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I. THEORETICAL CALCULATIONS

A. Derivation of the fluorescence count rate

The ansatz for the calculation of the self-absorption correction follows the theory part

of Haskel[1]. However, it is rounded up with some additional focus on details as well as a

mathematical case analysis for approximations in this work.

Aiming for the correction of the self-absorption effect, one has to model the total process of

fluorescence yield NEXAFS spectrometry in order to describe the correlation between the

photo-absorption coefficient τ(E0) of the examined element and the (normalized) fluores-

cence count rate. Starting with the differential fluorescence count rate

Pf(E0, zn)dzn =
Ω

4π
ϵdet(Ef)P0(E0)e

−µt(E0)
zn

sinϑi ϵfτ(E0)
dzn
sinϑi

e
−µt(Ef)

zn
sinϑf (1)

at the incident energy E0 originating from an infinitesimally small slice dzn in depth zn of

the sample of thickness zs, with the detected solid angle Ω, detector efficiency ϵdet, incident

photon flux P0(E0), incident (and fluorescence) beam angle ϑi (and ϑf), the fluorescence

efficiency ϵf and the total absorption coefficient µt(E0) = τ(E0)+µb(E0) with contributions

µb from all shells and elements in the sample except for the element of interest. The

fluorescence energy being denoted by Ef is assumed to be constant.

An integration over the whole sample thickness zs yields the total fluorescence count rate
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)
which, with an eye towards τ(E0), simplifies to
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which occurs in several publications in this or slightly simplified versions[1–9].
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B. Calculations of the Taylor expansions for infinitely thin and dilute samples

Relative deviations from the approximation N(E0) ≈ τ̄(E0) for the limits t ≪ 1 and

ζ ≫ 1 in Equation (2) of the main manuscript can be calculated by Taylor expansion of the

fraction

N(E0)

τ̄(E0)
=

1 + γ′ + β̄

τ̄(E0) + γ(E0) + β̄
· 1− e−(τ̄(E0)+γ(E0)+β̄)t

1− e−(1+γ′+β̄)t
. (3)

1. Effective sample thickness t ≪ 1

For effective sample thickness t ≪ 1, the coefficient needs to be treated in the limit of

t → 0 because the last factor does not exist for t = 0. Thus, the Taylor expansion in first

order is

N(E0)

τ̄(E0)
(t ≪ 1) = lim

t→0

(
N(E0)

τ̄(E0)

)
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t→0

(
d
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)
· t+O(t2).

Following L’Hôpital’s Rule and

lim
t→0

(
1− e−(τ̄(E0)+γ(E0)+β̄)t
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,

the limit for the zeroth order yields
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)′
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= 1.
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For the first order coefficient, one needs to evaluate the derivative

d
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Plugging f1 = τ̄(E0) + γ(E0) + β̄ and f2 = 1+ γ′ + β̄, one obtains the first order coefficient

lim
t→0

(
d

dt

N(E0)

τ̄(E0)

)
= lim

t→0

(
d

dt

(
1 + γ′ + β̄

τ̄(E0) + γ(E0) + β̄
· 1− e−(τ̄(E0)+γ(E0)+β̄)t

1− e−(1+γ′+β̄)t

))

=
1 + γ′ + β̄

τ̄(E0) + γ(E0) + β̄
· lim
t→0

(
d

dt

(
1− e−(τ̄(E0)+γ(E0)+β̄)t

1− e−(1+γ′+β̄)t

))

=
1 + γ′ + β̄

τ̄(E0) + γ(E0) + β̄
·
(
−1

2

τ̄(E0) + γ(E0) + β̄
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((
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)
−
(
1 + γ′ + β̄

)))
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2

and the first order of the Taylor expansion

N(E0)

τ̄(E0)
(t ≪ 1) = 1−

(
τ̄(E0)− 1 + γ(E0)− γ′

2

)
· t+O(t2). (4)

2. Relative Absorption Coefficient Contributions γ(E0) + β̄ ≈ γ′ + β̄ = ζ ≫ 1 of the Matrix

For high matrix contributions to the relative absorption coefficient γ(E0) + β̄ ≈ γ′ + β̄ =

ζ ≫ 1, the coefficient needs to be treated in the limit of ζ → ∞. In order to perform a

Taylor series expansion, the inverse η = 1
ζ
is introduced with η → 0. Thus, the fraction to

be expanded is

N(E0)

τ̄(E0)
=

1 + ζ

τ̄(E0) + ζ
· 1− e−(τ̄(E0)+ζ)t

1− e−(1+ζ)t
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η )t
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and the Taylor expansion in first order is
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)
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The limit for the zeroth order is trivially
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η )t

