
Supplementary materials

Fig. 2 is a geometrical interpretation of the Abel transform in a cylindrically 

symmetric plasma. As shown in Fig. 2(a), assuming that the plasma radiation source 

is a cylindrical body with cylindrical symmetry about the z-axis and is optically thin. 

In Fig. 2(b), the detector moves in the y-direction, allowing for the acquisition of the 

transverse distribution of plasma spectral intensity . 𝐼 ( 𝑦 )

(a) (b)

Fig.2. Geometrical interpretation of the Abel transform in a cylindrically symmetric plasma. 

(a)Cylindrical symmetric plasma, (b)Transverse intensity.

The relationship between measured intensity  and radial emissivity  𝐼 ( 𝑦 ) 𝐸 ( 𝑟 )

is described by Abel inversion:
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where, y is the offset of the intensity profile from the central axis of the plasma, r 

is the radial distance from the source center ( r =  ), and x0 is the x-coordinate x2 + y2

of the plasma edge at each value of y as illustrated in the Fig. 2. The radial emissivity 

 is obtained through Abel inversion as follows:𝐸 ( 𝑟 )
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All Abel inversion algorithms face two main issues. The first issue is that the 

experimentally measured  often contains random noise, making it difficult to 𝐼 ( 𝑦 )

obtain the first derivative . The other issue is that the Abel inversion formula 𝐼' ( 𝑦 )

involves a singularity at the lower limit of the integral and requires the differentiation 

of . The cubic spline method was used to solve the problems. The cubic spline 𝐼 ( 𝑦 )

method approximates the data points  and  with a cubic ( 𝑦𝑖,𝐼𝑖 ) ( 𝑦𝑖 + 1,𝐼𝑖 + 1 )

polynomial, as follows:

𝐼𝑖(𝑦) = 𝑎𝑖0 + 𝑎𝑖1𝑦 + 𝑎𝑖2𝑦2 + 𝑎𝑖3𝑦3 (3)

On the subinterval [ , ], =  is a cubic polynomial, so  𝑦𝑖  𝑦𝑖 + 1 𝐼 ( 𝑦 )  𝐼𝑖 ( 𝑦 ) 𝐼'' ( 𝑦 )

is a linear function of x. Given  =  and  =  , linear interpolation 𝐼''(𝑦𝑖 + 1) 𝑀𝑖 + 1 𝐼''(𝑦𝑖) 𝑀𝑖

provides that:
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The above expression is integrated twice, using the boundary values obtained 
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Let  , the expression can be written as follows:h𝑖 = 𝑦𝑖 + 1 - 𝑦𝑖
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To solve for the coefficients , , , and  of the cubic polynomial, it is 𝑎𝑖0 𝑎𝑖1 𝑎𝑖2 𝑎𝑖3

first necessary to determine the n+1 unknown values: ,…, . The following 𝑀1 𝑀𝑖 + 1

conditions must be satisfied to ensure continuity at the nodes:

=𝐼 '
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There are n-1 nodes between the measurement points, which gives rise to n-1 

linear algebraic equations based on the above conditions. Assuming that the plasma 

has an axisymmetric shape, the first derivative of the intensity at the center position is 

assumed to be zero. Additionally, the emissivity at the plasma boundary, where r = R, 

is also assumed to be zero, which implies that the corresponding first derivative at this 

boundary is also zero.

𝐼'(0) = 𝐼'(𝑅) = 0
(11

)

This results in two additional equations. Thus, the n+1 linear equations allow for 

the determination of n+1 second-order derivatives M. By substituting these 

derivatives, the coefficients of the cubic polynomials can be calculated. Substituting 

these coefficients will then yield the radial emissivity distribution  of the 𝐸 ( 𝑟 )

plasma.


