSD-	4.0 ± 0.2	River sediment from Yangchun polymetallic				
12(GBW07312)	4.0 ± 0.3	mining area in Guangdong Province, China				
BCR-482	$0.50\pm0.02\texttt{*}$	Lichen				
GSB-	0.27 ± 0.02	Sector line alstancia				
16(GBW10025)	0.37 ± 0.03	Spiruina platensis				
GSB-	1.00 ± 0.02	Doult liver				
29(GBW10051)	1.00 ± 0.02	POIK IIVer				
NIST SRM	0.02 ± 0.01	Bituminous Coal				
1632d	0.08 ± 0.01					

Table S1. The reference material information

*This value is obtained from long-term observations in this study and is consistent with Kłos *et* $al.(2012)^5$.

Table 52. Trace elements in QWA inter memoranes and sediments								
Sample	Units	Ga	Zr	Мо	Cd (ICP- MS)	Cd (GF- AAS)		
QMA Fliter-1	ng dm ⁻²	185.9	7612.0	38497.1	44.6	2.1		
QMA Fliter-2	ng dm ⁻²	187.6	7608.2	38574.7	42.3	1.6		
QMA Fliter-3	ng dm ⁻²	219.4	9301.9	45567.3	52.6	3.3		
NSS-1	μg g ⁻¹	7.531	127.361	0.145	0.111	0.003		
NSS-2	μg g ⁻¹	23.703	411.712	1.045	0.356	0.023		
NSS-3	μg g ⁻¹	17.766	655.734	0.562	0.575	0.047		
NSS-4	μg g ⁻¹	24.524	193.485	0.940	0.234	0.068		
NSS-5	μg g ⁻¹	26.032	172.931	1.349	0.154	0.029		
NSS-7	μg g ⁻¹	10.902	143.761	0.556	0.138	0.011		
NSS-8	μg g ⁻¹	30.276	165.820	1.988	0.359	0.233		
NSS-9	μg g ⁻¹	2.254	43.606	0.211	0.038	0.003		
NSS-10	μg g ⁻¹	20.114	237.393	0.676	0.247	0.040		
NSS-11	$\mu g g^{-1}$	24.460	430.924	0.901	0.367	0.030		
NSS-12	$\mu g g^{-1}$	18.165	981.180	0.374	0.827	0.022		
NSS-13	$\mu g g^{-1}$	23.920	492.757	0.776	0.440	0.073		
NSS-14	$\mu g g^{-1}$	12.219	131.791	0.326	0.111	0.020		
NSS-15	$\mu g g^{-1}$	14.182	403.767	0.381	0.325	0.003		
NSS-16	$\mu g g^{-1}$	14.308	192.838	0.472	0.168	0.009		
NSS-17	μg g ⁻¹	11.395	476.474	0.247	0.376	0.003		
NSS-18	μg g ⁻¹	7.366	154.942	0.337	0.159	0.072		
NSS-19	$\mu g g^{-1}$	1.875	31.189	0.129	0.034	0.003		
NSS-20	μg g ⁻¹	1.677	59.854	0.192	0.055	0.003		
NSS-21	$\mu g g^{-1}$	17.346	217.790	0.730	0.234	0.051		
NSS-22	$\mu g g^{-1}$	18.501	405.464	0.872	0.401	0.073		
NSS-23	$\mu g g^{-1}$	18.687	305.560	0.848	0.310	0.068		
NSS-24	$\mu g \ g^{-1}$	27.180	222.157	1.424	0.288	0.099		
NSS-25	$\mu g g^{-1}$	29.441	175.265	1.190	0.260	0.136		
NSS-26	$\mu g g^{-1}$	25.928	241.537	1.034	0.629	0.497		
NSS-27	$\mu g g^{-1}$	23.911	288.346	1.302	0.622	0.401		
NSS-28	$\mu g g^{-1}$	25.443	230.995	0.862	0.517	0.334		
NSS-29	$\mu g g^{-1}$	23.380	212.328	0.703	0.205	0.027		
NSS-30	$\mu g g^{-1}$	24.925	242.475	1.070	0.333	0.153		
NSS-31	$\mu g g^{-1}$	25.486	203.949	0.834	0.187	0.044		
NSS-32	$\mu g g^{-1}$	27.947	241.632	0.985	0.511	0.324		
NSS-33	$\mu g g^{-1}$	26.483	189.939	1.234	0.553	0.377		
NSS-34	$\mu g g^{-1}$	26.526	236.736	1.081	0.787	0.577		

 Table S2. Trace elements in QMA filter membranes and sediments

NSS-35	$\mu g g^{-1}$	27.760	226.018	1.130	0.628	0.458
NSS-36	$\mu g g^{-1}$	24.660	360.644	1.026	0.558	0.247
NSS-37	$\mu g g^{-1}$	35.862	171.136	1.835	0.822	0.725
NSS-38	μg g ⁻¹	30.223	402.882	2.176	0.804	0.452
NSS-39	$\mu g g^{-1}$	33.786	249.750	2.911	1.422	1.172
NSS-41	$\mu g g^{-1}$	26.454	337.488	1.102	0.646	0.237
NSS-40	$\mu g g^{-1}$	18.338	873.562	0.579	0.901	0.405
NSS-42	$\mu g g^{-1}$	22.158	253.617	1.221	0.844	0.577
NSS-43	$\mu g g^{-1}$	24.717	227.587	1.232	0.769	0.586
NSS-44	$\mu g g^{-1}$	21.627	415.018	0.990	1.628	1.313
NSS-45	$\mu g g^{-1}$	27.880	236.151	1.124	0.272	0.086
NSS-46	$\mu g g^{-1}$	30.104	246.683	1.278	0.374	0.198
NSS-47	$\mu g g^{-1}$	21.587	289.177	1.103	1.407	1.198
NSS-48	$\mu g g^{-1}$	26.979	159.507	1.485	0.187	0.050
NSS-49	$\mu g g^{-1}$	26.453	177.993	1.230	0.182	0.046
NSS-50	$\mu g g^{-1}$	22.670	279.542	1.079	0.275	0.062
NSS-51	$\mu g g^{-1}$	27.625	172.854	1.334	0.161	0.024
NSS-52	$\mu g g^{-1}$	28.716	132.789	1.492	0.302	0.191
NSS-53	$\mu g g^{-1}$	24.022	153.957	2.093	0.177	0.059
NSS-54	$\mu g g^{-1}$	21.582	240.518	1.626	0.331	0.155
NSS-55	$\mu g g^{-1}$	12.966	318.590	0.533	0.273	0.024
NSS-56	$\mu g g^{-1}$	19.484	197.278	0.859	0.181	0.022

References

- 1 H. Peng, D. He, R. Guo, X. Liu, N. S. Belshaw, H. Zheng, S. Hu and Z. Zhu, J. Anal. At. Spectrom., 2021, **36**, 390–398.
- 2 Z. Lu, J.-M. Zhu, D. Tan, X. Wang and Z. Zheng, *Geostandards and Geoanalytical Research*, 2021, **45**, 565–581.
- 3 D. Tan, J.-M. Zhu, X. Wang, G. Han, Z. Lu and W. Xu, J. Anal. At. Spectrom., 2020, **35**, 713–727.
- 4 J. Borovička, L. Ackerman and J. Rejšek, Talanta, 2021, 221, 121389.
- 5 A. Kłos, M. Czora, M. Rajfur and M. Wacławek, Water Air Soil Pollut, 2012, 223, 1829–1836.