Supplementary Information (SI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2024

Supplementary information

Applying standard addition to determine antimony isotopes in low-Sb samples using HG-MC-ICP-MS

Honggang Zhu^a, Jian-Ming Zhu^{a*}, Decan Tan^b, Zhuo Lu^a, Hongfei Liao^a, Yiwei Ma^a

a. State Key Laboratory of Geological Processes and Mineral Resources, and Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing, 100083, China.

 b. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang, 550081, China

* Corresponding author: Jian-Ming Zhu

Phone: 86-010-82322832.

E-mail: jmzhu@cugb.edu.cn

ORCID: 0000-0003-4977-6072

Revised version submitted to: JAAS 2024-10-25

Contents

1. Table S1. Operating parameters for Sb isotope measurement on HG-MC-ICP-MS 2. Fig. S1. Long-term reproducibility of the corrected and uncorrected δ^{123} Sb values of NIST 3102a and SCP standard solutions.

3.Text S1. The precision estimated by propagation error

Parameters	Neptune plus	Nu plasma II
Cup configuration	L4 (¹¹¹ Cd), L3 (¹¹² Cd, ¹¹² Sn),	L4(¹¹¹ Cd),L3(¹¹² Cd),L2(¹¹³ Cd),
	L2 (¹¹³ Cd), L1 (¹¹⁴ Cd, ¹¹⁴ Sn),	L1(¹¹⁴ Cd),Ax(¹¹⁵ In),H1(¹¹⁶ Cd),
	C(¹¹⁷ Sn),H1(¹¹⁹ Sn),H2(¹²¹ Sb	H2(¹¹⁷ Sn),H3(¹¹⁸ Sn),H6(¹²¹ Sb),
),H3 (¹²³ Sb), H4 (¹²⁶ Te)	H7(¹²³ Sb),H8(¹²⁵ Te)
Inlet system		
cool gas	15 L min ⁻¹	13 L.min ⁻¹
aux gas	0.80-1.15 L min ⁻¹	0.85-0.9 L.min ⁻¹
sample gas	0.85-1.10 L min ⁻¹	0.90-1.30 L min ⁻¹
RF power	1200W	1300W
sample cone	H type, Ni	Ni, 541b
skimmer cone	X type, Ni	Ni, 540
resolution mode	low	low
sample uptake	110 μL min ⁻¹	110 μL min ⁻¹
Aridus II		
spray chamber temperature	110°C	110°C
desolvator temperature	160°C	160°C
Ar sweep gas	2.0-2.5 L min ⁻¹	1.8 L min ⁻¹ (adjusted daily)
nitrogen gas	1-6 mL min ⁻¹	2-6 mL min ⁻¹ (adjusted daily)
Hydride generator		
Washing solution	1.5 M HCl	3 M HCl
NaBH ₄	0.4 wt% NaBH4 in 0.4 wt%	0.4 wt% NaBH4 in 0.4 wt%
	NaOH	NaOH
Sample media	1.5 M HCl	3 M HCl
Add Ar sweep gas	0.02-0.04 L min ⁻¹	0.07~0.2 L min-1
sensitivity	${\sim}2500V/~\mu g~mL^{-1}$ for ^{123}Sb	${\sim}1500V\!/\mu g~mL^{-1}$ for ^{123}Sb
injecting concentration	3 ng mL^{-1}	6 ng mL^{-1}

Table S1. Operating parameters for Sb isotope measurement on HG-MC-ICP-MS

Fig.S1 Long-term reproducibility of the corrected and uncorrected δ^{123} Sb value of NIST 3102a and SCP standard solutions.

600dpi

Text 1. The precision estimated by propagation error

The $\delta^{123}Sb_{spl}$ value is calculated from equation 10, and the precision can be estimated by error propagation^{1,2}, using the following equation:

$$\sigma_{spl} = \sqrt{\left(\frac{1}{f} \cdot \sigma_{mix}\right)^2 + \left[\left(1 - \frac{1}{f}\right) \cdot \sigma_{std}\right]^2 + \left[\left(\frac{\delta^{123}Sb_{mix}}{-f^2} + \frac{\delta^{123}Sb_{std}}{f^2}\right) \cdot \sigma_f\right]^2}$$
(1)

where σ_{spl} , σ_{std} and σ_{mix} represent the two standard deviations (2SD) of δ^{123} Sb values of sample, standard solution, and mixed solution, respectively, and σ_f denote the 2SD of values of the relative proportions of sample and standard (f).

Eq 1 can be reduced to Eq 2:

$$\sigma_{spl} = \sqrt{\left(\frac{\sigma_{mix}}{f}\right)^2 + \left(\frac{f-1}{f} \cdot \sigma_{std-3102a}\right)^2 + \left[\left(\frac{\delta^{123}Sb_{std-3102a} - \delta^{123}Sb_{mix}}{f^2}\right) \cdot \sigma_f\right]^2}$$
(2)

In this study, two Sb standard solutions (NIST SRM 3102a and SCP) were used for SA method. So, the final calculated $\delta^{123}Sb_{spl}$ should be the mean value of the primary two $\delta^{123}Sb_{spl}$ using different Sb standard solutions:

$$\delta^{123}Sb_{spl} = 1/2 \cdot (\delta^{123}Sb_{spl by 3102a} + \delta^{123}Sb_{spl by SCP})$$
(3)

And the uncertainty can be estimated by error propagation:

$$\sigma_{spl} = \sqrt{\left(\frac{\sigma_{spl\,by\,3102a}}{2}\right)^2 + \left(\frac{\sigma_{spl\,by\,SCP}}{2}\right)^2} \tag{4}$$

 $\delta^{123}Sb_{spl by 3102a}$ and $\delta^{123}Sb_{spl by SCP}$ are the calculated $\delta^{123}Sb_{spl}$ using NIST 3102a and SCP as the standard addition solution. The $\sigma_{spl by 3102a}$ and $\sigma_{spl by SCP}$ represent their precision with 2SD.

As NIST 3102a was used as the isotope standard in this study, δ^{123} Sb should be zero; $\sigma_{std-3120a}$ in Eq 2 is 0.02‰, and $\sigma_{std-SCP}$ is 0.04‰ as shown in Fig 2. Hence, the calculated $\sigma_{spl by 3102a}$ is always less than $\sigma_{spl by SCP}$. To facilitate the assessment of propagation errors, we can substitute $\sigma_{spl by SCP}$ for $\sigma_{spl-3102a}$. Thus,

$$\sigma_{spl} \lesssim \sqrt{\frac{1}{2}} \cdot \sqrt{\left(\frac{\sigma_{mix}}{f}\right)^2 + \left(\frac{f-1}{f} \cdot \sigma_{std-SCP}\right)^2 + \left[\left(\frac{\delta^{123}Sb_{std-SCP} - \delta^{123}Sb_{mix}}{f^2}\right) \cdot \sigma_f\right]^2} \tag{5}$$