)
= 1.
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For the first order coefficient, the following lemma is needed where L’Hôpital’s Rule is applied

k times

lim
η→0

(
e−

a
η

ηk

)
= lim

η→0

(
η−k

e
a
η

)

= lim
η→0

(
η−k
)′(

e
a
η
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η

)
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a
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(
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e
a
η

)
= . . . [(k-1) times L’Hôpital’s Rule]

=
k!

ak
lim
η→0

(
1

e
a
η

)
= 0

so that for all a ̸= 0 and k, the limit

lim
η→0

(
e−

a
η

ηk

)
= 0 (5)

vanishes. Now, the first order coefficient of the Taylor expansion can be calculated

lim
η→0

(
d

dη

N(E0)

τ̄(E0)

)
= lim

η→0

(
d

dη

(
η + 1
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(
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−t
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1− e−(1+
1
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(5)
=1− τ̄(E0)

and the first order of the Taylor expansion yields

N(E0)

τ̄(E0)
(ζ ≫ 1) = 1− (τ̄(E0)− 1) · η +O(η2),

or, in terms of ζ,

N(E0)

τ̄(E0)
(ζ ≫ 1) = 1− (τ̄(E0)− 1) · 1

ζ
+O

((
1

ζ

)2
)
. (6)
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II. RESULTS

Table S1 shows the sulfur mass deposition and sample thickness for DPS, DPDS and

DMTS from both the transmission and the fluorescence measurements. The sample thickness

of DPS is determined to be slightly larger than for DPDS and DMTS. The sulfur mass

deposition has the smallest value for DPS though because there is just one sulfur atom per

molecule. The second sulfur atom in DPDS and a slightly larger mass density increases

the sulfur mass deposition to a value slightly larger than for DPS, despite the lower sample

thickness. DMTS does not only have a third sulfur atom, but also shorter carbon chains and

the highest mass density of the three molecules, which increases the sulfur mass deposition

by more than the factor of 2 compared to DPDS.

Note that only one of the sample films contributed to the fluorescence signal, whereas the

transmitted X-ray beam was attenuated by both films. An uneven thickness distribution over

the two sample films may lead to a deviation of the measured thickness. The results from

transmission and fluorescence agree well with deviations of at most 25% which is consistent

with the measurement uncertainties as well as the above mentioned asymmetry.

TABLE S1. Sulfur mass deposition and sample thickness as determined from transmission mea-

surements and reference-free XRF measurements

Molecule DPS DPDS DMTS

Transmission
mass deposition / µg

cm2 21.8 27.7 62.6

sample thickness / µm 0.959 0.678 0.690

Fluorescence
mass deposition / µg

cm2 24.2 34.9 78.4

sample thickness / µm 1.062 0.852 0.865

The Figure S1 below shows the data from Figure 6 for the full energy axis. The residues for

the measured transmission and the predicted fluorescence spectra relative to the measured

fluorescence spectra of dipropyl sulfide (DPS, blue), dipropyl disulfide (DPDS, orange) and

dimethyl trisulfide (DMTS, green) visualize that the forward calculation makes up for the

damping of the NEXAFS signal and especially recovers the peak height ratios in the damped

fluorescence spectra.
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FIG. S1. This figure shows the data from Figure 6 for the full energy axis.

(a) NEXAFS spectra of dipropyl sulfide (DPS, blue), dipropyl disulfide (DPDS, orange) and

dimethyl trisulfide (DMTS, green). The self-absorption free (undamped) spectra, directly calcu-

lated from transmission measurements, are depicted with dots, the measured fluorescence spectra

are marked with pluses, and the crosses in between are the forward calculated fluorescence spectra

predicted using transmission and tabulated data. (b) The residues for the measured transmission

and the predicted fluorescence spectra relative to the measured fluorescence spectra of dipropyl

sulfide (DPS, blue), dipropyl disulfide (DPDS, orange) and dimethyl trisulfide (DMTS, green) visu-

alize that the forward calculation makes up for the damping of the NEXAFS signal and especially

recovers the peak height ratios in the damped fluorescence spectra.
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[2] J. Stöhr, NEXAFS spectroscopy, Vol. 25 (Springer Science & Business Media, 2013).

[3] J. Jaklevic, J. Kirby, M. Klein, A. Robertson, G. Brown, and P. Eisenberger, Fluorescence

detection of EXAFS: Sensitivity enhancement for dilute species and thin films, Solid State

Communications 23, 679 (1977).

[4] D. Pease, D. Brewe, Z. Tan, J. Budnick, and C. Law, Accurate X-ray absorption spectra

obtained from concentrated bulk samples by fluorescence detection, Physics Letters A 138, 230

(1989).
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