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I. THEORETICAL CALCULATIONS

A. Derivation of the fluorescence count rate

The ansatz for the calculation of the self-absorption correction follows the theory part
of Haskel[l]. However, it is rounded up with some additional focus on details as well as a
mathematical case analysis for approximations in this work.
Aiming for the correction of the self-absorption effect, one has to model the total process of
fluorescence yield NEXAFS spectrometry in order to describe the correlation between the
photo-absorption coefficient 7(Ey) of the examined element and the (normalized) fluores-
cence count rate. Starting with the differential fluorescence count rate
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at the incident energy Fj originating from an infinitesimally small slice dz, in depth z, of
the sample of thickness z,, with the detected solid angle €2, detector efficiency €qet, incident
photon flux Py(Ep), incident (and fluorescence) beam angle ¥; (and ), the fluorescence
efficiency €; and the total absorption coefficient p(Ey) = 7(FEo) + un(Fo) with contributions
up from all shells and elements in the sample except for the element of interest. The
fluorescence energy being denoted by FEf is assumed to be constant.

An integration over the whole sample thickness z yields the total fluorescence count rate
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which, with an eye towards 7(Fjy), simplifies to
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which occurs in several publications in this or slightly simplified versions[1-9].
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B. Calculations of the Taylor expansions for infinitely thin and dilute samples

Relative deviations from the approximation N(Ey) ~ 7(Ep) for the limits ¢ < 1 and
¢ > 1 in Equation (2) of the main manuscript can be calculated by Taylor expansion of the

fraction
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1. Effective sample thickness t < 1

For effective sample thickness ¢ < 1, the coefficient needs to be treated in the limit of
t — 0 because the last factor does not exist for ¢ = 0. Thus, the Taylor expansion in first

order is

N(Ep) i (VB0 (AN (E)Y 2
By <D =i (T(Eo) ) i (dt #(Fo) ) t+0).

Following L’Hopital’s Rule and
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the limit for the zeroth order yields
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For the first order coefficient, one needs to evaluate the derivative
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and since this is not defined for ¢ = 0, one has to apply L'Hopital’s Rule twice to get

m <i <—1 _ e_flt)) =lim (fle_flt — foe ' = (fL = fo) e_(f1+f2)t)
t—0 \ dt \ 1 —e /2t t-0 (1 —ef2t)?
=lim (fre=ht — foe™2t — (fy = fo) et tY’
50 ((1 —ehat) )
—fife Nt + fPe Pt 4 (fi — fo) (fi + fo) e”(iF/2)

:11_133 2(1 — e~ fet) fae=fot

=lim —fifeT N+ fle B 4 (fif — fof) e iR
t=0 2faem /2t — 2 foe=2/2t

=lim (—fPe Nt 4 ple P4 (fi7 = foF) e Pty
=0 (2fae—f2t — 2 fre—2f2t)’

~ lim filemfit — fole=fat — (fl2 — f22) (fi + fo) e UrtR)t
=0 —2fy%e 2t 4 4 fy2e202t

_fl3 — 2’ = (fl2 - f22) (fi+ f2)

- —2f" +4f5°

:f13 — L= 0= ARt R+

25
—fif (- )
2f2°
—— -,



Plugging fi = 7(Ey) +v(Eo) + 3 and f, = 1+ + 3, one obtains the first order coefficient
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and the first order of the Taylor expansion
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2. Relative Absorption Coefficient Contributions v(Eo) + B ~~" 4+ 5 = (> 1 of the Matriz

For high matrix contributions to the relative absorption coefficient v(Ey) + 3 ~ ' + 3 =

¢ > 1, the coeflicient needs to be treated in the limit of ( — oo. In order to perform a

Taylor series expansion, the inverse n = % is introduced with n — 0. Thus, the fraction to

be expanded is

N(Ey)  1+¢ 1—e @0 141 g () n+1 11— e (FEH)

F(Bo) ~ TE)+C 1—e 0 T HE)+ L o () B+l o ()

and the Taylor expansion in first order is
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For the first order coefficient, the following lemma is needed where L’Hopital’s Rule is applied
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vanishes. Now, the first order coefficient of the Taylor expansion can be calculated
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and the first order of the Taylor expansion yields
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II. RESULTS

Table S1 shows the sulfur mass deposition and sample thickness for DPS, DPDS and
DMTS from both the transmission and the fluorescence measurements. The sample thickness
of DPS is determined to be slightly larger than for DPDS and DMTS. The sulfur mass
deposition has the smallest value for DPS though because there is just one sulfur atom per
molecule. The second sulfur atom in DPDS and a slightly larger mass density increases
the sulfur mass deposition to a value slightly larger than for DPS, despite the lower sample
thickness. DMTS does not only have a third sulfur atom, but also shorter carbon chains and
the highest mass density of the three molecules, which increases the sulfur mass deposition
by more than the factor of 2 compared to DPDS.

Note that only one of the sample films contributed to the fluorescence signal, whereas the
transmitted X-ray beam was attenuated by both films. An uneven thickness distribution over
the two sample films may lead to a deviation of the measured thickness. The results from
transmission and fluorescence agree well with deviations of at most 25% which is consistent

with the measurement uncertainties as well as the above mentioned asymmetry.

TABLE S1. Sulfur mass deposition and sample thickness as determined from transmission mea-

surements and reference-free XRF measurements

Molecule DPS [DPDS|DMTS

mass deposition / £&|21.8 | 27.7 | 62.6

Transmission
sample thickness / um|[0.959] 0.678 | 0.690

mass deposition / £ 124.2 | 34.9 | 784

Fluorescence
sample thickness / pm|1.062| 0.852 | 0.865

The Figure S1 below shows the data from Figure 6 for the full energy axis. The residues for
the measured transmission and the predicted fluorescence spectra relative to the measured
fluorescence spectra of dipropyl sulfide (DPS, blue), dipropyl disulfide (DPDS, orange) and
dimethyl trisulfide (DMTS, green) visualize that the forward calculation makes up for the
damping of the NEXAFS signal and especially recovers the peak height ratios in the damped

fluorescence spectra.
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FIG. S1. This figure shows the data from Figure 6 for the full energy axis.

(a) NEXAFS spectra of dipropyl sulfide (DPS, blue), dipropyl disulfide (DPDS, orange) and
dimethyl trisulfide (DMTS, green). The self-absorption free (undamped) spectra, directly calcu-
lated from transmission measurements, are depicted with dots, the measured fluorescence spectra
are marked with pluses, and the crosses in between are the forward calculated fluorescence spectra
predicted using transmission and tabulated data. (b) The residues for the measured transmission
and the predicted fluorescence spectra relative to the measured fluorescence spectra of dipropyl
sulfide (DPS, blue), dipropyl disulfide (DPDS, orange) and dimethyl trisulfide (DMTS, green) visu-

alize that the forward calculation makes up for the damping of the NEXAFS signal and especially

recovers the peak height ratios in the damped fluorescence spectra.
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