Supplementary material

Studying the degradation of bulk PTFE into microparticles via SP ICP-MS: A systematically developed method for the detection of F-containing particles

Raquel Gonzalez de Vega^{1*}, Thebny Thaíse Moro^{1,2}, Bernhard Grüner^{1,3}, Tatiane de Andrade Maranhão², Maximilian Huber⁴, Natalia Ivleva⁴, Etienne Skrzypek⁵, Jörg Feldmann¹, David Clases^{6*}

¹TESLA- Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria

²Departamento de Química, Campus Trindade, Universidade Federal de Santa Catarina, Florianópolis, Brazil

³Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany

⁴Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany

⁵Department of Petrology and Geochemistry, NAWI Graz Geocenter, University of Graz, Graz, Austria

⁶NanoMicroLab, Institute of Chemistry, University of Graz, Graz, Austria

*Corresponding author: <u>Raquel.gonzalez-de-vega@uni-graz.at</u>, <u>David.Clases@uni-graz.at</u>

Table of content:

Table S1: Doehlert experimental design for optimization of the (A) plasma, and (B) bandpass

Table S2: Central Composite experimental design for optimization of extract 2 and deflect of ion optics.

Figure S1: Colorimetric map obtained from the Central Composite experimental design (2 factors: 10 exp) for ion optics optmisation. Selected conditions are marked as a white circle.

Table S3: Factorial design 2⁵ executed to discriminate between significant and non-significant factors that can affect the CRC performance

Figure S2: Pareto chart for the factorial design 2⁵ showing the significant factors that affect the CRC performance

Table S4: Box-Behnken experimental design for optimization of H_2 flow, O_2 flow, and energy discrimination of CRC.

Figure S3: Box-Behnken Designs (3 factors: 15 exp) for CRC optimisations: A) O_2 flow vs H_2 flow, B) Energy discrimination vs H_2 flow and C) Energy discrimination vs O_2 flow. Optimised values are shown at the bottom of the figures, respectively.

	Matrix Code –		Experimental Conditions					
Exp.			(A) Pla	asma	(B) Bandpass			
	Variable 1	Variable 2	Sample Depth (mm)	Nebulizer Flow (mL min ⁻¹)	Q1 Mass Gain (V)	Q1 Mass Offset (V)		
1	0	0	4.5	1.40	10	130		
2	0	1	4.5	1.50	10	150		
3	0.866	0.5	6.0	1.45	20	140		
4	0	-1	4.5	1.30	10	110		
5	-0.866	-0.5	3.0	1.35	0	120		
6	-0.866	0.5	3.0	1.45	0	140		
7	0.866	-0.5	6.0	1.35	20	120		
CP	0	0	4.5	1.40	10	130		
CP	0	0	4.5	1.40	10	130		
CP	0	0	4.5	1.40	10	130		

Table S1: Doehlert experimental design for optimisation of the (A) plasma, and (B) bandpass

Evn	Matrix	Code	Experimental Conditions			
Exp.	Variable 1	Variable 2	Extract 2 (V)	Deflect (V)		
1	-1	-1	-5	-5		
2	-1	1	-5	5		
3	1	-1	5	-5		
4	1	1	5	5		
5	-1.41421	0	-7	0		
6	1.41421	0	7	0		
7	0	-1.41421	0	-7		
8	0	1.41421	0	7		
9 (CP)	0	0	0	0		
10 (CP)	0	0	0	0		

Table S2: Central Composite experimental design for optimization of extract 2 and deflect of ion optics.

Figure S1: Colorimetric map obtained from the Central Composite experimental design (2 factors: 10 exp) for ion optics optmisation. Selected conditions are marked as a white circle.

Table S3: Factorial design 2⁵ executed to discriminate between significant and non-significantfactors that can affect the CRC performance

		Ма	atrix Co	de		Experimental Conditions				
Exp.	Var 1	Var 2	Var 3	Var 4	Var 5	Oct Bias	Energy Discrimination	He Flow	H ₂ Flow	O ₂ Flow
1	-1	-1	-1	-1	-1	-8	-5	0	0	5
2	1	-1	-1	-1	-1	-2	-5	0	0	5
3	-1	1	-1	-1	-1	-8	2	0	0	5
4	1	1	-1	-1	-1	-2	2	0	0	5
5	-1	-1	1	-1	-1	-8	-5	2	0	5
6	1	-1	1	-1	-1	-2	-5	2	0	5
7	-1	1	1	-1	-1	-8	2	2	0	5
8	1	1	1	-1	-1	-2	2	2	0	5
9	-1	-1	-1	1	-1	-8	-5	0	2	5
10	1	-1	-1	1	-1	-2	-5	0	2	5
11	-1	1	-1	1	-1	-8	2	0	2	5
12	1	1	-1	1	24	-2	2	0	2	5
13	-1	-1	1	1	-1	-8	-5	2	2	5
14	1	-1	1	1	-1	-2	-5	2	2	5
15	-1	1	1	1	-1	-8	2	2	2	5
16	1	1	1	1	-1	-2	2	2	2	5
17	-1	-1	-1	-1	1	-8	-5	0	0	30
18	1	-1	-1	-1	1	-2	-5	0	0	30
19	-1	1	-1	-1	1	-8	2	0	0	30
20	1	1	-1	-1	1	-2	2	0	0	30
21	-1	-1	1	-1	1	-8	-5	2	0	30
22	1	-1	1	-1	1	-2	-5	2	0	30
23	-1	1	1	-1	1	-8	2	2	0	30
24	1	1	1	-1	1	-2	2	2	0	30
25	-1	-1	-1	1	1	-8	-5	0	2	30
26	1	-1	-1	1	1	-2	-5	0	2	30
27	-1	1	-1	1	1	-8	2	0	2	30
28	1	1	-1	1	1	-2	2	0	2	30
29	-1	-1	1	1	1	-8	-5	2	2	30
30	1	-1	1	1	1	-2	-5	2	2	30
31	-1	1	1	1	1	-8	2	2	2	30
32	1	1	1	1	1	-2	2	2	2	30

Figure S2: Pareto chart for the factorial design 2⁵ showing the significant factors that affect the CRC performance.

Standardized Effect Estimate (Absolute Value)

		Matrix Co	ode	Experimental Conditions			
Exp.	Var 1	Var 2	Var 3	H ₂ Flow	O ₂ Flow	Energy Discrimination	
1	-1	-1	0	0	5	-10	
2	1	-1	0	1	5	-10	
3	-1	1	0	0	15	-10	
4	1	1	0	1	15	-10	
5	-1	0	-1	0	10	-15	
6	1	0	-1	1	10	-15	
7	-1	0	1	0	10	-5	
8	1	0	1	1	10	-5	
9	0	-1	-1	0.5	5	-15	
10	0	1	-1	0.5	15	-15	
11	0	-1	1	0.5	5	-5	
12	0	1	1	0.5	15	-5	
13	0	0	0	0.5	10	-10	
14	0	0	0	0.5	10	-10	
15	0	0	0	0.5	10	-10	

Table S4: Box-Behnken experimental design for optimization of H₂ flow, O₂ flow, and energy discrimination of CRC.

Figure S3. Box-Behnken Designs (3 factors: 15 exp) for CRC optimisations: A) O_2 flow vs H_2 flow, B) Energy discrimination vs H_2 flow and C) Energy discrimination vs O_2 flow. Optimised values are shown at the bottom of the figures, respectively.

